Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/kvm/entry.c
26439 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Generation of main entry point for the guest, exception handling.
7
*
8
* Copyright (C) 2012 MIPS Technologies, Inc.
9
* Authors: Sanjay Lal <[email protected]>
10
*
11
* Copyright (C) 2016 Imagination Technologies Ltd.
12
*/
13
14
#include <linux/kvm_host.h>
15
#include <linux/log2.h>
16
#include <asm/mipsregs.h>
17
#include <asm/mmu_context.h>
18
#include <asm/msa.h>
19
#include <asm/regdef.h>
20
#include <asm/setup.h>
21
#include <asm/tlbex.h>
22
#include <asm/uasm.h>
23
24
#define CALLFRAME_SIZ 32
25
26
static unsigned int scratch_vcpu[2] = { C0_DDATALO };
27
static unsigned int scratch_tmp[2] = { C0_ERROREPC };
28
29
enum label_id {
30
label_fpu_1 = 1,
31
label_msa_1,
32
label_return_to_host,
33
label_kernel_asid,
34
label_exit_common,
35
};
36
37
UASM_L_LA(_fpu_1)
38
UASM_L_LA(_msa_1)
39
UASM_L_LA(_return_to_host)
40
UASM_L_LA(_kernel_asid)
41
UASM_L_LA(_exit_common)
42
43
static void *kvm_mips_build_enter_guest(void *addr);
44
static void *kvm_mips_build_ret_from_exit(void *addr);
45
static void *kvm_mips_build_ret_to_guest(void *addr);
46
static void *kvm_mips_build_ret_to_host(void *addr);
47
48
/*
49
* The version of this function in tlbex.c uses current_cpu_type(), but for KVM
50
* we assume symmetry.
51
*/
52
static int c0_kscratch(void)
53
{
54
return 31;
55
}
56
57
/**
58
* kvm_mips_entry_setup() - Perform global setup for entry code.
59
*
60
* Perform global setup for entry code, such as choosing a scratch register.
61
*
62
* Returns: 0 on success.
63
* -errno on failure.
64
*/
65
int kvm_mips_entry_setup(void)
66
{
67
/*
68
* We prefer to use KScratchN registers if they are available over the
69
* defaults above, which may not work on all cores.
70
*/
71
unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
72
73
if (pgd_reg != -1)
74
kscratch_mask &= ~BIT(pgd_reg);
75
76
/* Pick a scratch register for storing VCPU */
77
if (kscratch_mask) {
78
scratch_vcpu[0] = c0_kscratch();
79
scratch_vcpu[1] = ffs(kscratch_mask) - 1;
80
kscratch_mask &= ~BIT(scratch_vcpu[1]);
81
}
82
83
/* Pick a scratch register to use as a temp for saving state */
84
if (kscratch_mask) {
85
scratch_tmp[0] = c0_kscratch();
86
scratch_tmp[1] = ffs(kscratch_mask) - 1;
87
kscratch_mask &= ~BIT(scratch_tmp[1]);
88
}
89
90
return 0;
91
}
92
93
static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
94
unsigned int frame)
95
{
96
/* Save the VCPU scratch register value in cp0_epc of the stack frame */
97
UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
98
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
99
100
/* Save the temp scratch register value in cp0_cause of stack frame */
101
if (scratch_tmp[0] == c0_kscratch()) {
102
UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
103
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
104
}
105
}
106
107
static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
108
unsigned int frame)
109
{
110
/*
111
* Restore host scratch register values saved by
112
* kvm_mips_build_save_scratch().
113
*/
114
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
115
UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
116
117
if (scratch_tmp[0] == c0_kscratch()) {
118
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
119
UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
120
}
121
}
122
123
/**
124
* build_set_exc_base() - Assemble code to write exception base address.
125
* @p: Code buffer pointer.
126
* @reg: Source register (generated code may set WG bit in @reg).
127
*
128
* Assemble code to modify the exception base address in the EBase register,
129
* using the appropriately sized access and setting the WG bit if necessary.
130
*/
131
static inline void build_set_exc_base(u32 **p, unsigned int reg)
132
{
133
if (cpu_has_ebase_wg) {
134
/* Set WG so that all the bits get written */
135
uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
136
UASM_i_MTC0(p, reg, C0_EBASE);
137
} else {
138
uasm_i_mtc0(p, reg, C0_EBASE);
139
}
140
}
141
142
/**
143
* kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
144
* @addr: Address to start writing code.
