Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/mm/c-r4k.c
26424 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 1996 David S. Miller ([email protected])
7
* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle ([email protected])
8
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9
*/
10
#include <linux/cpu_pm.h>
11
#include <linux/hardirq.h>
12
#include <linux/init.h>
13
#include <linux/highmem.h>
14
#include <linux/kernel.h>
15
#include <linux/linkage.h>
16
#include <linux/preempt.h>
17
#include <linux/sched.h>
18
#include <linux/smp.h>
19
#include <linux/mm.h>
20
#include <linux/export.h>
21
#include <linux/bitops.h>
22
#include <linux/dma-map-ops.h> /* for dma_default_coherent */
23
24
#include <asm/bcache.h>
25
#include <asm/bootinfo.h>
26
#include <asm/cache.h>
27
#include <asm/cacheops.h>
28
#include <asm/cpu.h>
29
#include <asm/cpu-features.h>
30
#include <asm/cpu-type.h>
31
#include <asm/io.h>
32
#include <asm/page.h>
33
#include <asm/r4kcache.h>
34
#include <asm/sections.h>
35
#include <asm/mmu_context.h>
36
#include <asm/cacheflush.h> /* for run_uncached() */
37
#include <asm/traps.h>
38
#include <asm/mips-cps.h>
39
40
/*
41
* Bits describing what cache ops an SMP callback function may perform.
42
*
43
* R4K_HIT - Virtual user or kernel address based cache operations. The
44
* active_mm must be checked before using user addresses, falling
45
* back to kmap.
46
* R4K_INDEX - Index based cache operations.
47
*/
48
49
#define R4K_HIT BIT(0)
50
#define R4K_INDEX BIT(1)
51
52
/**
53
* r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54
* @type: Type of cache operations (R4K_HIT or R4K_INDEX).
55
*
56
* Decides whether a cache op needs to be performed on every core in the system.
57
* This may change depending on the @type of cache operation, as well as the set
58
* of online CPUs, so preemption should be disabled by the caller to prevent CPU
59
* hotplug from changing the result.
60
*
61
* Returns: 1 if the cache operation @type should be done on every core in
62
* the system.
63
* 0 if the cache operation @type is globalized and only needs to
64
* be performed on a simple CPU.
65
*/
66
static inline bool r4k_op_needs_ipi(unsigned int type)
67
{
68
/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69
if (type == R4K_HIT && mips_cm_present())
70
return false;
71
72
/*
73
* Hardware doesn't globalize the required cache ops, so SMP calls may
74
* be needed, but only if there are foreign CPUs (non-siblings with
75
* separate caches).
76
*/
77
/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
78
#ifdef CONFIG_SMP
79
return !cpumask_empty(&cpu_foreign_map[0]);
80
#else
81
return false;
82
#endif
83
}
84
85
/*
86
* Special Variant of smp_call_function for use by cache functions:
87
*
88
* o No return value
89
* o collapses to normal function call on UP kernels
90
* o collapses to normal function call on systems with a single shared
91
* primary cache.
92
* o doesn't disable interrupts on the local CPU
93
*/
94
static inline void r4k_on_each_cpu(unsigned int type,
95
void (*func)(void *info), void *info)
96
{
97
preempt_disable();
98
if (r4k_op_needs_ipi(type))
99
smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
100
func, info, 1);
101
func(info);
102
preempt_enable();
103
}
104
105
/*
106
* Must die.
107
*/
108
static unsigned long icache_size __read_mostly;
109
static unsigned long dcache_size __read_mostly;
110
static unsigned long vcache_size __read_mostly;
111
static unsigned long scache_size __read_mostly;
112
113
#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
114
#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
115
116
#define R4600_HIT_CACHEOP_WAR_IMPL \
117
do { \
118
if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \
119
cpu_is_r4600_v2_x()) \
120
*(volatile unsigned long *)CKSEG1; \
121
if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \
122
__asm__ __volatile__("nop;nop;nop;nop"); \
123
} while (0)
124
125
static void (*r4k_blast_dcache_page)(unsigned long addr);
126
127
static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
128
{
129
R4600_HIT_CACHEOP_WAR_IMPL;
130
blast_dcache32_page(addr);
131
}
132
133
static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
134
{
135
blast_dcache64_page(addr);
136
}
137
138
static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
139
{
140
blast_dcache128_page(addr);
141
}
142
143
static void r4k_blast_dcache_page_setup(void)
144
{
145
unsigned long dc_lsize = cpu_dcache_line_size();
146
147
switch (dc_lsize) {
148
case 0:
149
r4k_blast_dcache_page = (void *)cache_noop;
150
break;
151
case 16:
152
r4k_blast_dcache_page = blast_dcache16_page;
153
break;
154
case 32:
155
r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
156
break;
157
case 64:
158
r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
159
break;
160
case 128:
161
r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
162
break;
163
default:
164
break;
165
}
166
}
167
168
#ifndef CONFIG_EVA
169
#define r4k_blast_dcache_user_page r4k_blast_dcache_page
170
#else
171
172
static void (*r4k_blast_dcache_user_page)(unsigned long addr);
173
174
static void r4k_blast_dcache_user_page_setup(void)
175
{
176
unsigned long dc_lsize = cpu_dcache_line_size();
177
178
if (dc_lsize == 0)
179
r4k_blast_dcache_user_page = (void *)cache_noop;
180
else if (dc_lsize == 16)
181
r4k_blast_dcache_user_page = blast_dcache16_user_page;
182
else if (dc_lsize == 32)
183
r4k_blast_dcache_user_page = blast_dcache32_user_page;
184
else if (dc_lsize == 64)
185
r4k_blast_dcache_user_page = blast_dcache64_user_page;
186
}
187
188
#endif
189
190
void (* r4k_blast_dcache)(void);
191
EXPORT_SYMBOL(r4k_blast_dcache);
192
193
static void r4k_blast_dcache_setup(void)
194
{
195
unsigned long dc_lsize = cpu_dcache_line_size();
196
197
if (dc_lsize == 0)
198
r4k_blast_dcache = (void *)cache_noop;
199
else if (dc_lsize == 16)
200
r4k_blast_dcache = blast_dcache16;
201
else if (dc_lsize == 32)
202
r4k_blast_dcache = blast_dcache32;
203
else if (dc_lsize == 64)
204
r4k_blast_dcache = blast_dcache64;
205
else if (dc_lsize == 128)
206
r4k_blast_dcache = blast_dcache128;
207
}
208
209
/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
210
#define JUMP_TO_ALIGN(order) \
211
__asm__ __volatile__( \
212
"b\t1f\n\t" \
213
".align\t" #order "\n\t" \
214
"1:\n\t" \
215
)
216
#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
217
#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
218
219
