Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/mm/tlbex.c
26424 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Synthesize TLB refill handlers at runtime.
7
*
8
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9
* Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10
* Copyright (C) 2006 Ralf Baechle ([email protected])
11
* Copyright (C) 2008, 2009 Cavium Networks, Inc.
12
* Copyright (C) 2011 MIPS Technologies, Inc.
13
*
14
* ... and the days got worse and worse and now you see
15
* I've gone completely out of my mind.
16
*
17
* They're coming to take me a away haha
18
* they're coming to take me a away hoho hihi haha
19
* to the funny farm where code is beautiful all the time ...
20
*
21
* (Condolences to Napoleon XIV)
22
*/
23
24
#include <linux/bug.h>
25
#include <linux/export.h>
26
#include <linux/kernel.h>
27
#include <linux/types.h>
28
#include <linux/smp.h>
29
#include <linux/string.h>
30
#include <linux/cache.h>
31
#include <linux/pgtable.h>
32
33
#include <asm/cacheflush.h>
34
#include <asm/cpu-type.h>
35
#include <asm/mipsregs.h>
36
#include <asm/mmu_context.h>
37
#include <asm/regdef.h>
38
#include <asm/uasm.h>
39
#include <asm/setup.h>
40
#include <asm/tlbex.h>
41
42
static int mips_xpa_disabled;
43
44
static int __init xpa_disable(char *s)
45
{
46
mips_xpa_disabled = 1;
47
48
return 1;
49
}
50
51
__setup("noxpa", xpa_disable);
52
53
/*
54
* TLB load/store/modify handlers.
55
*
56
* Only the fastpath gets synthesized at runtime, the slowpath for
57
* do_page_fault remains normal asm.
58
*/
59
extern void tlb_do_page_fault_0(void);
60
extern void tlb_do_page_fault_1(void);
61
62
struct work_registers {
63
int r1;
64
int r2;
65
int r3;
66
};
67
68
struct tlb_reg_save {
69
unsigned long a;
70
unsigned long b;
71
} ____cacheline_aligned_in_smp;
72
73
static struct tlb_reg_save handler_reg_save[NR_CPUS];
74
75
static inline int r45k_bvahwbug(void)
76
{
77
/* XXX: We should probe for the presence of this bug, but we don't. */
78
return 0;
79
}
80
81
static inline int r4k_250MHZhwbug(void)
82
{
83
/* XXX: We should probe for the presence of this bug, but we don't. */
84
return 0;
85
}
86
87
extern int sb1250_m3_workaround_needed(void);
88
89
static inline int __maybe_unused bcm1250_m3_war(void)
90
{
91
if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
92
return sb1250_m3_workaround_needed();
93
return 0;
94
}
95
96
static inline int __maybe_unused r10000_llsc_war(void)
97
{
98
return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
99
}
100
101
static int use_bbit_insns(void)
102
{
103
switch (current_cpu_type()) {
104
case CPU_CAVIUM_OCTEON:
105
case CPU_CAVIUM_OCTEON_PLUS:
106
case CPU_CAVIUM_OCTEON2:
107
case CPU_CAVIUM_OCTEON3:
108
return 1;
109
default:
110
return 0;
111
}
112
}
113
114
static int use_lwx_insns(void)
115
{
116
switch (current_cpu_type()) {
117
case CPU_CAVIUM_OCTEON2:
118
case CPU_CAVIUM_OCTEON3:
119
return 1;
120
default:
121
return 0;
122
}
123
}
124
#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
125
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
126
static bool scratchpad_available(void)
127
{
128
return true;
129
}
130
static int scratchpad_offset(int i)
131
{
132
/*
133
* CVMSEG starts at address -32768 and extends for
134
* CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
135
*/
136
i += 1; /* Kernel use starts at the top and works down. */
137
return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
138
}
139
#else
140
static bool scratchpad_available(void)
141
{
142
return false;
143
}
144
static int scratchpad_offset(int i)
145
{
146
BUG();
147
/* Really unreachable, but evidently some GCC want this. */
148
return 0;
149
}
150
#endif
151
/*
152
* Found by experiment: At least some revisions of the 4kc throw under
153
* some circumstances a machine check exception, triggered by invalid
154
* values in the index register. Delaying the tlbp instruction until
155
* after the next branch, plus adding an additional nop in front of
156
* tlbwi/tlbwr avoids the invalid index register values. Nobody knows
157
* why; it's not an issue caused by the core RTL.
158
*
159
*/
160
static int m4kc_tlbp_war(void)
161
{
162
return current_cpu_type() == CPU_4KC;
163
}
164
165
/* Handle labels (which must be positive integers). */
166
enum label_id {
167
label_second_part = 1,
168
label_leave,
169
label_vmalloc,
170
label_vmalloc_done,
171
label_tlbw_hazard_0,
172
label_split = label_tlbw_hazard_0 + 8,
173
label_tlbl_goaround1,
174
label_tlbl_goaround2,
175
label_nopage_tlbl,
176
label_nopage_tlbs,
177
label_nopage_tlbm,
178
label_smp_pgtable_change,
179
label_r3000_write_probe_fail,
180
label_large_segbits_fault,
181
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
182
label_tlb_huge_update,
183
#endif
184
};
185
186
UASM_L_LA(_second_part)
187
UASM_L_LA(_leave)
188
UASM_L_LA(_vmalloc)
189
UASM_L_LA(_vmalloc_done)
190
/* _tlbw_hazard_x is handled differently. */
191
UASM_L_LA(_split)
192
UASM_L_LA(_tlbl_goaround1)
193
UASM_L_LA(_tlbl_goaround2)
194
UASM_L_LA(_nopage_tlbl)
195
UASM_L_LA(_nopage_tlbs)
196
UASM_L_LA(_nopage_tlbm)
197
UASM_L_LA(_smp_pgtable_change)
198
UASM_L_LA(_r3000_write_probe_fail)
199
UASM_L_LA(_large_segbits_fault)
200
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
201
UASM_L_LA(_tlb_huge_update)
202
#endif
203
204
static int hazard_instance;
205
206
static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
207
{
208
switch (instance) {
209
case 0 ... 7:
210
uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
211
return;
212
default:
213
BUG();
214
}
215
}
216
217
static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
218
{
219
switch (instance) {
220
case 0 ... 7:
221
uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
222
break;
223
default:
224
BUG();
225
}
226
}
227
228
/*
229
* pgtable bits are assigned dynamically depending on processor feature
230
* and statically based on kernel configuration. This spits out the actual
231
* values the kernel is using. Required to make sense from disassembled
232
* TLB exception handlers.