145
*
146
* Assemble the start of the vcpu_run function to run a guest VCPU. The function
147
* conforms to the following prototype:
148
*
149
* int vcpu_run(struct kvm_vcpu *vcpu);
150
*
151
* The exit from the guest and return to the caller is handled by the code
152
* generated by kvm_mips_build_ret_to_host().
153
*
154
* Returns: Next address after end of written function.
155
*/
156
void *kvm_mips_build_vcpu_run(void *addr)
157
{
158
u32 *p = addr;
159
unsigned int i;
160
161
/*
162
* GPR_A0: vcpu
163
*/
164
165
/* k0/k1 not being used in host kernel context */
166
UASM_i_ADDIU(&p, GPR_K1, GPR_SP, -(int)sizeof(struct pt_regs));
167
for (i = 16; i < 32; ++i) {
168
if (i == 24)
169
i = 28;
170
UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
171
}
172
173
/* Save host status */
174
uasm_i_mfc0(&p, GPR_V0, C0_STATUS);
175
UASM_i_SW(&p, GPR_V0, offsetof(struct pt_regs, cp0_status), GPR_K1);
176
177
/* Save scratch registers, will be used to store pointer to vcpu etc */
178
kvm_mips_build_save_scratch(&p, GPR_V1, GPR_K1);
179
180
/* VCPU scratch register has pointer to vcpu */
181
UASM_i_MTC0(&p, GPR_A0, scratch_vcpu[0], scratch_vcpu[1]);
182
183
/* Offset into vcpu->arch */
184
UASM_i_ADDIU(&p, GPR_K1, GPR_A0, offsetof(struct kvm_vcpu, arch));
185
186
/*
187
* Save the host stack to VCPU, used for exception processing
188
* when we exit from the Guest
189
*/
190
UASM_i_SW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
191
192
/* Save the kernel gp as well */
193
UASM_i_SW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);
194
195
/*
196
* Setup status register for running the guest in UM, interrupts
197
* are disabled
198
*/
199
UASM_i_LA(&p, GPR_K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
200
uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
201
uasm_i_ehb(&p);
202
203
/* load up the new EBASE */
204
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);
205
build_set_exc_base(&p, GPR_K0);
206
207
/*
208
* Now that the new EBASE has been loaded, unset BEV, set
209
* interrupt mask as it was but make sure that timer interrupts
210
* are enabled
211
*/
212
uasm_i_addiu(&p, GPR_K0, GPR_ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
213
uasm_i_andi(&p, GPR_V0, GPR_V0, ST0_IM);
214
uasm_i_or(&p, GPR_K0, GPR_K0, GPR_V0);
215
uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
216
uasm_i_ehb(&p);
217
218
p = kvm_mips_build_enter_guest(p);
219
220
return p;
221
}
222
223
/**
224
* kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
225
* @addr: Address to start writing code.
226
*
227
* Assemble the code to resume guest execution. This code is common between the
228
* initial entry into the guest from the host, and returning from the exit
229
* handler back to the guest.
230
*
231
* Returns: Next address after end of written function.
232
*/
233
static void *kvm_mips_build_enter_guest(void *addr)
234
{
235
u32 *p = addr;
236
unsigned int i;
237
struct uasm_label labels[2];
238
struct uasm_reloc relocs[2];
239
struct uasm_label __maybe_unused *l = labels;
240
struct uasm_reloc __maybe_unused *r = relocs;
241
242
memset(labels, 0, sizeof(labels));
243
memset(relocs, 0, sizeof(relocs));
244
245
/* Set Guest EPC */
246
UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);
247
UASM_i_MTC0(&p, GPR_T0, C0_EPC);
248
249
/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
250
if (cpu_has_ldpte)
251
UASM_i_MFC0(&p, GPR_K0, C0_PWBASE);
252
else
253
UASM_i_MFC0(&p, GPR_K0, c0_kscratch(), pgd_reg);
254
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);
255
256
/*
257
* Set up KVM GPA pgd.
258
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
259
* - call tlbmiss_handler_setup_pgd(mm->pgd)
260
* - write mm->pgd into CP0_PWBase
261
*
262
* We keep GPR_S0 pointing at struct kvm so we can load the ASID below.