static inline void blast_r4600_v1_icache32(void)
220
{
221
unsigned long flags;
222
223
local_irq_save(flags);
224
blast_icache32();
225
local_irq_restore(flags);
226
}
227
228
static inline void tx49_blast_icache32(void)
229
{
230
unsigned long start = INDEX_BASE;
231
unsigned long end = start + current_cpu_data.icache.waysize;
232
unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
233
unsigned long ws_end = current_cpu_data.icache.ways <<
234
current_cpu_data.icache.waybit;
235
unsigned long ws, addr;
236
237
CACHE32_UNROLL32_ALIGN2;
238
/* I'm in even chunk. blast odd chunks */
239
for (ws = 0; ws < ws_end; ws += ws_inc)
240
for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
241
cache_unroll(32, kernel_cache, Index_Invalidate_I,
242
addr | ws, 32);
243
CACHE32_UNROLL32_ALIGN;
244
/* I'm in odd chunk. blast even chunks */
245
for (ws = 0; ws < ws_end; ws += ws_inc)
246
for (addr = start; addr < end; addr += 0x400 * 2)
247
cache_unroll(32, kernel_cache, Index_Invalidate_I,
248
addr | ws, 32);
249
}
250
251
static void (* r4k_blast_icache_page)(unsigned long addr);
252
253
static void r4k_blast_icache_page_setup(void)
254
{
255
unsigned long ic_lsize = cpu_icache_line_size();
256
257
if (ic_lsize == 0)
258
r4k_blast_icache_page = (void *)cache_noop;
259
else if (ic_lsize == 16)
260
r4k_blast_icache_page = blast_icache16_page;
261
else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
262
r4k_blast_icache_page = loongson2_blast_icache32_page;
263
else if (ic_lsize == 32)
264
r4k_blast_icache_page = blast_icache32_page;
265
else if (ic_lsize == 64)
266
r4k_blast_icache_page = blast_icache64_page;
267
else if (ic_lsize == 128)
268
r4k_blast_icache_page = blast_icache128_page;
269
}
270
271
#ifndef CONFIG_EVA
272
#define r4k_blast_icache_user_page r4k_blast_icache_page
273
#else
274
275
static void (*r4k_blast_icache_user_page)(unsigned long addr);
276
277
static void r4k_blast_icache_user_page_setup(void)
278
{
279
unsigned long ic_lsize = cpu_icache_line_size();
280
281
if (ic_lsize == 0)
282
r4k_blast_icache_user_page = (void *)cache_noop;
283
else if (ic_lsize == 16)
284
r4k_blast_icache_user_page = blast_icache16_user_page;
285
else if (ic_lsize == 32)
286
r4k_blast_icache_user_page = blast_icache32_user_page;
287
else if (ic_lsize == 64)
288
r4k_blast_icache_user_page = blast_icache64_user_page;
289
}
290
291
#endif
292
293
void (* r4k_blast_icache)(void);
294
EXPORT_SYMBOL(r4k_blast_icache);
295
296
static void r4k_blast_icache_setup(void)
297
{
298
unsigned long ic_lsize = cpu_icache_line_size();
299
300
if (ic_lsize == 0)
301
r4k_blast_icache = (void *)cache_noop;
302
else if (ic_lsize == 16)
303
r4k_blast_icache = blast_icache16;
304
else if (ic_lsize == 32) {
305
if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
306
cpu_is_r4600_v1_x())
307
r4k_blast_icache = blast_r4600_v1_icache32;
308
else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
309
r4k_blast_icache = tx49_blast_icache32;
310
else if (current_cpu_type() == CPU_LOONGSON2EF)
311
r4k_blast_icache = loongson2_blast_icache32;
312
else
313
r4k_blast_icache = blast_icache32;
314
} else if (ic_lsize == 64)
315
r4k_blast_icache = blast_icache64;
316
else if (ic_lsize == 128)
317
r4k_blast_icache = blast_icache128;
318
}
319
320
static void (* r4k_blast_scache_page)(unsigned long addr);
321
322
static void r4k_blast_scache_page_setup(void)
323
{
324
unsigned long sc_lsize = cpu_scache_line_size();
325
326
if (scache_size == 0)
327
r4k_blast_scache_page = (void *)cache_noop;
328
else if (sc_lsize == 16)
329
r4k_blast_scache_page = blast_scache16_page;
330
else if (sc_lsize == 32)
331
r4k_blast_scache_page = blast_scache32_page;
332
else if (sc_lsize == 64)
333
r4k_blast_scache_page = blast_scache64_page;
334
else if (sc_lsize == 128)
335
r4k_blast_scache_page = blast_scache128_page;
336
}
337
338
static void (* r4k_blast_scache)(void);
339
340
static void r4k_blast_scache_setup(void)
341
{
342
unsigned long sc_lsize = cpu_scache_line_size();
343
344
if (scache_size == 0)
345
r4k_blast_scache = (void *)cache_noop;
346
else if (sc_lsize == 16)
347
r4k_blast_scache = blast_scache16;
348
else if (sc_lsize == 32)
349
r4k_blast_scache = blast_scache32;
350
else if (sc_lsize == 64)
351
r4k_blast_scache = blast_scache64;
352
else if (sc_lsize == 128)
353
r4k_blast_scache = blast_scache128;
354
}
355
356
static void (*r4k_blast_scache_node)(long node);
357
358
static void r4k_blast_scache_node_setup(void)
359
{
360
unsigned long sc_lsize = cpu_scache_line_size();
361
362
if (current_cpu_type() != CPU_LOONGSON64)
363
r4k_blast_scache_node = (void *)cache_noop;
364
else if (sc_lsize == 16)
365
r4k_blast_scache_node = blast_scache16_node;
366
else if (sc_lsize == 32)
367
r4k_blast_scache_node = blast_scache32_node;
368
else if (sc_lsize == 64)
369
r4k_blast_scache_node = blast_scache64_node;
370
else if (sc_lsize == 128)
371
r4k_blast_scache_node = blast_scache128_node;
372
}
373
374
static inline void local_r4k___flush_cache_all(void * args)
375
{
376
switch (current_cpu_type()) {
377
case CPU_LOONGSON2EF:
378
case CPU_R4000SC:
379
case CPU_R4000MC:
380
case CPU_R4400SC:
381
case CPU_R4400MC:
382
case CPU_R10000:
383
case CPU_R12000:
384
case CPU_R14000:
385
case CPU_R16000:
386
/*
387
* These caches are inclusive caches, that is, if something
388
* is not cached in the S-cache, we know it also won't be
389
* in one of the primary caches.
390
*/
391
r4k_blast_scache();
392
break;
393
394
case CPU_LOONGSON64:
395
/* Use get_ebase_cpunum() for both NUMA=y/n */
396
r4k_blast_scache_node(get_ebase_cpunum() >> 2);
397
break;
398
399
case CPU_BMIPS5000:
400
r4k_blast_scache();
401
__sync();
402
break;
403
404
default:
405
r4k_blast_dcache();
406
r4k_blast_icache();
407
break;
408
}
409
}
410
411
static void r4k___flush_cache_all(void)
412
{
413
r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
414
}
415
416
/**
417
* has_valid_asid() - Determine if an mm already has an ASID.
418
* @mm: Memory map.
419
* @type: R4K_HIT or R4K_INDEX, type of cache op.
420
*
421
* Determines whether @mm already has an ASID on any of the CPUs which cache ops
422
* of type @type within an r4k_on_each_cpu() call will affect. If
423
* r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
424
* scope of the operation is confined to sibling CPUs, otherwise all online CPUs
425
* will need to be checked.
426
*
427
* Must be called in non-preemptive context.
428
*
429
* Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
430
* 0 otherwise.