233
*/
234
static void output_pgtable_bits_defines(void)
235
{
236
#define pr_define(fmt, ...) \
237
pr_debug("#define " fmt, ##__VA_ARGS__)
238
239
pr_debug("#include <asm/asm.h>\n");
240
pr_debug("#include <asm/regdef.h>\n");
241
pr_debug("\n");
242
243
pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
244
pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
245
pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
246
pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
247
pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
248
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
249
pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
250
#endif
251
#ifdef _PAGE_NO_EXEC_SHIFT
252
if (cpu_has_rixi)
253
pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
254
#endif
255
pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
256
pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
257
pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
258
pr_define("PFN_PTE_SHIFT %d\n", PFN_PTE_SHIFT);
259
pr_debug("\n");
260
}
261
262
static inline void dump_handler(const char *symbol, const void *start, const void *end)
263
{
264
unsigned int count = (end - start) / sizeof(u32);
265
const u32 *handler = start;
266
int i;
267
268
pr_debug("LEAF(%s)\n", symbol);
269
270
pr_debug("\t.set push\n");
271
pr_debug("\t.set noreorder\n");
272
273
for (i = 0; i < count; i++)
274
pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
275
276
pr_debug("\t.set\tpop\n");
277
278
pr_debug("\tEND(%s)\n", symbol);
279
}
280
281
#ifdef CONFIG_64BIT
282
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
283
#else
284
# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
285
#endif
286
287
/* The worst case length of the handler is around 18 instructions for
288
* R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
289
* Maximum space available is 32 instructions for R3000 and 64
290
* instructions for R4000.
291
*
292
* We deliberately chose a buffer size of 128, so we won't scribble
293
* over anything important on overflow before we panic.
294
*/
295
static u32 tlb_handler[128];
296
297
/* simply assume worst case size for labels and relocs */
298
static struct uasm_label labels[128];
299
static struct uasm_reloc relocs[128];
300
301
static int check_for_high_segbits;
302
static bool fill_includes_sw_bits;
303
304
static unsigned int kscratch_used_mask;
305
306
static inline int __maybe_unused c0_kscratch(void)
307
{
308
return 31;
309
}
310
311
static int allocate_kscratch(void)
312
{
313
int r;
314
unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
315
316
r = ffs(a);
317
318
if (r == 0)
319
return -1;
320
321
r--; /* make it zero based */
322
323
kscratch_used_mask |= (1 << r);
324
325
return r;
326
}
327
328
static int scratch_reg;
329
int pgd_reg;
330
EXPORT_SYMBOL_GPL(pgd_reg);
331
enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332
333
static struct work_registers build_get_work_registers(u32 **p)
334
{
335
struct work_registers r;
336
337
if (scratch_reg >= 0) {
338
/* Save in CPU local C0_KScratch? */
339
UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
340
r.r1 = GPR_K0;
341
r.r2 = GPR_K1;
342
r.r3 = GPR_AT;
343
return r;
344
}
345
346
if (num_possible_cpus() > 1) {
347
/* Get smp_processor_id */
348
UASM_i_CPUID_MFC0(p, GPR_K0, SMP_CPUID_REG);
349
UASM_i_SRL_SAFE(p, GPR_K0, GPR_K0, SMP_CPUID_REGSHIFT);
350
351
/* handler_reg_save index in GPR_K0 */
352
UASM_i_SLL(p, GPR_K0, GPR_K0, ilog2(sizeof(struct tlb_reg_save)));
353
354
UASM_i_LA(p, GPR_K1, (long)&handler_reg_save);
355
UASM_i_ADDU(p, GPR_K0, GPR_K0, GPR_K1);
356
} else {
357
UASM_i_LA(p, GPR_K0, (long)&handler_reg_save);
358
}
359
/* GPR_K0 now points to save area, save $1 and $2 */
360
UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
361
UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
362
363
r.r1 = GPR_K1;
364
r.r2 = 1;
365
r.r3 = 2;
366
return r;
367
}
368
369
static void build_restore_work_registers(u32 **p)
370
{
371
if (scratch_reg >= 0) {
372
uasm_i_ehb(p);
373
UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
374
return;
375
}
376
/* GPR_K0 already points to save area, restore $1 and $2 */
377
UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), GPR_K0);
378
UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), GPR_K0);
379
}
380
381
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
382
383
/*
384
* CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
385
* we cannot do r3000 under these circumstances.
386
*
387
* The R3000 TLB handler is simple.
388
*/
389
static void build_r3000_tlb_refill_handler(void)
390
{
391
long pgdc = (long)pgd_current;
392
u32 *p;
393
394
memset(tlb_handler, 0, sizeof(tlb_handler));
395
p = tlb_handler;
396
397
uasm_i_mfc0(&p, GPR_K0, C0_BADVADDR);
398
uasm_i_lui(&p, GPR_K1, uasm_rel_hi(pgdc)); /* cp0 delay */
399
uasm_i_lw(&p, GPR_K1, uasm_rel_lo(pgdc), GPR_K1);
400
uasm_i_srl(&p, GPR_K0, GPR_K0, 22); /* load delay */
401
uasm_i_sll(&p, GPR_K0, GPR_K0, 2);
402
uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
403
uasm_i_mfc0(&p, GPR_K0, C0_CONTEXT);
404
uasm_i_lw(&p, GPR_K1, 0, GPR_K1); /* cp0 delay */
405
uasm_i_andi(&p, GPR_K0, GPR_K0, 0xffc); /* load delay */
406
uasm_i_addu(&p, GPR_K1, GPR_K1, GPR_K0);
407
uasm_i_lw(&p, GPR_K0, 0, GPR_K1);
408
uasm_i_nop(&p); /* load delay */
409
uasm_i_mtc0(&p, GPR_K0, C0_ENTRYLO0);
410
uasm_i_mfc0(&p, GPR_K1, C0_EPC); /* cp0 delay */
411
uasm_i_tlbwr(&p); /* cp0 delay */
412
uasm_i_jr(&p, GPR_K1);
413
uasm_i_rfe(&p); /* branch delay */
414
415
if (p > tlb_handler + 32)
416
panic("TLB refill handler space exceeded");
417
418
pr_debug("Wrote TLB refill handler (%u instructions).\n",
419
(unsigned int)(p - tlb_handler));
420
421
memcpy((void *)ebase, tlb_handler, 0x80);
422
local_flush_icache_range(ebase, ebase + 0x80);
423
dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
424
}
425
#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
426
427
/*
428
* The R4000 TLB handler is much more complicated. We have two
429
* consecutive handler areas with 32 instructions space each.