263
*/
264
UASM_i_LW(&p, GPR_S0, (int)offsetof(struct kvm_vcpu, kvm) -
265
(int)offsetof(struct kvm_vcpu, arch), GPR_K1);
266
UASM_i_LW(&p, GPR_A0, offsetof(struct kvm, arch.gpa_mm.pgd), GPR_S0);
267
UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
268
uasm_i_jalr(&p, GPR_RA, GPR_T9);
269
/* delay slot */
270
if (cpu_has_htw)
271
UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
272
else
273
uasm_i_nop(&p);
274
275
/* Set GM bit to setup eret to VZ guest context */
276
uasm_i_addiu(&p, GPR_V1, GPR_ZERO, 1);
277
uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
278
uasm_i_ins(&p, GPR_K0, GPR_V1, MIPS_GCTL0_GM_SHIFT, 1);
279
uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);
280
281
if (cpu_has_guestid) {
282
/*
283
* Set root mode GuestID, so that root TLB refill handler can
284
* use the correct GuestID in the root TLB.
285
*/
286
287
/* Get current GuestID */
288
uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
289
/* Set GuestCtl1.RID = GuestCtl1.ID */
290
uasm_i_ext(&p, GPR_T1, GPR_T0, MIPS_GCTL1_ID_SHIFT,
291
MIPS_GCTL1_ID_WIDTH);
292
uasm_i_ins(&p, GPR_T0, GPR_T1, MIPS_GCTL1_RID_SHIFT,
293
MIPS_GCTL1_RID_WIDTH);
294
uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);
295
296
/* GuestID handles dealiasing so we don't need to touch ASID */
297
goto skip_asid_restore;
298
}
299
300
/* Root ASID Dealias (RAD) */
301
302
/* Save host ASID */
303
UASM_i_MFC0(&p, GPR_K0, C0_ENTRYHI);
304
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
305
GPR_K1);
306
307
/* Set the root ASID for the Guest */
308
UASM_i_ADDIU(&p, GPR_T1, GPR_S0,
309
offsetof(struct kvm, arch.gpa_mm.context.asid));
310
311
/* t1: contains the base of the ASID array, need to get the cpu id */
312
/* smp_processor_id */
313
uasm_i_lw(&p, GPR_T2, offsetof(struct thread_info, cpu), GPR_GP);
314
/* index the ASID array */
315
uasm_i_sll(&p, GPR_T2, GPR_T2, ilog2(sizeof(long)));
316
UASM_i_ADDU(&p, GPR_T3, GPR_T1, GPR_T2);
317
UASM_i_LW(&p, GPR_K0, 0, GPR_T3);
318
#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
319
/*
320
* reuse ASID array offset
321
* cpuinfo_mips is a multiple of sizeof(long)
322
*/
323
uasm_i_addiu(&p, GPR_T3, GPR_ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
324
uasm_i_mul(&p, GPR_T2, GPR_T2, GPR_T3);
325
326
UASM_i_LA_mostly(&p, GPR_AT, (long)&cpu_data[0].asid_mask);
327
UASM_i_ADDU(&p, GPR_AT, GPR_AT, GPR_T2);
328
UASM_i_LW(&p, GPR_T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), GPR_AT);
329
uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T2);
330
#else
331
uasm_i_andi(&p, GPR_K0, GPR_K0, MIPS_ENTRYHI_ASID);
332
#endif
333
334
/* Set up KVM VZ root ASID (!guestid) */
335
uasm_i_mtc0(&p, GPR_K0, C0_ENTRYHI);
336
skip_asid_restore:
337
uasm_i_ehb(&p);
338
339
/* Disable RDHWR access */
340
uasm_i_mtc0(&p, GPR_ZERO, C0_HWRENA);
341
342
/* load the guest context from VCPU and return */
343
for (i = 1; i < 32; ++i) {
344
/* Guest k0/k1 loaded later */
345
if (i == GPR_K0 || i == GPR_K1)
346
continue;
347
UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
348
}
349
350
#ifndef CONFIG_CPU_MIPSR6
351
/* Restore hi/lo */
352
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);
353
uasm_i_mthi(&p, GPR_K0);
354
355
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
356
uasm_i_mtlo(&p, GPR_K0);
357
#endif
358
359
/* Restore the guest's k0/k1 registers */
360
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);
361
UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);
362
363
/* Jump to guest */
364
uasm_i_eret(&p);
365
366
uasm_resolve_relocs(relocs, labels);
367
368
return p;
369
}
370
371
/**
372
* kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
373
* @addr: Address to start writing code.