431
*/
432
static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
433
{
434
unsigned int i;
435
const cpumask_t *mask = cpu_present_mask;
436
437
if (cpu_has_mmid)
438
return cpu_context(0, mm) != 0;
439
440
/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
441
#ifdef CONFIG_SMP
442
/*
443
* If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
444
* each foreign core, so we only need to worry about siblings.
445
* Otherwise we need to worry about all present CPUs.
446
*/
447
if (r4k_op_needs_ipi(type))
448
mask = &cpu_sibling_map[smp_processor_id()];
449
#endif
450
for_each_cpu(i, mask)
451
if (cpu_context(i, mm))
452
return 1;
453
return 0;
454
}
455
456
static void r4k__flush_cache_vmap(void)
457
{
458
r4k_blast_dcache();
459
}
460
461
static void r4k__flush_cache_vunmap(void)
462
{
463
r4k_blast_dcache();
464
}
465
466
/*
467
* Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
468
* whole caches when vma is executable.
469
*/
470
static inline void local_r4k_flush_cache_range(void * args)
471
{
472
struct vm_area_struct *vma = args;
473
int exec = vma->vm_flags & VM_EXEC;
474
475
if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
476
return;
477
478
/*
479
* If dcache can alias, we must blast it since mapping is changing.
480
* If executable, we must ensure any dirty lines are written back far
481
* enough to be visible to icache.
482
*/
483
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
484
r4k_blast_dcache();
485
/* If executable, blast stale lines from icache */
486
if (exec)
487
r4k_blast_icache();
488
}
489
490
static void r4k_flush_cache_range(struct vm_area_struct *vma,
491
unsigned long start, unsigned long end)
492
{
493
int exec = vma->vm_flags & VM_EXEC;
494
495
if (cpu_has_dc_aliases || exec)
496
r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
497
}
498
499
static inline void local_r4k_flush_cache_mm(void * args)
500
{
501
struct mm_struct *mm = args;
502
503
if (!has_valid_asid(mm, R4K_INDEX))
504
return;
505
506
/*
507
* Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
508
* only flush the primary caches but R1x000 behave sane ...
509
* R4000SC and R4400SC indexed S-cache ops also invalidate primary
510
* caches, so we can bail out early.
511
*/
512
if (current_cpu_type() == CPU_R4000SC ||
513
current_cpu_type() == CPU_R4000MC ||
514
current_cpu_type() == CPU_R4400SC ||
515
current_cpu_type() == CPU_R4400MC) {
516
r4k_blast_scache();
517
return;
518
}
519
520
r4k_blast_dcache();
521
}
522
523
static void r4k_flush_cache_mm(struct mm_struct *mm)
524
{
525
if (!cpu_has_dc_aliases)
526
return;
527
528
r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
529
}
530
531
struct flush_cache_page_args {
532
struct vm_area_struct *vma;
533
unsigned long addr;
534
unsigned long pfn;
535
};
536
537
static inline void local_r4k_flush_cache_page(void *args)
538
{
539
struct flush_cache_page_args *fcp_args = args;
540
struct vm_area_struct *vma = fcp_args->vma;
541
unsigned long addr = fcp_args->addr;
542
struct page *page = pfn_to_page(fcp_args->pfn);
543
int exec = vma->vm_flags & VM_EXEC;
544
struct mm_struct *mm = vma->vm_mm;
545
int map_coherent = 0;
546
pmd_t *pmdp;
547
pte_t *ptep;
548
void *vaddr;
549
550
/*
551
* If owns no valid ASID yet, cannot possibly have gotten
552
* this page into the cache.
553
*/
554
if (!has_valid_asid(mm, R4K_HIT))
555
return;
556
557
addr &= PAGE_MASK;
558
pmdp = pmd_off(mm, addr);
559
ptep = pte_offset_kernel(pmdp, addr);
560
561
/*
562
* If the page isn't marked valid, the page cannot possibly be
563
* in the cache.
564
*/
565
if (!(pte_present(*ptep)))
566
return;
567
568
if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
569
vaddr = NULL;
570
else {
571
struct folio *folio = page_folio(page);
572
/*
573
* Use kmap_coherent or kmap_atomic to do flushes for
574
* another ASID than the current one.
575
*/
576
map_coherent = (cpu_has_dc_aliases &&
577
folio_mapped(folio) &&
578
!folio_test_dcache_dirty(folio));
579
if (map_coherent)
580
vaddr = kmap_coherent(page, addr);
581
else
582
vaddr = kmap_atomic(page);
583
addr = (unsigned long)vaddr;
584
}
585
586
if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
587
vaddr ? r4k_blast_dcache_page(addr) :
588
r4k_blast_dcache_user_page(addr);
589
if (exec && !cpu_icache_snoops_remote_store)
590
r4k_blast_scache_page(addr);
591
}
592
if (exec) {
593
if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
594
drop_mmu_context(mm);
595
} else
596
vaddr ? r4k_blast_icache_page(addr) :
597
r4k_blast_icache_user_page(addr);
598
}
599
600
if (vaddr) {
601
if (map_coherent)
602
kunmap_coherent();
603
else
604
kunmap_atomic(vaddr);
605
}
606
}
607
608
static void r4k_flush_cache_page(struct vm_area_struct *vma,
609
unsigned long addr, unsigned long pfn)
610
{
611
struct flush_cache_page_args args;
612
613
args.vma = vma;
614
args.addr = addr;
615
args.pfn = pfn;
616
617
r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
618
}
619
620
static inline void local_r4k_flush_data_cache_page(void * addr)
621
{
622
r4k_blast_dcache_page((unsigned long) addr);
623
}
624
625
static void r4k_flush_data_cache_page(unsigned long addr)
626
{
627
if (in_atomic())
628
local_r4k_flush_data_cache_page((void *)addr);
629
else
630
r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
631
(void *) addr);
632
}
633
634
struct flush_icache_range_args {
635
unsigned long start;
636
unsigned long end;
637
unsigned int type;
638
bool user;
639
};
640
641
static inline void __local_r4k_flush_icache_range(unsigned long start,
642
unsigned long end,
643
unsigned int type,
644
bool user)
645
{
646
if (!cpu_has_ic_fills_f_dc) {
647
if (type == R4K_INDEX ||
648
(type & R4K_INDEX && end - start >= dcache_size)) {
649
r4k_blast_dcache();
650
} else {
651
R4600_HIT_CACHEOP_WAR_IMPL;
652
if (user)
653
protected_blast_dcache_range(start, end);
654
else
655
blast_dcache_range(start, end);
656
}
657
}
658
659
if (type == R4K_INDEX ||
660
(type & R4K_INDEX && end - start > icache_size))
661
r4k_blast_icache();
662
else {
663
switch (boot_cpu_type()) {
664
case CPU_LOONGSON2EF:
665
protected_loongson2_blast_icache_range(start, end);
666
break;
667
668
default:
669
if (user)
670
protected_blast_icache_range(start, end);
671
else
672
blast_icache_range(start, end);
673
break;
674
}
675
}
676
}
677
678
static inline void local_r4k_flush_icache_range(unsigned long start,
679
unsigned long end)
680
{
681
__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
682
}
683
684
static inline void local_r4k_flush_icache_user_range(unsigned long start,
685
unsigned long end)
686
{
687
__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
688
}
689
690
static inline void local_r4k_flush_icache_range_ipi(void *args)
691
{
692
struct flush_icache_range_args *fir_args = args;
693
unsigned long start = fir_args->start;
694
unsigned long end = fir_args->end;
695
unsigned int type = fir_args->type;
696
bool user = fir_args->user;
697
698
__local_r4k_flush_icache_range(start, end, type, user);
699
}
700
701
static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
702
bool user)
703
{
704
struct flush_icache_range_args args;
705
unsigned long size, cache_size;
706
707
args.start = start;
708
args.end = end;
709
args.type = R4K_HIT | R4K_INDEX;
710
args.user = user;
711
712
/*
713
* Indexed cache ops require an SMP call.