430
* Since they aren't used at the same time, we can overflow in the
431
* other one.To keep things simple, we first assume linear space,
432
* then we relocate it to the final handler layout as needed.
433
*/
434
static u32 final_handler[64];
435
436
/*
437
* Hazards
438
*
439
* From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
440
* 2. A timing hazard exists for the TLBP instruction.
441
*
442
* stalling_instruction
443
* TLBP
444
*
445
* The JTLB is being read for the TLBP throughout the stall generated by the
446
* previous instruction. This is not really correct as the stalling instruction
447
* can modify the address used to access the JTLB. The failure symptom is that
448
* the TLBP instruction will use an address created for the stalling instruction
449
* and not the address held in C0_ENHI and thus report the wrong results.
450
*
451
* The software work-around is to not allow the instruction preceding the TLBP
452
* to stall - make it an NOP or some other instruction guaranteed not to stall.
453
*
454
* Errata 2 will not be fixed. This errata is also on the R5000.
455
*
456
* As if we MIPS hackers wouldn't know how to nop pipelines happy ...
457
*/
458
static void __maybe_unused build_tlb_probe_entry(u32 **p)
459
{
460
switch (current_cpu_type()) {
461
/* Found by experiment: R4600 v2.0/R4700 needs this, too. */
462
case CPU_R4600:
463
case CPU_R4700:
464
case CPU_R5000:
465
case CPU_NEVADA:
466
uasm_i_nop(p);
467
uasm_i_tlbp(p);
468
break;
469
470
default:
471
uasm_i_tlbp(p);
472
break;
473
}
474
}
475
476
void build_tlb_write_entry(u32 **p, struct uasm_label **l,
477
struct uasm_reloc **r,
478
enum tlb_write_entry wmode)
479
{
480
void(*tlbw)(u32 **) = NULL;
481
482
switch (wmode) {
483
case tlb_random: tlbw = uasm_i_tlbwr; break;
484
case tlb_indexed: tlbw = uasm_i_tlbwi; break;
485
}
486
487
if (cpu_has_mips_r2_r6) {
488
if (cpu_has_mips_r2_exec_hazard)
489
uasm_i_ehb(p);
490
tlbw(p);
491
return;
492
}
493
494
switch (current_cpu_type()) {
495
case CPU_R4000PC:
496
case CPU_R4000SC:
497
case CPU_R4000MC:
498
case CPU_R4400PC:
499
case CPU_R4400SC:
500
case CPU_R4400MC:
501
/*
502
* This branch uses up a mtc0 hazard nop slot and saves
503
* two nops after the tlbw instruction.
504
*/
505
uasm_bgezl_hazard(p, r, hazard_instance);
506
tlbw(p);
507
uasm_bgezl_label(l, p, hazard_instance);
508
hazard_instance++;
509
uasm_i_nop(p);
510
break;
511
512
case CPU_R4600:
513
case CPU_R4700:
514
uasm_i_nop(p);
515
tlbw(p);
516
uasm_i_nop(p);
517
break;
518
519
case CPU_R5000:
520
case CPU_NEVADA:
521
uasm_i_nop(p); /* QED specifies 2 nops hazard */
522
uasm_i_nop(p); /* QED specifies 2 nops hazard */
523
tlbw(p);
524
break;
525
526
case CPU_R4300:
527
case CPU_5KC:
528
case CPU_TX49XX:
529
case CPU_PR4450:
530
uasm_i_nop(p);
531
tlbw(p);
532
break;
533
534
case CPU_R10000:
535
case CPU_R12000:
536
case CPU_R14000:
537
case CPU_R16000:
538
case CPU_4KC:
539
case CPU_4KEC:
540
case CPU_M14KC:
541
case CPU_M14KEC:
542
case CPU_SB1:
543
case CPU_SB1A:
544
case CPU_4KSC:
545
case CPU_20KC:
546
case CPU_25KF:
547
case CPU_BMIPS32:
548
case CPU_BMIPS3300:
549
case CPU_BMIPS4350:
550
case CPU_BMIPS4380:
551
case CPU_BMIPS5000:
552
case CPU_LOONGSON2EF:
553
case CPU_LOONGSON64:
554
case CPU_R5500:
555
if (m4kc_tlbp_war())
556
uasm_i_nop(p);
557
fallthrough;
558
case CPU_ALCHEMY:
559
tlbw(p);
560
break;
561
562
case CPU_RM7000:
563
uasm_i_nop(p);
564
uasm_i_nop(p);
565
uasm_i_nop(p);
566
uasm_i_nop(p);
567
tlbw(p);
568
break;
569
570
case CPU_XBURST:
571
tlbw(p);
572
uasm_i_nop(p);
573
break;
574
575
default:
576
panic("No TLB refill handler yet (CPU type: %d)",
577
current_cpu_type());
578
break;
579
}
580
}
581
EXPORT_SYMBOL_GPL(build_tlb_write_entry);
582
583
static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584
unsigned int reg)
585
{
586
if (_PAGE_GLOBAL_SHIFT == 0) {
587
/* pte_t is already in EntryLo format */
588
return;
589
}
590
591
if (cpu_has_rixi && _PAGE_NO_EXEC != 0) {
592
if (fill_includes_sw_bits) {
593
UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
594
} else {
595
UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
596
UASM_i_ROTR(p, reg, reg,
597
ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
598
}
599
} else {
600
#ifdef CONFIG_PHYS_ADDR_T_64BIT
601
uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
602
#else
603
UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
604
#endif
605
}
606
}
607
608
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
609
610
static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
611
unsigned int tmp, enum label_id lid,
612
int restore_scratch)
613
{
614
if (restore_scratch) {
615
/*
616
* Ensure the MFC0 below observes the value written to the
617
* KScratch register by the prior MTC0.