374
* @handler: Address of common handler (within range of @addr).
375
*
376
* Assemble TLB refill exception fast path handler for guest execution.
377
*
378
* Returns: Next address after end of written function.
379
*/
380
void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
381
{
382
u32 *p = addr;
383
struct uasm_label labels[2];
384
struct uasm_reloc relocs[2];
385
#ifndef CONFIG_CPU_LOONGSON64
386
struct uasm_label *l = labels;
387
struct uasm_reloc *r = relocs;
388
#endif
389
390
memset(labels, 0, sizeof(labels));
391
memset(relocs, 0, sizeof(relocs));
392
393
/* Save guest k1 into scratch register */
394
UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
395
396
/* Get the VCPU pointer from the VCPU scratch register */
397
UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
398
399
/* Save guest k0 into VCPU structure */
400
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);
401
402
/*
403
* Some of the common tlbex code uses current_cpu_type(). For KVM we
404
* assume symmetry and just disable preemption to silence the warning.
405
*/
406
preempt_disable();
407
408
#ifdef CONFIG_CPU_LOONGSON64
409
UASM_i_MFC0(&p, GPR_K1, C0_PGD);
410
uasm_i_lddir(&p, GPR_K0, GPR_K1, 3); /* global page dir */
411
#ifndef __PAGETABLE_PMD_FOLDED
412
uasm_i_lddir(&p, GPR_K1, GPR_K0, 1); /* middle page dir */
413
#endif
414
uasm_i_ldpte(&p, GPR_K1, 0); /* even */
415
uasm_i_ldpte(&p, GPR_K1, 1); /* odd */
416
uasm_i_tlbwr(&p);
417
#else
418
/*
419
* Now for the actual refill bit. A lot of this can be common with the
420
* Linux TLB refill handler, however we don't need to handle so many
421
* cases. We only need to handle user mode refills, and user mode runs
422
* with 32-bit addressing.
423
*
424
* Therefore the branch to label_vmalloc generated by build_get_pmde64()
425
* that isn't resolved should never actually get taken and is harmless
426
* to leave in place for now.
427
*/
428
429
#ifdef CONFIG_64BIT
430
build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
431
#else
432
build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
433
#endif
434
435
/* we don't support huge pages yet */
436
437
build_get_ptep(&p, GPR_K0, GPR_K1);
438
build_update_entries(&p, GPR_K0, GPR_K1);
439
build_tlb_write_entry(&p, &l, &r, tlb_random);
440
#endif
441
442
preempt_enable();
443
444
/* Get the VCPU pointer from the VCPU scratch register again */
445
UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
446
447
/* Restore the guest's k0/k1 registers */
448
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);
449
uasm_i_ehb(&p);
450
UASM_i_MFC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
451
452
/* Jump to guest */
453
uasm_i_eret(&p);
454
455
return p;
456
}
457
458
/**
459
* kvm_mips_build_exception() - Assemble first level guest exception handler.
460
* @addr: Address to start writing code.
461
* @handler: Address of common handler (within range of @addr).
462
*
463
* Assemble exception vector code for guest execution. The generated vector will
464
* branch to the common exception handler generated by kvm_mips_build_exit().
465
*
466
* Returns: Next address after end of written function.
467
*/
468
void *kvm_mips_build_exception(void *addr, void *handler)
469
{
470
u32 *p = addr;
471
struct uasm_label labels[2];
472
struct uasm_reloc relocs[2];
473
struct uasm_label *l = labels;
474
struct uasm_reloc *r = relocs;
475
476
memset(labels, 0, sizeof(labels));
477
memset(relocs, 0, sizeof(relocs));
478
479
/* Save guest k1 into scratch register */
480
UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);
481
482
/* Get the VCPU pointer from the VCPU scratch register */
483
UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
484
UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));
485
486
/* Save guest k0 into VCPU structure */
487
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);
488
489
/* Branch to the common handler */
490
uasm_il_b(&p, &r, label_exit_common);
491
uasm_i_nop(&p);
492
493
uasm_l_exit_common(&l, handler);
494
uasm_resolve_relocs(relocs, labels);
495
496
return p;
497
}
498
499
/**
500
* kvm_mips_build_exit() - Assemble common guest exit handler.
501
* @addr: Address to start writing code.