714
* Consider if that can or should be avoided.
715
*/
716
preempt_disable();
717
if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
718
/*
719
* If address-based cache ops don't require an SMP call, then
720
* use them exclusively for small flushes.
721
*/
722
size = end - start;
723
cache_size = icache_size;
724
if (!cpu_has_ic_fills_f_dc) {
725
size *= 2;
726
cache_size += dcache_size;
727
}
728
if (size <= cache_size)
729
args.type &= ~R4K_INDEX;
730
}
731
r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
732
preempt_enable();
733
instruction_hazard();
734
}
735
736
static void r4k_flush_icache_range(unsigned long start, unsigned long end)
737
{
738
return __r4k_flush_icache_range(start, end, false);
739
}
740
741
static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
742
{
743
return __r4k_flush_icache_range(start, end, true);
744
}
745
746
#ifdef CONFIG_DMA_NONCOHERENT
747
748
static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
749
{
750
/* Catch bad driver code */
751
if (WARN_ON(size == 0))
752
return;
753
754
preempt_disable();
755
if (cpu_has_inclusive_pcaches) {
756
if (size >= scache_size) {
757
if (current_cpu_type() != CPU_LOONGSON64)
758
r4k_blast_scache();
759
else
760
r4k_blast_scache_node(pa_to_nid(addr));
761
} else {
762
blast_scache_range(addr, addr + size);
763
}
764
preempt_enable();
765
__sync();
766
return;
767
}
768
769
/*
770
* Either no secondary cache or the available caches don't have the
771
* subset property so we have to flush the primary caches
772
* explicitly.
773
* If we would need IPI to perform an INDEX-type operation, then
774
* we have to use the HIT-type alternative as IPI cannot be used
775
* here due to interrupts possibly being disabled.
776
*/
777
if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
778
r4k_blast_dcache();
779
} else {
780
R4600_HIT_CACHEOP_WAR_IMPL;
781
blast_dcache_range(addr, addr + size);
782
}
783
preempt_enable();
784
785
bc_wback_inv(addr, size);
786
__sync();
787
}
788
789
static void prefetch_cache_inv(unsigned long addr, unsigned long size)
790
{
791
unsigned int linesz = cpu_scache_line_size();
792
unsigned long addr0 = addr, addr1;
793
794
addr0 &= ~(linesz - 1);
795
addr1 = (addr0 + size - 1) & ~(linesz - 1);
796
797
protected_writeback_scache_line(addr0);
798
if (likely(addr1 != addr0))
799
protected_writeback_scache_line(addr1);
800
else
801
return;
802
803
addr0 += linesz;
804
if (likely(addr1 != addr0))
805
protected_writeback_scache_line(addr0);
806
else
807
return;
808
809
addr1 -= linesz;
810
if (likely(addr1 > addr0))
811
protected_writeback_scache_line(addr0);
812
}
813
814
static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
815
{
816
/* Catch bad driver code */
817
if (WARN_ON(size == 0))
818
return;
819
820
preempt_disable();
821
822
if (current_cpu_type() == CPU_BMIPS5000)
823
prefetch_cache_inv(addr, size);
824
825
if (cpu_has_inclusive_pcaches) {
826
if (size >= scache_size) {
827
if (current_cpu_type() != CPU_LOONGSON64)
828
r4k_blast_scache();
829
else
830
r4k_blast_scache_node(pa_to_nid(addr));
831
} else {
832
/*
833
* There is no clearly documented alignment requirement
834
* for the cache instruction on MIPS processors and
835
* some processors, among them the RM5200 and RM7000
836
* QED processors will throw an address error for cache
837
* hit ops with insufficient alignment. Solved by
838
* aligning the address to cache line size.
839
*/
840
blast_inv_scache_range(addr, addr + size);
841
}
842
preempt_enable();
843
__sync();
844
return;
845
}
846
847
if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
848
r4k_blast_dcache();
849
} else {
850
R4600_HIT_CACHEOP_WAR_IMPL;
851
blast_inv_dcache_range(addr, addr + size);
852
}
853
preempt_enable();
854
855
bc_inv(addr, size);
856
__sync();
857
}
858
#endif /* CONFIG_DMA_NONCOHERENT */
859
860
static void r4k_flush_icache_all(void)
861
{
862
if (cpu_has_vtag_icache)
863
r4k_blast_icache();
864
}
865
866
struct flush_kernel_vmap_range_args {
867
unsigned long vaddr;
868
int size;
869
};
870
871
static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
872
{
873
/*
874
* Aliases only affect the primary caches so don't bother with
875
* S-caches or T-caches.
876
*/
877
r4k_blast_dcache();
878
}
879
880
static inline void local_r4k_flush_kernel_vmap_range(void *args)
881
{
882
struct flush_kernel_vmap_range_args *vmra = args;
883
unsigned long vaddr = vmra->vaddr;
884
int size = vmra->size;
885
886
/*
887
* Aliases only affect the primary caches so don't bother with
888
* S-caches or T-caches.
889
*/
890
R4600_HIT_CACHEOP_WAR_IMPL;
891
blast_dcache_range(vaddr, vaddr + size);
892
}
893
894
static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
895
{
896
struct flush_kernel_vmap_range_args args;
897
898
args.vaddr = (unsigned long) vaddr;
899
args.size = size;
900
901
if (size >= dcache_size)
902
r4k_on_each_cpu(R4K_INDEX,
903
local_r4k_flush_kernel_vmap_range_index, NULL);
904
else
905
r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
906
&args);
907
}
908
909
static inline void rm7k_erratum31(void)
910
{
911
const unsigned long ic_lsize = 32;
912
unsigned long addr;
913
914
/* RM7000 erratum #31. The icache is screwed at startup. */
915
write_c0_taglo(0);
916
write_c0_taghi(0);
917
918
for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
919
__asm__ __volatile__ (
920
".set push\n\t"
921
".set noreorder\n\t"
922
".set mips3\n\t"
923
"cache\t%1, 0(%0)\n\t"
924
"cache\t%1, 0x1000(%0)\n\t"
925
"cache\t%1, 0x2000(%0)\n\t"
926
"cache\t%1, 0x3000(%0)\n\t"
927
"cache\t%2, 0(%0)\n\t"
928
"cache\t%2, 0x1000(%0)\n\t"
929
"cache\t%2, 0x2000(%0)\n\t"
930
"cache\t%2, 0x3000(%0)\n\t"
931
"cache\t%1, 0(%0)\n\t"
932
"cache\t%1, 0x1000(%0)\n\t"
933
"cache\t%1, 0x2000(%0)\n\t"
934
"cache\t%1, 0x3000(%0)\n\t"
935
".set pop\n"
936
:
937
: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
938
}
939
}
940
941
static inline int alias_74k_erratum(struct cpuinfo_mips *c)
942
{
943
unsigned int imp = c->processor_id & PRID_IMP_MASK;
944
unsigned int rev = c->processor_id & PRID_REV_MASK;
945
int present = 0;
946
947
/*
948
* Early versions of the 74K do not update the cache tags on a
949
* vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
950
* aliases. In this case it is better to treat the cache as always
951
* having aliases. Also disable the synonym tag update feature
952
* where available. In this case no opportunistic tag update will
953
* happen where a load causes a virtual address miss but a physical
954
* address hit during a D-cache look-up.