618
*/
619
if (scratch_reg >= 0)
620
uasm_i_ehb(p);
621
622
/* Reset default page size */
623
if (PM_DEFAULT_MASK >> 16) {
624
uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
625
uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
626
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
627
uasm_il_b(p, r, lid);
628
} else if (PM_DEFAULT_MASK) {
629
uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
630
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
631
uasm_il_b(p, r, lid);
632
} else {
633
uasm_i_mtc0(p, 0, C0_PAGEMASK);
634
uasm_il_b(p, r, lid);
635
}
636
if (scratch_reg >= 0)
637
UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
638
else
639
UASM_i_LW(p, 1, scratchpad_offset(0), 0);
640
} else {
641
/* Reset default page size */
642
if (PM_DEFAULT_MASK >> 16) {
643
uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
644
uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
645
uasm_il_b(p, r, lid);
646
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
647
} else if (PM_DEFAULT_MASK) {
648
uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
649
uasm_il_b(p, r, lid);
650
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
651
} else {
652
uasm_il_b(p, r, lid);
653
uasm_i_mtc0(p, 0, C0_PAGEMASK);
654
}
655
}
656
}
657
658
static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
659
struct uasm_reloc **r,
660
unsigned int tmp,
661
enum tlb_write_entry wmode,
662
int restore_scratch)
663
{
664
/* Set huge page tlb entry size */
665
uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
666
uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
667
uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668
669
build_tlb_write_entry(p, l, r, wmode);
670
671
build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
672
}
673
674
/*
675
* Check if Huge PTE is present, if so then jump to LABEL.
676
*/
677
static void
678
build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
679
unsigned int pmd, int lid)
680
{
681
UASM_i_LW(p, tmp, 0, pmd);
682
if (use_bbit_insns()) {
683
uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
684
} else {
685
uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
686
uasm_il_bnez(p, r, tmp, lid);
687
}
688
}
689
690
static void build_huge_update_entries(u32 **p, unsigned int pte,
691
unsigned int tmp)
692
{
693
int small_sequence;
694
695
/*
696
* A huge PTE describes an area the size of the
697
* configured huge page size. This is twice the
698
* of the large TLB entry size we intend to use.
699
* A TLB entry half the size of the configured
700
* huge page size is configured into entrylo0
701
* and entrylo1 to cover the contiguous huge PTE
702
* address space.
703
*/
704
small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
705
706
/* We can clobber tmp. It isn't used after this.*/
707
if (!small_sequence)
708
uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
709
710
build_convert_pte_to_entrylo(p, pte);
711
UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
712
/* convert to entrylo1 */
713
if (small_sequence)
714
UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
715
else
716
UASM_i_ADDU(p, pte, pte, tmp);
717
718
UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
719
}
720
721
static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
722
struct uasm_label **l,
723
unsigned int pte,
724
unsigned int ptr,
725
unsigned int flush)
726
{
727
#ifdef CONFIG_SMP
728
UASM_i_SC(p, pte, 0, ptr);
729
uasm_il_beqz(p, r, pte, label_tlb_huge_update);
730
UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
731
#else
732
UASM_i_SW(p, pte, 0, ptr);
733
#endif
734
if (cpu_has_ftlb && flush) {
735
BUG_ON(!cpu_has_tlbinv);
736
737
UASM_i_MFC0(p, ptr, C0_ENTRYHI);
738
uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
739
UASM_i_MTC0(p, ptr, C0_ENTRYHI);
740
build_tlb_write_entry(p, l, r, tlb_indexed);
741
742
uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
743
UASM_i_MTC0(p, ptr, C0_ENTRYHI);
744
build_huge_update_entries(p, pte, ptr);
745
build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
746
747
return;
748
}
749
750
build_huge_update_entries(p, pte, ptr);
751
build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
752
}
753
#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
754
755
#ifdef CONFIG_64BIT
756
/*
757
* TMP and PTR are scratch.
758
* TMP will be clobbered, PTR will hold the pmd entry.
759
*/
760
void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
761
unsigned int tmp, unsigned int ptr)
762
{
763
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
764
long pgdc = (long)pgd_current;
765
#endif
766
/*
767
* The vmalloc handling is not in the hotpath.
768
*/
769
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
770
771
if (check_for_high_segbits) {
772
/*
773
* The kernel currently implicitly assumes that the
774
* MIPS SEGBITS parameter for the processor is
775
* (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
776
* allocate virtual addresses outside the maximum
777
* range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
778
* that doesn't prevent user code from accessing the
779
* higher xuseg addresses. Here, we make sure that
780
* everything but the lower xuseg addresses goes down
781
* the module_alloc/vmalloc path.
782
*/
783
uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
784
uasm_il_bnez(p, r, ptr, label_vmalloc);
785
} else {
786
uasm_il_bltz(p, r, tmp, label_vmalloc);
787
}
788
/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
789
790
if (pgd_reg != -1) {
791
/* pgd is in pgd_reg */
792
if (cpu_has_ldpte)
793
UASM_i_MFC0(p, ptr, C0_PWBASE);
794
else
795
UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
796
} else {
797
#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
798
/*
799
* &pgd << 11 stored in CONTEXT [23..63].
800
*/
801
UASM_i_MFC0(p, ptr, C0_CONTEXT);
802
803
/* Clear lower 23 bits of context. */
804
uasm_i_dins(p, ptr, 0, 0, 23);
805
806
/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
807
uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
808
uasm_i_drotr(p, ptr, ptr, 11);
809
#elif defined(CONFIG_SMP)
810
UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
811
uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
812
UASM_i_LA_mostly(p, tmp, pgdc);
813
uasm_i_daddu(p, ptr, ptr, tmp);
814
uasm_i_dmfc0(p, tmp, C0_BADVADDR);
815
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
816
#else
817
UASM_i_LA_mostly(p, ptr, pgdc);
818
uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
819
#endif
820
}
821
822
uasm_l_vmalloc_done(l, *p);
823
824
/* get pgd offset in bytes */
825
uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
826
827
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
828
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
829
#ifndef __PAGETABLE_PUD_FOLDED
830
uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
831
uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
832
uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
833
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
834
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
835
#endif
836
#ifndef __PAGETABLE_PMD_FOLDED
837
uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
838
uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
839
uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
840
uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
841
uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
842
#endif
843
}
844
EXPORT_SYMBOL_GPL(build_get_pmde64);
845
846
/*
847
* BVADDR is the faulting address, PTR is scratch.
848
* PTR will hold the pgd for vmalloc.