502
*
503
* Assemble the generic guest exit handling code. This is called by the
504
* exception vectors (generated by kvm_mips_build_exception()), and calls
505
* kvm_mips_handle_exit(), then either resumes the guest or returns to the host
506
* depending on the return value.
507
*
508
* Returns: Next address after end of written function.
509
*/
510
void *kvm_mips_build_exit(void *addr)
511
{
512
u32 *p = addr;
513
unsigned int i;
514
struct uasm_label labels[3];
515
struct uasm_reloc relocs[3];
516
struct uasm_label *l = labels;
517
struct uasm_reloc *r = relocs;
518
519
memset(labels, 0, sizeof(labels));
520
memset(relocs, 0, sizeof(relocs));
521
522
/*
523
* Generic Guest exception handler. We end up here when the guest
524
* does something that causes a trap to kernel mode.
525
*
526
* Both k0/k1 registers will have already been saved (k0 into the vcpu
527
* structure, and k1 into the scratch_tmp register).
528
*
529
* The k1 register will already contain the kvm_vcpu_arch pointer.
530
*/
531
532
/* Start saving Guest context to VCPU */
533
for (i = 0; i < 32; ++i) {
534
/* Guest k0/k1 saved later */
535
if (i == GPR_K0 || i == GPR_K1)
536
continue;
537
UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
538
}
539
540
#ifndef CONFIG_CPU_MIPSR6
541
/* We need to save hi/lo and restore them on the way out */
542
uasm_i_mfhi(&p, GPR_T0);
543
UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);
544
545
uasm_i_mflo(&p, GPR_T0);
546
UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
547
#endif
548
549
/* Finally save guest k1 to VCPU */
550
uasm_i_ehb(&p);
551
UASM_i_MFC0(&p, GPR_T0, scratch_tmp[0], scratch_tmp[1]);
552
UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);
553
554
/* Now that context has been saved, we can use other registers */
555
556
/* Restore vcpu */
557
UASM_i_MFC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);
558
559
/*
560
* Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
561
* the exception
562
*/
563
UASM_i_MFC0(&p, GPR_K0, C0_EPC);
564
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);
565
566
UASM_i_MFC0(&p, GPR_K0, C0_BADVADDR);
567
UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
568
GPR_K1);
569
570
uasm_i_mfc0(&p, GPR_K0, C0_CAUSE);
571
uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), GPR_K1);
572
573
if (cpu_has_badinstr) {
574
uasm_i_mfc0(&p, GPR_K0, C0_BADINSTR);
575
uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
576
host_cp0_badinstr), GPR_K1);
577
}
578
579
if (cpu_has_badinstrp) {
580
uasm_i_mfc0(&p, GPR_K0, C0_BADINSTRP);
581
uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
582
host_cp0_badinstrp), GPR_K1);
583
}
584
585
/* Now restore the host state just enough to run the handlers */
586
587
/* Switch EBASE to the one used by Linux */
588
/* load up the host EBASE */
589
uasm_i_mfc0(&p, GPR_V0, C0_STATUS);
590
591
uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
592
uasm_i_or(&p, GPR_K0, GPR_V0, GPR_AT);
593
594
uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
595
uasm_i_ehb(&p);
596
597
UASM_i_LA_mostly(&p, GPR_K0, (long)&ebase);
598
UASM_i_LW(&p, GPR_K0, uasm_rel_lo((long)&ebase), GPR_K0);
599
build_set_exc_base(&p, GPR_K0);
600
601
if (raw_cpu_has_fpu) {
602
/*
603
* If FPU is enabled, save FCR31 and clear it so that later
604
* ctc1's don't trigger FPE for pending exceptions.
605
*/
606
uasm_i_lui(&p, GPR_AT, ST0_CU1 >> 16);
607
uasm_i_and(&p, GPR_V1, GPR_V0, GPR_AT);
608
uasm_il_beqz(&p, &r, GPR_V1, label_fpu_1);
609
uasm_i_nop(&p);
610
uasm_i_cfc1(&p, GPR_T0, 31);
611
uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
612
GPR_K1);
613
uasm_i_ctc1(&p, GPR_ZERO, 31);
614
uasm_l_fpu_1(&l, p);
615
}
616
617
if (cpu_has_msa) {
618
/*
619
* If MSA is enabled, save MSACSR and clear it so that later
620
* instructions don't trigger MSAFPE for pending exceptions.