955
*/
956
switch (imp) {
957
case PRID_IMP_74K:
958
if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
959
present = 1;
960
if (rev == PRID_REV_ENCODE_332(2, 4, 0))
961
write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
962
break;
963
case PRID_IMP_1074K:
964
if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
965
present = 1;
966
write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
967
}
968
break;
969
default:
970
BUG();
971
}
972
973
return present;
974
}
975
976
static void b5k_instruction_hazard(void)
977
{
978
__sync();
979
__sync();
980
__asm__ __volatile__(
981
" nop; nop; nop; nop; nop; nop; nop; nop\n"
982
" nop; nop; nop; nop; nop; nop; nop; nop\n"
983
" nop; nop; nop; nop; nop; nop; nop; nop\n"
984
" nop; nop; nop; nop; nop; nop; nop; nop\n"
985
: : : "memory");
986
}
987
988
static char *way_string[] = { NULL, "direct mapped", "2-way",
989
"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
990
"9-way", "10-way", "11-way", "12-way",
991
"13-way", "14-way", "15-way", "16-way",
992
};
993
994
static void probe_pcache(void)
995
{
996
struct cpuinfo_mips *c = &current_cpu_data;
997
unsigned int config = read_c0_config();
998
unsigned int prid = read_c0_prid();
999
int has_74k_erratum = 0;
1000
unsigned long config1;
1001
unsigned int lsize;
1002
1003
switch (current_cpu_type()) {
1004
case CPU_R4600: /* QED style two way caches? */
1005
case CPU_R4700:
1006
case CPU_R5000:
1007
case CPU_NEVADA:
1008
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1009
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1010
c->icache.ways = 2;
1011
c->icache.waybit = __ffs(icache_size/2);
1012
1013
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1014
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1015
c->dcache.ways = 2;
1016
c->dcache.waybit= __ffs(dcache_size/2);
1017
1018
c->options |= MIPS_CPU_CACHE_CDEX_P;
1019
break;
1020
1021
case CPU_R5500:
1022
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1023
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1024
c->icache.ways = 2;
1025
c->icache.waybit= 0;
1026
1027
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1028
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1029
c->dcache.ways = 2;
1030
c->dcache.waybit = 0;
1031
1032
c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1033
break;
1034
1035
case CPU_TX49XX:
1036
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1037
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1038
c->icache.ways = 4;
1039
c->icache.waybit= 0;
1040
1041
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1042
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1043
c->dcache.ways = 4;
1044
c->dcache.waybit = 0;
1045
1046
c->options |= MIPS_CPU_CACHE_CDEX_P;
1047
c->options |= MIPS_CPU_PREFETCH;
1048
break;
1049
1050
case CPU_R4000PC:
1051
case CPU_R4000SC:
1052
case CPU_R4000MC:
1053
case CPU_R4400PC:
1054
case CPU_R4400SC:
1055
case CPU_R4400MC:
1056
case CPU_R4300:
1057
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1058
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1059
c->icache.ways = 1;
1060
c->icache.waybit = 0; /* doesn't matter */
1061
1062
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1063
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1064
c->dcache.ways = 1;
1065
c->dcache.waybit = 0; /* does not matter */
1066
1067
c->options |= MIPS_CPU_CACHE_CDEX_P;
1068
break;
1069
1070
case CPU_R10000:
1071
case CPU_R12000:
1072
case CPU_R14000:
1073
case CPU_R16000:
1074
icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1075
c->icache.linesz = 64;
1076
c->icache.ways = 2;
1077
c->icache.waybit = 0;
1078
1079
dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1080
c->dcache.linesz = 32;
1081
c->dcache.ways = 2;
1082
c->dcache.waybit = 0;
1083
1084
c->options |= MIPS_CPU_PREFETCH;
1085
break;
1086
1087
case CPU_RM7000:
1088
rm7k_erratum31();
1089
1090
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1091
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1092
c->icache.ways = 4;
1093
c->icache.waybit = __ffs(icache_size / c->icache.ways);
1094
1095
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1096
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1097
c->dcache.ways = 4;
1098
c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1099
1100
c->options |= MIPS_CPU_CACHE_CDEX_P;
1101
c->options |= MIPS_CPU_PREFETCH;
1102
break;
1103
1104
case CPU_LOONGSON2EF:
1105
icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1106
c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1107
if (prid & 0x3)
1108
c->icache.ways = 4;
1109
else
1110
c->icache.ways = 2;
1111
c->icache.waybit = 0;
1112
1113
dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1114
c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1115
if (prid & 0x3)
1116
c->dcache.ways = 4;
1117
else
1118
c->dcache.ways = 2;
1119
c->dcache.waybit = 0;
1120
break;
1121
1122
case CPU_LOONGSON64:
1123
config1 = read_c0_config1();
1124
lsize = (config1 >> 19) & 7;
1125
if (lsize)
1126
c->icache.linesz = 2 << lsize;
1127
else
1128
c->icache.linesz = 0;
1129
c->icache.sets = 64 << ((config1 >> 22) & 7);
1130
c->icache.ways = 1 + ((config1 >> 16) & 7);
1131
icache_size = c->icache.sets *
1132
c->icache.ways *
1133
c->icache.linesz;
1134
c->icache.waybit = 0;
1135
1136
lsize = (config1 >> 10) & 7;
1137
if (lsize)
1138
c->dcache.linesz = 2 << lsize;
1139
else
1140
c->dcache.linesz = 0;
1141
c->dcache.sets = 64 << ((config1 >> 13) & 7);
1142
c->dcache.ways = 1 + ((config1 >> 7) & 7);
1143
dcache_size = c->dcache.sets *
1144
c->dcache.ways *
1145
c->dcache.linesz;
1146
c->dcache.waybit = 0;
1147
if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1148
(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1149
(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1150
c->options |= MIPS_CPU_PREFETCH;
1151
break;
1152
1153
case CPU_CAVIUM_OCTEON3:
1154
/* For now lie about the number of ways. */
1155
c->icache.linesz = 128;
1156
c->icache.sets = 16;
1157
c->icache.ways = 8;
1158
c->icache.flags |= MIPS_CACHE_VTAG;
1159
icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1160
1161
c->dcache.linesz = 128;
1162
c->dcache.ways = 8;
1163
c->dcache.sets = 8;
1164
dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1165
c->options |= MIPS_CPU_PREFETCH;
1166
break;
1167
1168
default:
1169
if (!(config & MIPS_CONF_M))
1170
panic("Don't know how to probe P-caches on this cpu.");
1171
1172
/*
1173
* So we seem to be a MIPS32 or MIPS64 CPU
1174
* So let's probe the I-cache ...