849
*/
850
static void
851
build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
852
unsigned int bvaddr, unsigned int ptr,
853
enum vmalloc64_mode mode)
854
{
855
long swpd = (long)swapper_pg_dir;
856
int single_insn_swpd;
857
int did_vmalloc_branch = 0;
858
859
single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
860
861
uasm_l_vmalloc(l, *p);
862
863
if (mode != not_refill && check_for_high_segbits) {
864
if (single_insn_swpd) {
865
uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
866
uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
867
did_vmalloc_branch = 1;
868
/* fall through */
869
} else {
870
uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
871
}
872
}
873
if (!did_vmalloc_branch) {
874
if (single_insn_swpd) {
875
uasm_il_b(p, r, label_vmalloc_done);
876
uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
877
} else {
878
UASM_i_LA_mostly(p, ptr, swpd);
879
uasm_il_b(p, r, label_vmalloc_done);
880
if (uasm_in_compat_space_p(swpd))
881
uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
882
else
883
uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
884
}
885
}
886
if (mode != not_refill && check_for_high_segbits) {
887
uasm_l_large_segbits_fault(l, *p);
888
889
if (mode == refill_scratch && scratch_reg >= 0)
890
uasm_i_ehb(p);
891
892
/*
893
* We get here if we are an xsseg address, or if we are
894
* an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
895
*
896
* Ignoring xsseg (assume disabled so would generate
897
* (address errors?), the only remaining possibility
898
* is the upper xuseg addresses. On processors with
899
* TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
900
* addresses would have taken an address error. We try
901
* to mimic that here by taking a load/istream page
902
* fault.
903
*/
904
if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
905
uasm_i_sync(p, 0);
906
UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907
uasm_i_jr(p, ptr);
908
909
if (mode == refill_scratch) {
910
if (scratch_reg >= 0)
911
UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912
else
913
UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914
} else {
915
uasm_i_nop(p);
916
}
917
}
918
}
919
920
#else /* !CONFIG_64BIT */
921
922
/*
923
* TMP and PTR are scratch.
924
* TMP will be clobbered, PTR will hold the pgd entry.
925
*/
926
void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
927
{
928
if (pgd_reg != -1) {
929
/* pgd is in pgd_reg */
930
uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931
uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932
} else {
933
long pgdc = (long)pgd_current;
934
935
/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936
#ifdef CONFIG_SMP
937
uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938
UASM_i_LA_mostly(p, tmp, pgdc);
939
uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940
uasm_i_addu(p, ptr, tmp, ptr);
941
#else
942
UASM_i_LA_mostly(p, ptr, pgdc);
943
#endif
944
uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
946
}
947
uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948
uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949
uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
950
}
951
EXPORT_SYMBOL_GPL(build_get_pgde32);
952
953
#endif /* !CONFIG_64BIT */
954
955
static void build_adjust_context(u32 **p, unsigned int ctx)
956
{
957
unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958
unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959
960
if (shift)
961
UASM_i_SRL(p, ctx, ctx, shift);
962
uasm_i_andi(p, ctx, ctx, mask);
963
}
964
965
void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
966
{
967
/*
968
* Bug workaround for the Nevada. It seems as if under certain
969
* circumstances the move from cp0_context might produce a
970
* bogus result when the mfc0 instruction and its consumer are
971
* in a different cacheline or a load instruction, probably any
972
* memory reference, is between them.
973
*/
974
switch (current_cpu_type()) {
975
case CPU_NEVADA:
976
UASM_i_LW(p, ptr, 0, ptr);
977
GET_CONTEXT(p, tmp); /* get context reg */
978
break;
979
980
default:
981
GET_CONTEXT(p, tmp); /* get context reg */
982
UASM_i_LW(p, ptr, 0, ptr);
983
break;
984
}
985
986
build_adjust_context(p, tmp);
987
UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
988
}
989
EXPORT_SYMBOL_GPL(build_get_ptep);
990
991
void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
992
{
993
int pte_off_even = 0;
994
int pte_off_odd = sizeof(pte_t);
995
996
#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
997
/* The low 32 bits of EntryLo is stored in pte_high */
998
pte_off_even += offsetof(pte_t, pte_high);
999
pte_off_odd += offsetof(pte_t, pte_high);
1000
#endif
1001
1002
if (IS_ENABLED(CONFIG_XPA)) {
1003
uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1004
UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1005
UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1006
1007
if (cpu_has_xpa && !mips_xpa_disabled) {
1008
uasm_i_lw(p, tmp, 0, ptep);
1009
uasm_i_ext(p, tmp, tmp, 0, 24);
1010
uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1011
}
1012
1013
uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1014
UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1015
UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1016
1017
if (cpu_has_xpa && !mips_xpa_disabled) {
1018
uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1019
uasm_i_ext(p, tmp, tmp, 0, 24);
1020
uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1021
}
1022
return;
1023
}
1024
1025
UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1026
UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1027
if (r45k_bvahwbug())
1028
build_tlb_probe_entry(p);
1029
build_convert_pte_to_entrylo(p, tmp);
1030
if (r4k_250MHZhwbug())
1031
UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032
UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033
build_convert_pte_to_entrylo(p, ptep);
1034
if (r45k_bvahwbug())
1035
uasm_i_mfc0(p, tmp, C0_INDEX);
1036
if (r4k_250MHZhwbug())
1037
UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1038
UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1039
}
1040
EXPORT_SYMBOL_GPL(build_update_entries);
1041
1042
struct mips_huge_tlb_info {
1043
int huge_pte;
1044
int restore_scratch;
1045
bool need_reload_pte;
1046
};
1047
1048
static struct mips_huge_tlb_info
1049
build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050
struct uasm_reloc **r, unsigned int tmp,
1051
unsigned int ptr, int c0_scratch_reg)
1052
{
1053
struct mips_huge_tlb_info rv;
1054
unsigned int even, odd;
1055
int vmalloc_branch_delay_filled = 0;
1056
const int scratch = 1; /* Our extra working register */
1057
1058
rv.huge_pte = scratch;
1059
rv.restore_scratch = 0;
1060
rv.need_reload_pte = false;
1061
1062
if (check_for_high_segbits) {
1063
UASM_i_MFC0(p, tmp, C0_BADVADDR);
1064
1065
if (pgd_reg != -1)
1066
UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1067
else
1068
UASM_i_MFC0(p, ptr, C0_CONTEXT);
1069
1070
if (c0_scratch_reg >= 0)
1071
UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1072
else
1073
UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1074
1075
uasm_i_dsrl_safe(p, scratch, tmp,
1076
PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1077
uasm_il_bnez(p, r, scratch, label_vmalloc);
1078
1079
if (pgd_reg == -1) {
1080
vmalloc_branch_delay_filled = 1;
1081
/* Clear lower 23 bits of context. */
1082
uasm_i_dins(p, ptr, 0, 0, 23);
1083
}
1084
} else {
1085
if (pgd_reg != -1)
1086
UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1087
else
1088
UASM_i_MFC0(p, ptr, C0_CONTEXT);
1089
1090
UASM_i_MFC0(p, tmp, C0_BADVADDR);
