Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/math-emu/dp_maddf.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* IEEE754 floating point arithmetic
4
* double precision: MADDF.f (Fused Multiply Add)
5
* MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
6
*
7
* MIPS floating point support
8
* Copyright (C) 2015 Imagination Technologies, Ltd.
9
* Author: Markos Chandras <[email protected]>
10
*/
11
12
#include "ieee754dp.h"
13
14
15
/* 128 bits shift right logical with rounding. */
16
static void srl128(u64 *hptr, u64 *lptr, int count)
17
{
18
u64 low;
19
20
if (count >= 128) {
21
*lptr = *hptr != 0 || *lptr != 0;
22
*hptr = 0;
23
} else if (count >= 64) {
24
if (count == 64) {
25
*lptr = *hptr | (*lptr != 0);
26
} else {
27
low = *lptr;
28
*lptr = *hptr >> (count - 64);
29
*lptr |= (*hptr << (128 - count)) != 0 || low != 0;
30
}
31
*hptr = 0;
32
} else {
33
low = *lptr;
34
*lptr = low >> count | *hptr << (64 - count);
35
*lptr |= (low << (64 - count)) != 0;
36
*hptr = *hptr >> count;
37
}
38
}
39
40
static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
41
union ieee754dp y, enum maddf_flags flags)
42
{
43
int re;
44
int rs;
45
unsigned int lxm;
46
unsigned int hxm;
47
unsigned int lym;
48
unsigned int hym;
49
u64 lrm;
50
u64 hrm;
51
u64 lzm;
52
u64 hzm;
53
u64 t;
54
u64 at;
55
int s;
56
57
COMPXDP;
58
COMPYDP;
59
COMPZDP;
60
61
EXPLODEXDP;
62
EXPLODEYDP;
63
EXPLODEZDP;
64
65
FLUSHXDP;
66
FLUSHYDP;
67
FLUSHZDP;
68
69
ieee754_clearcx();
70
71
rs = xs ^ ys;
72
if (flags & MADDF_NEGATE_PRODUCT)
73
rs ^= 1;
74
if (flags & MADDF_NEGATE_ADDITION)
75
zs ^= 1;
76
77
/*
78
* Handle the cases when at least one of x, y or z is a NaN.
79
* Order of precedence is sNaN, qNaN and z, x, y.
80
*/
81
if (zc == IEEE754_CLASS_SNAN)
82
return ieee754dp_nanxcpt(z);
83
if (xc == IEEE754_CLASS_SNAN)
84
return ieee754dp_nanxcpt(x);
85
if (yc == IEEE754_CLASS_SNAN)
86
return ieee754dp_nanxcpt(y);
87
if (zc == IEEE754_CLASS_QNAN)
88
return z;
89
if (xc == IEEE754_CLASS_QNAN)
90
return x;
91
if (yc == IEEE754_CLASS_QNAN)
92
return y;
93
94
if (zc == IEEE754_CLASS_DNORM)
95
DPDNORMZ;
96
/* ZERO z cases are handled separately below */
97
98
switch (CLPAIR(xc, yc)) {
99
100
/*
101
* Infinity handling
102
*/
103
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
104
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
105
ieee754_setcx(IEEE754_INVALID_OPERATION);
106
return ieee754dp_indef();
107
108
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
109
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
110
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
111
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
112
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
113
if ((zc == IEEE754_CLASS_INF) && (zs != rs)) {
114
/*
115
* Cases of addition of infinities with opposite signs
116
* or subtraction of infinities with same signs.
117
*/
118
ieee754_setcx(IEEE754_INVALID_OPERATION);
119
return ieee754dp_indef();
120
}
121
/*
122
* z is here either not an infinity, or an infinity having the
123
* same sign as product (x*y). The result must be an infinity,
124
* and its sign is determined only by the sign of product (x*y).
125
*/
126
return ieee754dp_inf(rs);
127
128
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
129
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
130
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
131
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
132
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
133
if (zc == IEEE754_CLASS_INF)
134
return ieee754dp_inf(zs);
135
if (zc == IEEE754_CLASS_ZERO) {
136
/* Handle cases +0 + (-0) and similar ones. */
137
if (zs == rs)
138
/*
139
* Cases of addition of zeros of equal signs
140
* or subtraction of zeroes of opposite signs.
141
* The sign of the resulting zero is in any
142
* such case determined only by the sign of z.
143
*/
144
return z;
145
146
return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
147
}
148
/* x*y is here 0, and z is not 0, so just return z */
149
return z;
150
151
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
152
DPDNORMX;
153
fallthrough;
154
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
155
if (zc == IEEE754_CLASS_INF)
156
return ieee754dp_inf(zs);
157
DPDNORMY;
158
break;
159
160
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
161
if (zc == IEEE754_CLASS_INF)
162
return ieee754dp_inf(zs);
163
DPDNORMX;
164
break;
165
166
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
167
if (zc == IEEE754_CLASS_INF)
168
return ieee754dp_inf(zs);
169
/* continue to real computations */
170
}
171
172
/* Finally get to do some computation */
173
174
/*
175
* Do the multiplication bit first
176
*
177
* rm = xm * ym, re = xe + ye basically
178
*
179
* At this point xm and ym should have been normalized.