1175
*/
1176
config1 = read_c0_config1();
1177
1178
lsize = (config1 >> 19) & 7;
1179
1180
/* IL == 7 is reserved */
1181
if (lsize == 7)
1182
panic("Invalid icache line size");
1183
1184
c->icache.linesz = lsize ? 2 << lsize : 0;
1185
1186
c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1187
c->icache.ways = 1 + ((config1 >> 16) & 7);
1188
1189
icache_size = c->icache.sets *
1190
c->icache.ways *
1191
c->icache.linesz;
1192
c->icache.waybit = __ffs(icache_size/c->icache.ways);
1193
1194
if (config & MIPS_CONF_VI)
1195
c->icache.flags |= MIPS_CACHE_VTAG;
1196
1197
/*
1198
* Now probe the MIPS32 / MIPS64 data cache.
1199
*/
1200
c->dcache.flags = 0;
1201
1202
lsize = (config1 >> 10) & 7;
1203
1204
/* DL == 7 is reserved */
1205
if (lsize == 7)
1206
panic("Invalid dcache line size");
1207
1208
c->dcache.linesz = lsize ? 2 << lsize : 0;
1209
1210
c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1211
c->dcache.ways = 1 + ((config1 >> 7) & 7);
1212
1213
dcache_size = c->dcache.sets *
1214
c->dcache.ways *
1215
c->dcache.linesz;
1216
c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1217
1218
c->options |= MIPS_CPU_PREFETCH;
1219
break;
1220
}
1221
1222
/*
1223
* Processor configuration sanity check for the R4000SC erratum
1224
* #5. With page sizes larger than 32kB there is no possibility
1225
* to get a VCE exception anymore so we don't care about this
1226
* misconfiguration. The case is rather theoretical anyway;
1227
* presumably no vendor is shipping his hardware in the "bad"
1228
* configuration.
1229
*/
1230
if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1231
(prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1232
!(config & CONF_SC) && c->icache.linesz != 16 &&
1233
PAGE_SIZE <= 0x8000)
1234
panic("Improper R4000SC processor configuration detected");
1235
1236
/* compute a couple of other cache variables */
1237
c->icache.waysize = icache_size / c->icache.ways;
1238
c->dcache.waysize = dcache_size / c->dcache.ways;
1239
1240
c->icache.sets = c->icache.linesz ?
1241
icache_size / (c->icache.linesz * c->icache.ways) : 0;
1242
c->dcache.sets = c->dcache.linesz ?
1243
dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1244
1245
/*
1246
* R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1247
* virtually indexed so normally would suffer from aliases. So
1248
* normally they'd suffer from aliases but magic in the hardware deals
1249
* with that for us so we don't need to take care ourselves.
1250
*/
1251
switch (current_cpu_type()) {
1252
case CPU_20KC:
1253
case CPU_25KF:
1254
case CPU_I6400:
1255
case CPU_I6500:
1256
case CPU_SB1:
1257
case CPU_SB1A:
1258
c->dcache.flags |= MIPS_CACHE_PINDEX;
1259
break;
1260
1261
case CPU_R10000:
1262
case CPU_R12000:
1263
case CPU_R14000:
1264
case CPU_R16000:
1265
break;
1266
1267
case CPU_74K:
1268
case CPU_1074K:
1269
has_74k_erratum = alias_74k_erratum(c);
1270
fallthrough;
1271
case CPU_M14KC:
1272
case CPU_M14KEC:
1273
case CPU_24K:
1274
case CPU_34K:
1275
case CPU_1004K:
1276
case CPU_INTERAPTIV:
1277
case CPU_P5600:
1278
case CPU_PROAPTIV:
1279
case CPU_M5150:
1280
case CPU_QEMU_GENERIC:
1281
case CPU_P6600:
1282
case CPU_M6250:
1283
if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1284
(c->icache.waysize > PAGE_SIZE))
1285
c->icache.flags |= MIPS_CACHE_ALIASES;
1286
if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1287
/*
1288
* Effectively physically indexed dcache,
1289
* thus no virtual aliases.
1290
*/
1291
c->dcache.flags |= MIPS_CACHE_PINDEX;
1292
break;
1293
}
1294
fallthrough;
1295
default:
1296
if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1297
c->dcache.flags |= MIPS_CACHE_ALIASES;
1298
}
1299
1300
/* Physically indexed caches don't suffer from virtual aliasing */
1301
if (c->dcache.flags & MIPS_CACHE_PINDEX)
1302
c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1303
1304
/*
1305
* In systems with CM the icache fills from L2 or closer caches, and
1306
* thus sees remote stores without needing to write them back any
1307
* further than that.
1308
*/
1309
if (mips_cm_present())
1310
c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1311
1312
switch (current_cpu_type()) {
1313
case CPU_20KC:
1314
/*
1315
* Some older 20Kc chips doesn't have the 'VI' bit in
1316
* the config register.
1317
*/
1318
c->icache.flags |= MIPS_CACHE_VTAG;
1319
break;
1320
1321
case CPU_ALCHEMY:
1322
case CPU_I6400:
1323
case CPU_I6500:
1324
c->icache.flags |= MIPS_CACHE_IC_F_DC;
1325
break;
1326
1327
case CPU_BMIPS5000:
1328
c->icache.flags |= MIPS_CACHE_IC_F_DC;
1329
/* Cache aliases are handled in hardware; allow HIGHMEM */
1330
c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1331
break;
1332
1333
case CPU_LOONGSON2EF:
1334
/*
1335
* LOONGSON2 has 4 way icache, but when using indexed cache op,
1336
* one op will act on all 4 ways
1337
*/
1338
c->icache.ways = 1;
1339
}
1340
1341
pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1342
icache_size >> 10,
1343
c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1344
way_string[c->icache.ways], c->icache.linesz);
1345
1346
pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1347
dcache_size >> 10, way_string[c->dcache.ways],
1348
(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1349
(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1350
"cache aliases" : "no aliases",
1351
c->dcache.linesz);
1352
}
1353
1354
static void probe_vcache(void)
1355
{
1356
struct cpuinfo_mips *c = &current_cpu_data;
1357
unsigned int config2, lsize;
1358
1359
if (current_cpu_type() != CPU_LOONGSON64)
1360
return;
1361
1362
config2 = read_c0_config2();
1363
if ((lsize = ((config2 >> 20) & 15)))
1364
c->vcache.linesz = 2 << lsize;
1365
else
1366
c->vcache.linesz = lsize;
1367
1368
c->vcache.sets = 64 << ((config2 >> 24) & 15);
1369
c->vcache.ways = 1 + ((config2 >> 16) & 15);
1370
1371
vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1372
1373
c->vcache.waybit = 0;
1374
c->vcache.waysize = vcache_size / c->vcache.ways;
1375
1376
pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1377
vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1378
}
1379
1380
/*
1381
* If you even _breathe_ on this function, look at the gcc output and make sure
1382
* it does not pop things on and off the stack for the cache sizing loop that
1383
* executes in KSEG1 space or else you will crash and burn badly. You have
1384
* been warned.