1091
1092
if (c0_scratch_reg >= 0)
1093
UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1094
else
1095
UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1096
1097
if (pgd_reg == -1)
1098
/* Clear lower 23 bits of context. */
1099
uasm_i_dins(p, ptr, 0, 0, 23);
1100
1101
uasm_il_bltz(p, r, tmp, label_vmalloc);
1102
}
1103
1104
if (pgd_reg == -1) {
1105
vmalloc_branch_delay_filled = 1;
1106
/* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1107
uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1108
1109
uasm_i_drotr(p, ptr, ptr, 11);
1110
}
1111
1112
#ifdef __PAGETABLE_PMD_FOLDED
1113
#define LOC_PTEP scratch
1114
#else
1115
#define LOC_PTEP ptr
1116
#endif
1117
1118
if (!vmalloc_branch_delay_filled)
1119
/* get pgd offset in bytes */
1120
uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1121
1122
uasm_l_vmalloc_done(l, *p);
1123
1124
/*
1125
* tmp ptr
1126
* fall-through case = badvaddr *pgd_current
1127
* vmalloc case = badvaddr swapper_pg_dir
1128
*/
1129
1130
if (vmalloc_branch_delay_filled)
1131
/* get pgd offset in bytes */
1132
uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1133
1134
#ifdef __PAGETABLE_PMD_FOLDED
1135
GET_CONTEXT(p, tmp); /* get context reg */
1136
#endif
1137
uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1138
1139
if (use_lwx_insns()) {
1140
UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1141
} else {
1142
uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1143
uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1144
}
1145
1146
#ifndef __PAGETABLE_PUD_FOLDED
1147
/* get pud offset in bytes */
1148
uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1149
uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1150
1151
if (use_lwx_insns()) {
1152
UASM_i_LWX(p, ptr, scratch, ptr);
1153
} else {
1154
uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1155
UASM_i_LW(p, ptr, 0, ptr);
1156
}
1157
/* ptr contains a pointer to PMD entry */
1158
/* tmp contains the address */
1159
#endif
1160
1161
#ifndef __PAGETABLE_PMD_FOLDED
1162
/* get pmd offset in bytes */
1163
uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164
uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165
GET_CONTEXT(p, tmp); /* get context reg */
1166
1167
if (use_lwx_insns()) {
1168
UASM_i_LWX(p, scratch, scratch, ptr);
1169
} else {
1170
uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171
UASM_i_LW(p, scratch, 0, ptr);
1172
}
1173
#endif
1174
/* Adjust the context during the load latency. */
1175
build_adjust_context(p, tmp);
1176
1177
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178
uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1179
/*
1180
* The in the LWX case we don't want to do the load in the
1181
* delay slot. It cannot issue in the same cycle and may be
1182
* speculative and unneeded.
1183
*/
1184
if (use_lwx_insns())
1185
uasm_i_nop(p);
1186
#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1187
1188
1189
/* build_update_entries */
1190
if (use_lwx_insns()) {
1191
even = ptr;
1192
odd = tmp;
1193
UASM_i_LWX(p, even, scratch, tmp);
1194
UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195
UASM_i_LWX(p, odd, scratch, tmp);
1196
} else {
1197
UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198
even = tmp;
1199
odd = ptr;
1200
UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201
UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1202
}
1203
if (cpu_has_rixi) {
1204
uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205
UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206
uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207
} else {
1208
uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209
UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210
uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1211
}
1212
UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1213
1214
if (c0_scratch_reg >= 0) {
1215
uasm_i_ehb(p);
1216
UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217
build_tlb_write_entry(p, l, r, tlb_random);
1218
uasm_l_leave(l, *p);
1219
rv.restore_scratch = 1;
1220
} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1221
build_tlb_write_entry(p, l, r, tlb_random);
1222
uasm_l_leave(l, *p);
1223
UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224
} else {
1225
UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226
build_tlb_write_entry(p, l, r, tlb_random);
1227
uasm_l_leave(l, *p);
1228
rv.restore_scratch = 1;
1229
}
1230
1231
uasm_i_eret(p); /* return from trap */
1232
1233
return rv;
1234
}
1235
1236
/*
1237
* For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238
* because EXL == 0. If we wrap, we can also use the 32 instruction
1239
* slots before the XTLB refill exception handler which belong to the
1240
* unused TLB refill exception.
1241
*/
1242
#define MIPS64_REFILL_INSNS 32
1243
1244
static void build_r4000_tlb_refill_handler(void)
1245
{
1246
u32 *p = tlb_handler;
1247
struct uasm_label *l = labels;
1248
struct uasm_reloc *r = relocs;
1249
u32 *f;
1250
unsigned int final_len;
1251
struct mips_huge_tlb_info htlb_info __maybe_unused;
1252
enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253
1254
memset(tlb_handler, 0, sizeof(tlb_handler));
1255
memset(labels, 0, sizeof(labels));
1256
memset(relocs, 0, sizeof(relocs));
1257
memset(final_handler, 0, sizeof(final_handler));
1258
1259
if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260
htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, GPR_K0, GPR_K1,
1261
scratch_reg);
1262
vmalloc_mode = refill_scratch;
1263
} else {
1264
htlb_info.huge_pte = GPR_K0;
1265
htlb_info.restore_scratch = 0;
1266
htlb_info.need_reload_pte = true;
1267
vmalloc_mode = refill_noscratch;
1268
/*
1269
* create the plain linear handler
1270
*/
1271
if (bcm1250_m3_war()) {
1272
unsigned int segbits = 44;
1273
1274
uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1275
uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
1276
uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
1277
uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
1278
uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
1279
uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
1280
uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
1281
uasm_il_bnez(&p, &r, GPR_K0, label_leave);
1282
/* No need for uasm_i_nop */
1283
}
1284
1285
#ifdef CONFIG_64BIT
1286
build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
1287
#else
1288
build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
1289
#endif
1290
1291
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1292
build_is_huge_pte(&p, &r, GPR_K0, GPR_K1, label_tlb_huge_update);
1293
#endif
1294
1295
build_get_ptep(&p, GPR_K0, GPR_K1);
1296
build_update_entries(&p, GPR_K0, GPR_K1);
1297
build_tlb_write_entry(&p, &l, &r, tlb_random);
1298
uasm_l_leave(&l, p);
1299
uasm_i_eret(&p); /* return from trap */
1300
}
1301
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1302
uasm_l_tlb_huge_update(&l, p);
1303
if (htlb_info.need_reload_pte)
1304
UASM_i_LW(&p, htlb_info.huge_pte, 0, GPR_K1);
1305
build_huge_update_entries(&p, htlb_info.huge_pte, GPR_K1);
1306
build_huge_tlb_write_entry(&p, &l, &r, GPR_K0, tlb_random,
1307
htlb_info.restore_scratch);
1308
#endif
1309
1310
#ifdef CONFIG_64BIT
1311
build_get_pgd_vmalloc64(&p, &l, &r, GPR_K0, GPR_K1, vmalloc_mode);
1312
#endif
1313
1314
/*
1315
* Overflow check: For the 64bit handler, we need at least one
1316
* free instruction slot for the wrap-around branch. In worst
1317
* case, if the intended insertion point is a delay slot, we
1318
* need three, with the second nop'ed and the third being
1319
* unused.
