Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/math-emu/dsemul.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/err.h>
3
#include <linux/slab.h>
4
#include <linux/mm_types.h>
5
#include <linux/sched/task.h>
6
7
#include <asm/branch.h>
8
#include <asm/cacheflush.h>
9
#include <asm/fpu_emulator.h>
10
#include <asm/inst.h>
11
#include <asm/mipsregs.h>
12
#include <linux/uaccess.h>
13
14
/**
15
* struct emuframe - The 'emulation' frame structure
16
* @emul: The instruction to 'emulate'.
17
* @badinst: A break instruction to cause a return to the kernel.
18
*
19
* This structure defines the frames placed within the delay slot emulation
20
* page in response to a call to mips_dsemul(). Each thread may be allocated
21
* only one frame at any given time. The kernel stores within it the
22
* instruction to be 'emulated' followed by a break instruction, then
23
* executes the frame in user mode. The break causes a trap to the kernel
24
* which leads to do_dsemulret() being called unless the instruction in
25
* @emul causes a trap itself, is a branch, or a signal is delivered to
26
* the thread. In these cases the allocated frame will either be reused by
27
* a subsequent delay slot 'emulation', or be freed during signal delivery or
28
* upon thread exit.
29
*
30
* This approach is used because:
31
*
32
* - Actually emulating all instructions isn't feasible. We would need to
33
* be able to handle instructions from all revisions of the MIPS ISA,
34
* all ASEs & all vendor instruction set extensions. This would be a
35
* whole lot of work & continual maintenance burden as new instructions
36
* are introduced, and in the case of some vendor extensions may not
37
* even be possible. Thus we need to take the approach of actually
38
* executing the instruction.
39
*
40
* - We must execute the instruction within user context. If we were to
41
* execute the instruction in kernel mode then it would have access to
42
* kernel resources without very careful checks, leaving us with a
43
* high potential for security or stability issues to arise.
44
*
45
* - We used to place the frame on the users stack, but this requires
46
* that the stack be executable. This is bad for security so the
47
* per-process page is now used instead.
48
*
49
* - The instruction in @emul may be something entirely invalid for a
50
* delay slot. The user may (intentionally or otherwise) place a branch
51
* in a delay slot, or a kernel mode instruction, or something else
52
* which generates an exception. Thus we can't rely upon the break in
53
* @badinst always being hit. For this reason we track the index of the
54
* frame allocated to each thread, allowing us to clean it up at later
55
* points such as signal delivery or thread exit.
56
*
57
* - The user may generate a fake struct emuframe if they wish, invoking
58
* the BRK_MEMU break instruction themselves. We must therefore not
59
* trust that BRK_MEMU means there's actually a valid frame allocated
60
* to the thread, and must not allow the user to do anything they
61
* couldn't already.
62
*/
63
struct emuframe {
64
mips_instruction emul;
65
mips_instruction badinst;
66
};
67
68
static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
69
70
static inline __user struct emuframe *dsemul_page(void)
71
{
72
return (__user struct emuframe *)STACK_TOP;
73
}
74
75
static int alloc_emuframe(void)
76
{
77
mm_context_t *mm_ctx = &current->mm->context;
78
int idx;
79
80
retry:
81
spin_lock(&mm_ctx->bd_emupage_lock);
82
83
/* Ensure we have an allocation bitmap */
84
if (!mm_ctx->bd_emupage_allocmap) {
85
mm_ctx->bd_emupage_allocmap = bitmap_zalloc(emupage_frame_count,
86
GFP_ATOMIC);
87
if (!mm_ctx->bd_emupage_allocmap) {
88
idx = BD_EMUFRAME_NONE;
89
goto out_unlock;
90
}
91
}
92
93
/* Attempt to allocate a single bit/frame */
94
idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
95
emupage_frame_count, 0);
96
if (idx < 0) {
97
/*
98
* Failed to allocate a frame. We'll wait until one becomes
99
* available. We unlock the page so that other threads actually
100
* get the opportunity to free their frames, which means
101
* technically the result of bitmap_full may be incorrect.
102
* However the worst case is that we repeat all this and end up
103
* back here again.