1385
*/
1386
static int probe_scache(void)
1387
{
1388
unsigned long flags, addr, begin, end, pow2;
1389
unsigned int config = read_c0_config();
1390
struct cpuinfo_mips *c = &current_cpu_data;
1391
1392
if (config & CONF_SC)
1393
return 0;
1394
1395
begin = (unsigned long) &_stext;
1396
begin &= ~((4 * 1024 * 1024) - 1);
1397
end = begin + (4 * 1024 * 1024);
1398
1399
/*
1400
* This is such a bitch, you'd think they would make it easy to do
1401
* this. Away you daemons of stupidity!
1402
*/
1403
local_irq_save(flags);
1404
1405
/* Fill each size-multiple cache line with a valid tag. */
1406
pow2 = (64 * 1024);
1407
for (addr = begin; addr < end; addr = (begin + pow2)) {
1408
unsigned long *p = (unsigned long *) addr;
1409
__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1410
pow2 <<= 1;
1411
}
1412
1413
/* Load first line with zero (therefore invalid) tag. */
1414
write_c0_taglo(0);
1415
write_c0_taghi(0);
1416
__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1417
cache_op(Index_Store_Tag_I, begin);
1418
cache_op(Index_Store_Tag_D, begin);
1419
cache_op(Index_Store_Tag_SD, begin);
1420
1421
/* Now search for the wrap around point. */
1422
pow2 = (128 * 1024);
1423
for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1424
cache_op(Index_Load_Tag_SD, addr);
1425
__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1426
if (!read_c0_taglo())
1427
break;
1428
pow2 <<= 1;
1429
}
1430
local_irq_restore(flags);
1431
addr -= begin;
1432
1433
scache_size = addr;
1434
c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1435
c->scache.ways = 1;
1436
c->scache.waybit = 0; /* does not matter */
1437
1438
return 1;
1439
}
1440
1441
static void loongson2_sc_init(void)
1442
{
1443
struct cpuinfo_mips *c = &current_cpu_data;
1444
1445
scache_size = 512*1024;
1446
c->scache.linesz = 32;
1447
c->scache.ways = 4;
1448
c->scache.waybit = 0;
1449
c->scache.waysize = scache_size / (c->scache.ways);
1450
c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1451
pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1452
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1453
1454
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1455
}
1456
1457
static void loongson3_sc_init(void)
1458
{
1459
struct cpuinfo_mips *c = &current_cpu_data;
1460
unsigned int config2, lsize;
1461
1462
config2 = read_c0_config2();
1463
lsize = (config2 >> 4) & 15;
1464
if (lsize)
1465
c->scache.linesz = 2 << lsize;
1466
else
1467
c->scache.linesz = 0;
1468
c->scache.sets = 64 << ((config2 >> 8) & 15);
1469
c->scache.ways = 1 + (config2 & 15);
1470
1471
/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1472
if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1473
c->scache.sets *= 2;
1474
else
1475
c->scache.sets *= 4;
1476
1477
scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1478
1479
c->scache.waybit = 0;
1480
c->scache.waysize = scache_size / c->scache.ways;
1481
pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1482
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1483
if (scache_size)
1484
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1485
return;
1486
}
1487
1488
static void setup_scache(void)
1489
{
1490
struct cpuinfo_mips *c = &current_cpu_data;
1491
unsigned int config = read_c0_config();
1492
int sc_present = 0;
1493
1494
/*
1495
* Do the probing thing on R4000SC and R4400SC processors. Other
1496
* processors don't have a S-cache that would be relevant to the
1497
* Linux memory management.
1498
*/
1499
switch (current_cpu_type()) {
1500
case CPU_R4000SC:
1501
case CPU_R4000MC:
1502
case CPU_R4400SC:
1503
case CPU_R4400MC:
1504
sc_present = run_uncached(probe_scache);
1505
if (sc_present)
1506
c->options |= MIPS_CPU_CACHE_CDEX_S;
1507
break;
1508
1509
case CPU_R10000:
1510
case CPU_R12000:
1511
case CPU_R14000:
1512
case CPU_R16000:
1513
scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1514
c->scache.linesz = 64 << ((config >> 13) & 1);
1515
c->scache.ways = 2;
1516
c->scache.waybit= 0;
1517
sc_present = 1;
1518
break;
1519
1520
case CPU_R5000:
1521
case CPU_NEVADA:
1522
#ifdef CONFIG_R5000_CPU_SCACHE
1523
r5k_sc_init();
1524
#endif
1525
return;
1526
1527
case CPU_RM7000:
1528
#ifdef CONFIG_RM7000_CPU_SCACHE
1529
rm7k_sc_init();
1530
#endif
1531
return;
1532
1533
case CPU_LOONGSON2EF:
1534
loongson2_sc_init();
1535
return;
1536
1537
case CPU_LOONGSON64:
1538
loongson3_sc_init();
1539
return;
1540
1541
case CPU_CAVIUM_OCTEON3:
1542
/* don't need to worry about L2, fully coherent */
1543
return;
1544
1545
default:
1546
if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1547
MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1548
MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1549
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1550
#ifdef CONFIG_MIPS_CPU_SCACHE
1551
if (mips_sc_init ()) {
1552
scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1553
printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1554
scache_size >> 10,
1555
way_string[c->scache.ways], c->scache.linesz);
1556
1557
if (current_cpu_type() == CPU_BMIPS5000)
1558
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1559
}
1560
1561
#else
1562
if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1563
panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1564
#endif
1565
return;
1566
}
1567
sc_present = 0;
1568
}
1569
1570
if (!sc_present)
1571
return;
1572
1573
/* compute a couple of other cache variables */
1574
c->scache.waysize = scache_size / c->scache.ways;
1575
1576
c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1577
1578
printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1579
scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1580
1581
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1582
}
1583
1584
void au1x00_fixup_config_od(void)
1585
{
1586
/*
1587
* c0_config.od (bit 19) was write only (and read as 0)
1588
* on the early revisions of Alchemy SOCs. It disables the bus
1589
* transaction overlapping and needs to be set to fix various errata.
1590
*/
1591
switch (read_c0_prid()) {
1592
case 0x00030100: /* Au1000 DA */
1593
case 0x00030201: /* Au1000 HA */
1594
case 0x00030202: /* Au1000 HB */
1595
case 0x01030200: /* Au1500 AB */
1596
/*
1597
* Au1100 errata actually keeps silence about this bit, so we set it
1598
* just in case for those revisions that require it to be set according
1599
* to the (now gone) cpu table.