621
*/
622
uasm_i_mfc0(&p, GPR_T0, C0_CONFIG5);
623
uasm_i_ext(&p, GPR_T0, GPR_T0, 27, 1); /* MIPS_CONF5_MSAEN */
624
uasm_il_beqz(&p, &r, GPR_T0, label_msa_1);
625
uasm_i_nop(&p);
626
uasm_i_cfcmsa(&p, GPR_T0, MSA_CSR);
627
uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
628
GPR_K1);
629
uasm_i_ctcmsa(&p, MSA_CSR, GPR_ZERO);
630
uasm_l_msa_1(&l, p);
631
}
632
633
/* Restore host ASID */
634
if (!cpu_has_guestid) {
635
UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
636
GPR_K1);
637
UASM_i_MTC0(&p, GPR_K0, C0_ENTRYHI);
638
}
639
640
/*
641
* Set up normal Linux process pgd.
642
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
643
* - call tlbmiss_handler_setup_pgd(mm->pgd)
644
* - write mm->pgd into CP0_PWBase
645
*/
646
UASM_i_LW(&p, GPR_A0,
647
offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);
648
UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
649
uasm_i_jalr(&p, GPR_RA, GPR_T9);
650
/* delay slot */
651
if (cpu_has_htw)
652
UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
653
else
654
uasm_i_nop(&p);
655
656
/* Clear GM bit so we don't enter guest mode when EXL is cleared */
657
uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
658
uasm_i_ins(&p, GPR_K0, GPR_ZERO, MIPS_GCTL0_GM_SHIFT, 1);
659
uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);
660
661
/* Save GuestCtl0 so we can access GExcCode after CPU migration */
662
uasm_i_sw(&p, GPR_K0,
663
offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), GPR_K1);
664
665
if (cpu_has_guestid) {
666
/*
667
* Clear root mode GuestID, so that root TLB operations use the
668
* root GuestID in the root TLB.
669
*/
670
uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
671
/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
672
uasm_i_ins(&p, GPR_T0, GPR_ZERO, MIPS_GCTL1_RID_SHIFT,
673
MIPS_GCTL1_RID_WIDTH);
674
uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);
675
}
676
677
/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
678
uasm_i_addiu(&p, GPR_AT, GPR_ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
679
uasm_i_and(&p, GPR_V0, GPR_V0, GPR_AT);
680
uasm_i_lui(&p, GPR_AT, ST0_CU0 >> 16);
681
uasm_i_or(&p, GPR_V0, GPR_V0, GPR_AT);
682
#ifdef CONFIG_64BIT
683
uasm_i_ori(&p, GPR_V0, GPR_V0, ST0_SX | ST0_UX);
684
#endif
685
uasm_i_mtc0(&p, GPR_V0, C0_STATUS);
686
uasm_i_ehb(&p);
687
688
/* Load up host GPR_GP */
689
UASM_i_LW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);
690
691
/* Need a stack before we can jump to "C" */
692
UASM_i_LW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
693
694
/* Saved host state */
695
UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -(int)sizeof(struct pt_regs));
696
697
/*
698
* XXXKYMA do we need to load the host ASID, maybe not because the
699
* kernel entries are marked GLOBAL, need to verify
700
*/
701
702
/* Restore host scratch registers, as we'll have clobbered them */
703
kvm_mips_build_restore_scratch(&p, GPR_K0, GPR_SP);
704
705
/* Restore RDHWR access */
706
UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
707
uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
708
uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);
709
710
/* Jump to handler */
711
/*
712
* XXXKYMA: not sure if this is safe, how large is the stack??
713
* Now jump to the kvm_mips_handle_exit() to see if we can deal
714
* with this in the kernel
715
*/
716
uasm_i_move(&p, GPR_A0, GPR_S0);
717
UASM_i_LA(&p, GPR_T9, (unsigned long)kvm_mips_handle_exit);
718
uasm_i_jalr(&p, GPR_RA, GPR_T9);
719
UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -CALLFRAME_SIZ);
720
721
uasm_resolve_relocs(relocs, labels);
722
723
p = kvm_mips_build_ret_from_exit(p);
724
725
return p;
726
}
727
728
/**
729
* kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
730
* @addr: Address to start writing code.
731
*
732
* Assemble the code to handle the return from kvm_mips_handle_exit(), either
733
* resuming the guest or returning to the host depending on the return value.
734
*
735
* Returns: Next address after end of written function.