180
*/
181
assert(xm & DP_HIDDEN_BIT);
182
assert(ym & DP_HIDDEN_BIT);
183
184
re = xe + ye;
185
186
/* shunt to top of word */
187
xm <<= 64 - (DP_FBITS + 1);
188
ym <<= 64 - (DP_FBITS + 1);
189
190
/*
191
* Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
192
*/
193
194
lxm = xm;
195
hxm = xm >> 32;
196
lym = ym;
197
hym = ym >> 32;
198
199
lrm = DPXMULT(lxm, lym);
200
hrm = DPXMULT(hxm, hym);
201
202
t = DPXMULT(lxm, hym);
203
204
at = lrm + (t << 32);
205
hrm += at < lrm;
206
lrm = at;
207
208
hrm = hrm + (t >> 32);
209
210
t = DPXMULT(hxm, lym);
211
212
at = lrm + (t << 32);
213
hrm += at < lrm;
214
lrm = at;
215
216
hrm = hrm + (t >> 32);
217
218
/* Put explicit bit at bit 126 if necessary */
219
if ((int64_t)hrm < 0) {
220
lrm = (hrm << 63) | (lrm >> 1);
221
hrm = hrm >> 1;
222
re++;
223
}
224
225
assert(hrm & (1 << 62));
226
227
if (zc == IEEE754_CLASS_ZERO) {
228
/*
229
* Move explicit bit from bit 126 to bit 55 since the
230
* ieee754dp_format code expects the mantissa to be
231
* 56 bits wide (53 + 3 rounding bits).
232
*/
233
srl128(&hrm, &lrm, (126 - 55));
234
return ieee754dp_format(rs, re, lrm);
235
}
236
237
/* Move explicit bit from bit 52 to bit 126 */
238
lzm = 0;
239
hzm = zm << 10;
240
assert(hzm & (1 << 62));
241
242
/* Make the exponents the same */
243
if (ze > re) {
244
/*
245
* Have to shift y fraction right to align.
246
*/
247
s = ze - re;
248
srl128(&hrm, &lrm, s);
249
re += s;
250
} else if (re > ze) {
251
/*
252
* Have to shift x fraction right to align.
253
*/
254
s = re - ze;
255
srl128(&hzm, &lzm, s);
256
ze += s;
257
}
258
assert(ze == re);
259
assert(ze <= DP_EMAX);
260
261
/* Do the addition */
262
if (zs == rs) {
263
/*
264
* Generate 128 bit result by adding two 127 bit numbers
265
* leaving result in hzm:lzm, zs and ze.
266
*/
267
hzm = hzm + hrm + (lzm > (lzm + lrm));
268
lzm = lzm + lrm;
269
if ((int64_t)hzm < 0) { /* carry out */
270
srl128(&hzm, &lzm, 1);
271
ze++;
272
}
273
} else {
274
if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
275
hzm = hzm - hrm - (lzm < lrm);
276
lzm = lzm - lrm;
277
} else {
278
hzm = hrm - hzm - (lrm < lzm);
279
lzm = lrm - lzm;
280
zs = rs;
281
}
282
if (lzm == 0 && hzm == 0)
283
return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
284
285
/*
286
* Put explicit bit at bit 126 if necessary.
287
*/
288
if (hzm == 0) {
289
/* left shift by 63 or 64 bits */
290
if ((int64_t)lzm < 0) {
291
/* MSB of lzm is the explicit bit */
292
hzm = lzm >> 1;
293
lzm = lzm << 63;
294
ze -= 63;
295
} else {
296
hzm = lzm;
297
lzm = 0;
298
ze -= 64;
299
}
300
}
301
302
t = 0;
303
while ((hzm >> (62 - t)) == 0)
304
t++;
305
306
assert(t <= 62);
307
if (t) {
308
hzm = hzm << t | lzm >> (64 - t);
309
lzm = lzm << t;
310
ze -= t;
311
}
312
}
313
314
/*
315
* Move explicit bit from bit 126 to bit 55 since the
316
* ieee754dp_format code expects the mantissa to be
317
* 56 bits wide (53 + 3 rounding bits).
318
*/
319
srl128(&hzm, &lzm, (126 - 55));
320
321
return ieee754dp_format(zs, ze, lzm);
322
}
323
324
union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
325
union ieee754dp y)
326
{
327
return _dp_maddf(z, x, y, 0);
328
}
329
330
union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
331
union ieee754dp y)
332
{
333
return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
334
}
335
336
union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x,
337
union ieee754dp y)
338
{
339
return _dp_maddf(z, x, y, 0);
340
}
341
342
union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x,
343
union ieee754dp y)
344
{
345
return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION);
346
}
347
348
union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x,
349
union ieee754dp y)
350
{
351
return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION);
352
}
353
354
union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x,
355
union ieee754dp y)
356
{
357
return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
358
}
359
360