104
*/
105
spin_unlock(&mm_ctx->bd_emupage_lock);
106
if (!wait_event_killable(mm_ctx->bd_emupage_queue,
107
!bitmap_full(mm_ctx->bd_emupage_allocmap,
108
emupage_frame_count)))
109
goto retry;
110
111
/* Received a fatal signal - just give in */
112
return BD_EMUFRAME_NONE;
113
}
114
115
/* Success! */
116
pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
117
out_unlock:
118
spin_unlock(&mm_ctx->bd_emupage_lock);
119
return idx;
120
}
121
122
static void free_emuframe(int idx, struct mm_struct *mm)
123
{
124
mm_context_t *mm_ctx = &mm->context;
125
126
spin_lock(&mm_ctx->bd_emupage_lock);
127
128
pr_debug("free emuframe %d from %d\n", idx, current->pid);
129
bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
130
131
/* If some thread is waiting for a frame, now's its chance */
132
wake_up(&mm_ctx->bd_emupage_queue);
133
134
spin_unlock(&mm_ctx->bd_emupage_lock);
135
}
136
137
static bool within_emuframe(struct pt_regs *regs)
138
{
139
unsigned long base = (unsigned long)dsemul_page();
140
141
if (regs->cp0_epc < base)
142
return false;
143
if (regs->cp0_epc >= (base + PAGE_SIZE))
144
return false;
145
146
return true;
147
}
148
149
bool dsemul_thread_cleanup(struct task_struct *tsk)
150
{
151
int fr_idx;
152
153
/* Clear any allocated frame, retrieving its index */
154
fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
155
156
/* If no frame was allocated, we're done */
157
if (fr_idx == BD_EMUFRAME_NONE)
158
return false;
159
160
task_lock(tsk);
161
162
/* Free the frame that this thread had allocated */
163
if (tsk->mm)
164
free_emuframe(fr_idx, tsk->mm);
165
166
task_unlock(tsk);
167
return true;
168
}
169
170
bool dsemul_thread_rollback(struct pt_regs *regs)
171
{
172
struct emuframe __user *fr;
173
int fr_idx;
174
175
/* Do nothing if we're not executing from a frame */
176
if (!within_emuframe(regs))
177
return false;
178
179
/* Find the frame being executed */
180
fr_idx = atomic_read(&current->thread.bd_emu_frame);
181
if (fr_idx == BD_EMUFRAME_NONE)
182
return false;
183
fr = &dsemul_page()[fr_idx];
184
185
/*
186
* If the PC is at the emul instruction, roll back to the branch. If
187
* PC is at the badinst (break) instruction, we've already emulated the
188
* instruction so progress to the continue PC. If it's anything else
189
* then something is amiss & the user has branched into some other area
190
* of the emupage - we'll free the allocated frame anyway.
191
*/
192
if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
193
regs->cp0_epc = current->thread.bd_emu_branch_pc;
194
else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
195
regs->cp0_epc = current->thread.bd_emu_cont_pc;
196
197
atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
198
free_emuframe(fr_idx, current->mm);
199
return true;
200
}
201
202
void dsemul_mm_cleanup(struct mm_struct *mm)
203
{
204
mm_context_t *mm_ctx = &mm->context;
205
206
bitmap_free(mm_ctx->bd_emupage_allocmap);
207
}
208
209
int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
210
unsigned long branch_pc, unsigned long cont_pc)
211
{
212
int isa16 = get_isa16_mode(regs->cp0_epc);
213
mips_instruction break_math;
214
unsigned long fr_uaddr;
215
struct emuframe fr;
216
int fr_idx, ret;
217
218
/* NOP is easy */
219
if (ir == 0)
220
return -1;
221
222
/* microMIPS instructions */
223
if (isa16) {
224
union mips_instruction insn = { .word = ir };
225
226
/* NOP16 aka MOVE16 $0, $0 */
227
if ((ir >> 16) == MM_NOP16)
228
return -1;
229
230
/* ADDIUPC */
231
if (insn.mm_a_format.opcode == mm_addiupc_op) {
232
unsigned int rs;
233
s32 v;
234
235
rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
236
v = regs->cp0_epc & ~3;
237
v += insn.mm_a_format.simmediate << 2;
238
regs->regs[rs] = (long)v;
239
return -1;
240
}
241
}
242
243
pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
244
245
/* Allocate a frame if we don't already have one */
246
fr_idx = atomic_read(&current->thread.bd_emu_frame);
247
if (fr_idx == BD_EMUFRAME_NONE)
248
fr_idx = alloc_emuframe();
249
if (fr_idx == BD_EMUFRAME_NONE)
250
return SIGBUS;
251
252
/* Retrieve the appropriately encoded break instruction */
253
break_math = BREAK_MATH(isa16);
254
255
/* Write the instructions to the frame */
256
if (isa16) {
257
union mips_instruction _emul = {
258
.halfword = { ir >> 16, ir }
259
};
260
union mips_instruction _badinst = {
261
.halfword = { break_math >> 16, break_math }
262
};
263
264
fr.emul = _emul.word;
265
fr.badinst = _badinst.word;
266
} else {
267
fr.emul = ir;
268
fr.badinst = break_math;
269
}
270
271
/* Write the frame to user memory */
272
fr_uaddr = (unsigned long)&dsemul_page()[fr_idx];
273
ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr),
274
FOLL_FORCE | FOLL_WRITE);
275
if (unlikely(ret != sizeof(fr))) {
276
MIPS_FPU_EMU_INC_STATS(errors);
277
free_emuframe(fr_idx, current->mm);
278
return SIGBUS;
279
}
280
281
/* Record the PC of the branch, PC to continue from & frame index */
282
current->thread.bd_emu_branch_pc = branch_pc;
283
current->thread.bd_emu_cont_pc = cont_pc;
284
atomic_set(&current->thread.bd_emu_frame, fr_idx);
285
286
/* Change user register context to execute the frame */
287
regs->cp0_epc = fr_uaddr | isa16;
288
289
return 0;
290
}
291
292
bool do_dsemulret(struct pt_regs *xcp)
293
{
294
/* Cleanup the allocated frame, returning if there wasn't one */
295
if (!dsemul_thread_cleanup(current)) {
296
MIPS_FPU_EMU_INC_STATS(errors);
297
return false;
298
}
299
300
/* Set EPC to return to post-branch instruction */
301
xcp->cp0_epc = current->thread.bd_emu_cont_pc;
302
pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
303
MIPS_FPU_EMU_INC_STATS(ds_emul);
304
return true;
305
}
306
307