736
*/
737
static void *kvm_mips_build_ret_from_exit(void *addr)
738
{
739
u32 *p = addr;
740
struct uasm_label labels[2];
741
struct uasm_reloc relocs[2];
742
struct uasm_label *l = labels;
743
struct uasm_reloc *r = relocs;
744
745
memset(labels, 0, sizeof(labels));
746
memset(relocs, 0, sizeof(relocs));
747
748
/* Return from handler Make sure interrupts are disabled */
749
uasm_i_di(&p, GPR_ZERO);
750
uasm_i_ehb(&p);
751
752
/*
753
* XXXKYMA: k0/k1 could have been blown away if we processed
754
* an exception while we were handling the exception from the
755
* guest, reload k1
756
*/
757
758
uasm_i_move(&p, GPR_K1, GPR_S0);
759
UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));
760
761
/*
762
* Check return value, should tell us if we are returning to the
763
* host (handle I/O etc)or resuming the guest
764
*/
765
uasm_i_andi(&p, GPR_T0, GPR_V0, RESUME_HOST);
766
uasm_il_bnez(&p, &r, GPR_T0, label_return_to_host);
767
uasm_i_nop(&p);
768
769
p = kvm_mips_build_ret_to_guest(p);
770
771
uasm_l_return_to_host(&l, p);
772
p = kvm_mips_build_ret_to_host(p);
773
774
uasm_resolve_relocs(relocs, labels);
775
776
return p;
777
}
778
779
/**
780
* kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
781
* @addr: Address to start writing code.
782
*
783
* Assemble the code to handle return from the guest exit handler
784
* (kvm_mips_handle_exit()) back to the guest.
785
*
786
* Returns: Next address after end of written function.
787
*/
788
static void *kvm_mips_build_ret_to_guest(void *addr)
789
{
790
u32 *p = addr;
791
792
/* Put the saved pointer to vcpu (s0) back into the scratch register */
793
UASM_i_MTC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);
794
795
/* Load up the Guest EBASE to minimize the window where BEV is set */
796
UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);
797
798
/* Switch EBASE back to the one used by KVM */
799
uasm_i_mfc0(&p, GPR_V1, C0_STATUS);
800
uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
801
uasm_i_or(&p, GPR_K0, GPR_V1, GPR_AT);
802
uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
803
uasm_i_ehb(&p);
804
build_set_exc_base(&p, GPR_T0);
805
806
/* Setup status register for running guest in UM */
807
uasm_i_ori(&p, GPR_V1, GPR_V1, ST0_EXL | KSU_USER | ST0_IE);
808
UASM_i_LA(&p, GPR_AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
809
uasm_i_and(&p, GPR_V1, GPR_V1, GPR_AT);
810
uasm_i_mtc0(&p, GPR_V1, C0_STATUS);
811
uasm_i_ehb(&p);
812
813
p = kvm_mips_build_enter_guest(p);
814
815
return p;
816
}
817
818
/**
819
* kvm_mips_build_ret_to_host() - Assemble code to return to the host.
820
* @addr: Address to start writing code.
821
*
822
* Assemble the code to handle return from the guest exit handler
823
* (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
824
* function generated by kvm_mips_build_vcpu_run().
825
*
826
* Returns: Next address after end of written function.
827
*/
828
static void *kvm_mips_build_ret_to_host(void *addr)
829
{
830
u32 *p = addr;
831
unsigned int i;
832
833
/* EBASE is already pointing to Linux */
834
UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
835
UASM_i_ADDIU(&p, GPR_K1, GPR_K1, -(int)sizeof(struct pt_regs));
836
837
/*
838
* r2/v0 is the return code, shift it down by 2 (arithmetic)
839
* to recover the err code
840
*/
841
uasm_i_sra(&p, GPR_K0, GPR_V0, 2);
842
uasm_i_move(&p, GPR_V0, GPR_K0);
843
844
/* Load context saved on the host stack */
845
for (i = 16; i < 31; ++i) {
846
if (i == 24)
847
i = 28;
848
UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
849
}
850
851
/* Restore RDHWR access */
852
UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
853
uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
854
uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);
855
856
/* Restore GPR_RA, which is the address we will return to */
857
UASM_i_LW(&p, GPR_RA, offsetof(struct pt_regs, regs[GPR_RA]), GPR_K1);
858
uasm_i_jr(&p, GPR_RA);
859
uasm_i_nop(&p);
860
861
return p;
862
}
863
864
865