1320
*/
1321
switch (boot_cpu_type()) {
1322
default:
1323
if (sizeof(long) == 4) {
1324
fallthrough;
1325
case CPU_LOONGSON2EF:
1326
/* Loongson2 ebase is different than r4k, we have more space */
1327
if ((p - tlb_handler) > 64)
1328
panic("TLB refill handler space exceeded");
1329
/*
1330
* Now fold the handler in the TLB refill handler space.
1331
*/
1332
f = final_handler;
1333
/* Simplest case, just copy the handler. */
1334
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1335
final_len = p - tlb_handler;
1336
break;
1337
} else {
1338
if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1339
|| (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1340
&& uasm_insn_has_bdelay(relocs,
1341
tlb_handler + MIPS64_REFILL_INSNS - 3)))
1342
panic("TLB refill handler space exceeded");
1343
/*
1344
* Now fold the handler in the TLB refill handler space.
1345
*/
1346
f = final_handler + MIPS64_REFILL_INSNS;
1347
if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1348
/* Just copy the handler. */
1349
uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1350
final_len = p - tlb_handler;
1351
} else {
1352
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1353
const enum label_id ls = label_tlb_huge_update;
1354
#else
1355
const enum label_id ls = label_vmalloc;
1356
#endif
1357
u32 *split;
1358
int ov = 0;
1359
int i;
1360
1361
for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1362
;
1363
BUG_ON(i == ARRAY_SIZE(labels));
1364
split = labels[i].addr;
1365
1366
/*
1367
* See if we have overflown one way or the other.
1368
*/
1369
if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1370
split < p - MIPS64_REFILL_INSNS)
1371
ov = 1;
1372
1373
if (ov) {
1374
/*
1375
* Split two instructions before the end. One
1376
* for the branch and one for the instruction
1377
* in the delay slot.
1378
*/
1379
split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1380
1381
/*
1382
* If the branch would fall in a delay slot,
1383
* we must back up an additional instruction
1384
* so that it is no longer in a delay slot.
1385
*/
1386
if (uasm_insn_has_bdelay(relocs, split - 1))
1387
split--;
1388
}
1389
/* Copy first part of the handler. */
1390
uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1391
f += split - tlb_handler;
1392
1393
if (ov) {
1394
/* Insert branch. */
1395
uasm_l_split(&l, final_handler);
1396
uasm_il_b(&f, &r, label_split);
1397
if (uasm_insn_has_bdelay(relocs, split))
1398
uasm_i_nop(&f);
1399
else {
1400
uasm_copy_handler(relocs, labels,
1401
split, split + 1, f);
1402
uasm_move_labels(labels, f, f + 1, -1);
1403
f++;
1404
split++;
1405
}
1406
}
1407
1408
/* Copy the rest of the handler. */
1409
uasm_copy_handler(relocs, labels, split, p, final_handler);
1410
final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1411
(p - split);
1412
}
1413
}
1414
break;
1415
}
1416
1417
uasm_resolve_relocs(relocs, labels);
1418
pr_debug("Wrote TLB refill handler (%u instructions).\n",
1419
final_len);
1420
1421
memcpy((void *)ebase, final_handler, 0x100);
1422
local_flush_icache_range(ebase, ebase + 0x100);
1423
dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1424
}
1425
1426
static void setup_pw(void)
1427
{
1428
unsigned int pwctl;
1429
unsigned long pgd_i, pgd_w;
1430
#ifndef __PAGETABLE_PMD_FOLDED
1431
unsigned long pmd_i, pmd_w;
1432
#endif
1433
unsigned long pt_i, pt_w;
1434
unsigned long pte_i, pte_w;
1435
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1436
unsigned long psn;
1437
1438
psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1439
#endif
1440
pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1441
#ifndef __PAGETABLE_PMD_FOLDED
1442
pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_TABLE_ORDER;
1443
1444
pmd_i = PMD_SHIFT; /* 2nd level PMD */
1445
pmd_w = PMD_SHIFT - PAGE_SHIFT;
1446
#else
1447
pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_TABLE_ORDER;
1448
#endif
1449
1450
pt_i = PAGE_SHIFT; /* 3rd level PTE */
1451
pt_w = PAGE_SHIFT - 3;
1452
1453
pte_i = ilog2(_PAGE_GLOBAL);
1454
pte_w = 0;
1455
pwctl = 1 << 30; /* Set PWDirExt */
1456
1457
#ifndef __PAGETABLE_PMD_FOLDED
1458
write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1459
write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1460
#else
1461
write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1462
write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1463
#endif
1464
1465
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1466
pwctl |= (1 << 6 | psn);
1467
#endif
1468
write_c0_pwctl(pwctl);
1469
write_c0_kpgd((long)swapper_pg_dir);
1470
kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1471
}
1472
1473
static void build_loongson3_tlb_refill_handler(void)
1474
{
1475
u32 *p = tlb_handler;
1476
struct uasm_label *l = labels;
1477
struct uasm_reloc *r = relocs;
1478
1479
memset(labels, 0, sizeof(labels));
1480
memset(relocs, 0, sizeof(relocs));
1481
memset(tlb_handler, 0, sizeof(tlb_handler));
1482
1483
if (check_for_high_segbits) {
1484
uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
1485
uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0,
1486
PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
1487
uasm_il_beqz(&p, &r, GPR_K1, label_vmalloc);
1488
uasm_i_nop(&p);
1489
1490
uasm_il_bgez(&p, &r, GPR_K0, label_large_segbits_fault);
1491
uasm_i_nop(&p);
1492
uasm_l_vmalloc(&l, p);
1493
}
1494
1495
uasm_i_dmfc0(&p, GPR_K1, C0_PGD);
1496
1497
uasm_i_lddir(&p, GPR_K0, GPR_K1, 3); /* global page dir */
1498
#ifndef __PAGETABLE_PMD_FOLDED
1499