1600
*/
1601
case 0x02030200: /* Au1100 AB */
1602
case 0x02030201: /* Au1100 BA */
1603
case 0x02030202: /* Au1100 BC */
1604
set_c0_config(1 << 19);
1605
break;
1606
}
1607
}
1608
1609
/* CP0 hazard avoidance. */
1610
#define NXP_BARRIER() \
1611
__asm__ __volatile__( \
1612
".set noreorder\n\t" \
1613
"nop; nop; nop; nop; nop; nop;\n\t" \
1614
".set reorder\n\t")
1615
1616
static void nxp_pr4450_fixup_config(void)
1617
{
1618
unsigned long config0;
1619
1620
config0 = read_c0_config();
1621
1622
/* clear all three cache coherency fields */
1623
config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1624
config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1625
((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1626
((_page_cachable_default >> _CACHE_SHIFT) << 28));
1627
write_c0_config(config0);
1628
NXP_BARRIER();
1629
}
1630
1631
static int cca = -1;
1632
1633
static int __init cca_setup(char *str)
1634
{
1635
get_option(&str, &cca);
1636
1637
return 0;
1638
}
1639
1640
early_param("cca", cca_setup);
1641
1642
static void coherency_setup(void)
1643
{
1644
if (cca < 0 || cca > 7)
1645
cca = read_c0_config() & CONF_CM_CMASK;
1646
_page_cachable_default = cca << _CACHE_SHIFT;
1647
1648
pr_debug("Using cache attribute %d\n", cca);
1649
change_c0_config(CONF_CM_CMASK, cca);
1650
1651
/*
1652
* c0_status.cu=0 specifies that updates by the sc instruction use
1653
* the coherency mode specified by the TLB; 1 means cacheable
1654
* coherent update on write will be used. Not all processors have
1655
* this bit and; some wire it to zero, others like Toshiba had the
1656
* silly idea of putting something else there ...
1657
*/
1658
switch (current_cpu_type()) {
1659
case CPU_R4000PC:
1660
case CPU_R4000SC:
1661
case CPU_R4000MC:
1662
case CPU_R4400PC:
1663
case CPU_R4400SC:
1664
case CPU_R4400MC:
1665
clear_c0_config(CONF_CU);
1666
break;
1667
/*
1668
* We need to catch the early Alchemy SOCs with
1669
* the write-only co_config.od bit and set it back to one on:
1670
* Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1671
*/
1672
case CPU_ALCHEMY:
1673
au1x00_fixup_config_od();
1674
break;
1675
1676
case PRID_IMP_PR4450:
1677
nxp_pr4450_fixup_config();
1678
break;
1679
}
1680
}
1681
1682
static void r4k_cache_error_setup(void)
1683
{
1684
extern char __weak except_vec2_generic;
1685
extern char __weak except_vec2_sb1;
1686
1687
switch (current_cpu_type()) {
1688
case CPU_SB1:
1689
case CPU_SB1A:
1690
set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1691
break;
1692
1693
default:
1694
set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1695
break;
1696
}
1697
}
1698
1699
void r4k_cache_init(void)
1700
{
1701
extern void build_clear_page(void);
1702
extern void build_copy_page(void);
1703
struct cpuinfo_mips *c = &current_cpu_data;
1704
1705
probe_pcache();
1706
probe_vcache();
1707
setup_scache();
1708
1709
r4k_blast_dcache_page_setup();
1710
r4k_blast_dcache_setup();
1711
r4k_blast_icache_page_setup();
1712
r4k_blast_icache_setup();
1713
r4k_blast_scache_page_setup();
1714
r4k_blast_scache_setup();
1715
r4k_blast_scache_node_setup();
1716
#ifdef CONFIG_EVA
1717
r4k_blast_dcache_user_page_setup();
1718
r4k_blast_icache_user_page_setup();
1719
#endif
1720
1721
/*
1722
* Some MIPS32 and MIPS64 processors have physically indexed caches.
1723
* This code supports virtually indexed processors and will be
1724
* unnecessarily inefficient on physically indexed processors.
1725
*/
1726
if (c->dcache.linesz && cpu_has_dc_aliases)
1727
shm_align_mask = max_t( unsigned long,
1728
c->dcache.sets * c->dcache.linesz - 1,
1729
PAGE_SIZE - 1);
1730
else
1731
shm_align_mask = PAGE_SIZE-1;
1732
1733
__flush_cache_vmap = r4k__flush_cache_vmap;
1734
__flush_cache_vunmap = r4k__flush_cache_vunmap;
1735
1736
flush_cache_all = cache_noop;
1737
__flush_cache_all = r4k___flush_cache_all;
1738
flush_cache_mm = r4k_flush_cache_mm;
1739
flush_cache_page = r4k_flush_cache_page;
1740
flush_cache_range = r4k_flush_cache_range;
1741
1742
__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1743
1744
flush_icache_all = r4k_flush_icache_all;
1745
flush_data_cache_page = r4k_flush_data_cache_page;
1746
flush_icache_range = r4k_flush_icache_range;
1747
local_flush_icache_range = local_r4k_flush_icache_range;
1748
__flush_icache_user_range = r4k_flush_icache_user_range;
1749
__local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1750
1751
#ifdef CONFIG_DMA_NONCOHERENT
1752
_dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1753
_dma_cache_wback = r4k_dma_cache_wback_inv;
1754
_dma_cache_inv = r4k_dma_cache_inv;
1755
#endif /* CONFIG_DMA_NONCOHERENT */
1756
1757
build_clear_page();
1758
build_copy_page();
1759
1760
/*
1761
* We want to run CMP kernels on core with and without coherent
1762
* caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1763
* or not to flush caches.
1764
*/
1765
local_r4k___flush_cache_all(NULL);
1766
1767
coherency_setup();
1768
board_cache_error_setup = r4k_cache_error_setup;
1769
1770
/*
1771
* Per-CPU overrides
1772
*/
1773
switch (current_cpu_type()) {
1774
case CPU_BMIPS4350:
1775
case CPU_BMIPS4380:
1776
/* No IPI is needed because all CPUs share the same D$ */
1777
flush_data_cache_page = r4k_blast_dcache_page;
1778
break;
1779
case CPU_BMIPS5000:
1780
/* We lose our superpowers if L2 is disabled */
1781
if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1782
break;
1783
1784
/* I$ fills from D$ just by emptying the write buffers */
1785
flush_cache_page = (void *)b5k_instruction_hazard;
1786
flush_cache_range = (void *)b5k_instruction_hazard;
1787
flush_data_cache_page = (void *)b5k_instruction_hazard;
1788
flush_icache_range = (void *)b5k_instruction_hazard;
1789
local_flush_icache_range = (void *)b5k_instruction_hazard;
1790
1791
1792
/* Optimization: an L2 flush implicitly flushes the L1 */
1793
current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1794
break;
1795
case CPU_LOONGSON64:
1796
/* Loongson-3 maintains cache coherency by hardware */
1797
__flush_cache_all = cache_noop;
1798
__flush_cache_vmap = cache_noop;
1799
__flush_cache_vunmap = cache_noop;
1800
__flush_kernel_vmap_range = (void *)cache_noop;
1801
flush_cache_mm = (void *)cache_noop;
1802
flush_cache_page = (void *)cache_noop;
1803
flush_cache_range = (void *)cache_noop;
1804
flush_icache_all = (void *)cache_noop;
1805
flush_data_cache_page = (void *)cache_noop;
1806
break;
1807
}
1808
}
1809
1810
static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1811
void *v)
1812
{
1813
switch (cmd) {
1814
case CPU_PM_ENTER_FAILED:
1815
case CPU_PM_EXIT:
1816
coherency_setup();
1817
break;
1818
}
1819
1820
return NOTIFY_OK;
1821
}
1822
1823
static struct notifier_block r4k_cache_pm_notifier_block = {
1824
.notifier_call = r4k_cache_pm_notifier,
1825
};
1826
1827
static int __init r4k_cache_init_pm(void)
1828
{
1829
return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1830
}
1831
arch_initcall(r4k_cache_init_pm);
1832
1833