uasm_i_lddir(&p, GPR_K1, GPR_K0, 1); /* middle page dir */
1500
#endif
1501
uasm_i_ldpte(&p, GPR_K1, 0); /* even */
1502
uasm_i_ldpte(&p, GPR_K1, 1); /* odd */
1503
uasm_i_tlbwr(&p);
1504
1505
/* restore page mask */
1506
if (PM_DEFAULT_MASK >> 16) {
1507
uasm_i_lui(&p, GPR_K0, PM_DEFAULT_MASK >> 16);
1508
uasm_i_ori(&p, GPR_K0, GPR_K0, PM_DEFAULT_MASK & 0xffff);
1509
uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1510
} else if (PM_DEFAULT_MASK) {
1511
uasm_i_ori(&p, GPR_K0, 0, PM_DEFAULT_MASK);
1512
uasm_i_mtc0(&p, GPR_K0, C0_PAGEMASK);
1513
} else {
1514
uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1515
}
1516
1517
uasm_i_eret(&p);
1518
1519
if (check_for_high_segbits) {
1520
uasm_l_large_segbits_fault(&l, p);
1521
UASM_i_LA(&p, GPR_K1, (unsigned long)tlb_do_page_fault_0);
1522
uasm_i_jr(&p, GPR_K1);
1523
uasm_i_nop(&p);
1524
}
1525
1526
uasm_resolve_relocs(relocs, labels);
1527
memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1528
local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1529
dump_handler("loongson3_tlb_refill",
1530
(u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1531
}
1532
1533
static void build_setup_pgd(void)
1534
{
1535
const int a0 = 4;
1536
const int __maybe_unused a1 = 5;
1537
const int __maybe_unused a2 = 6;
1538
u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1539
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1540
long pgdc = (long)pgd_current;
1541
#endif
1542
1543
memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1544
memset(labels, 0, sizeof(labels));
1545
memset(relocs, 0, sizeof(relocs));
1546
pgd_reg = allocate_kscratch();
1547
#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1548
if (pgd_reg == -1) {
1549
struct uasm_label *l = labels;
1550
struct uasm_reloc *r = relocs;
1551
1552
/* PGD << 11 in c0_Context */
1553
/*
1554
* If it is a ckseg0 address, convert to a physical
1555
* address. Shifting right by 29 and adding 4 will
1556
* result in zero for these addresses.
1557
*
1558
*/
1559
UASM_i_SRA(&p, a1, a0, 29);
1560
UASM_i_ADDIU(&p, a1, a1, 4);
1561
uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1562
uasm_i_nop(&p);
1563
uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1564
uasm_l_tlbl_goaround1(&l, p);
1565
UASM_i_SLL(&p, a0, a0, 11);
1566
UASM_i_MTC0(&p, a0, C0_CONTEXT);
1567
uasm_i_jr(&p, 31);
1568
uasm_i_ehb(&p);
1569
} else {
1570
/* PGD in c0_KScratch */
1571
if (cpu_has_ldpte)
1572
UASM_i_MTC0(&p, a0, C0_PWBASE);
1573
else
1574
UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1575
uasm_i_jr(&p, 31);
1576
uasm_i_ehb(&p);
1577
}
1578
#else
1579
#ifdef CONFIG_SMP
1580
/* Save PGD to pgd_current[smp_processor_id()] */
1581
UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1582
UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1583
UASM_i_LA_mostly(&p, a2, pgdc);
1584
UASM_i_ADDU(&p, a2, a2, a1);
1585
UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1586
#else
1587
UASM_i_LA_mostly(&p, a2, pgdc);
1588
UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1589
#endif /* SMP */
1590
1591
/* if pgd_reg is allocated, save PGD also to scratch register */
1592
if (pgd_reg != -1) {
1593
UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1594
uasm_i_jr(&p, 31);
1595
uasm_i_ehb(&p);
1596
} else {
1597
uasm_i_jr(&p, 31);
1598
uasm_i_nop(&p);
1599
}
1600
#endif
1601
if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1602
panic("tlbmiss_handler_setup_pgd space exceeded");
1603
1604
uasm_resolve_relocs(relocs, labels);
1605
pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1606
(unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1607
1608
dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1609
tlbmiss_handler_setup_pgd_end);
1610
}
1611
1612
static void
1613
iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1614
{
1615
#ifdef CONFIG_SMP
1616
if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1617
uasm_i_sync(p, 0);
1618
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1619
if (cpu_has_64bits)
1620
uasm_i_lld(p, pte, 0, ptr);
1621
else
1622
# endif
1623
UASM_i_LL(p, pte, 0, ptr);
1624
#else
1625
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1626
if (cpu_has_64bits)
1627
uasm_i_ld(p, pte, 0, ptr);
1628
else
1629
# endif
1630
UASM_i_LW(p, pte, 0, ptr);
1631
#endif
1632
}
1633
1634
static void
1635
iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1636
unsigned int mode, unsigned int scratch)
1637
{
1638
unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1639
unsigned int swmode = mode & ~hwmode;
1640
1641
if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1642
uasm_i_lui(p, scratch, swmode >> 16);
1643
uasm_i_or(p, pte, pte, scratch);
1644
BUG_ON(swmode & 0xffff);
1645
} else {
1646
uasm_i_ori(p, pte, pte, mode);
1647
}
1648
1649
#ifdef CONFIG_SMP
1650
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1651
if (cpu_has_64bits)
1652
uasm_i_scd(p, pte, 0, ptr);
1653
else
1654
# endif
1655
UASM_i_SC(p, pte, 0, ptr);
1656
1657
if (r10000_llsc_war())
1658
uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1659
else
1660
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1661
1662
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1663
if (!cpu_has_64bits) {
1664
/* no uasm_i_nop needed */
1665
uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1666
uasm_i_ori(p, pte, pte, hwmode);
1667
BUG_ON(hwmode & ~0xffff);
1668
uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1669
uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1670
/* no uasm_i_nop needed */
1671
uasm_i_lw(p, pte, 0, ptr);
1672
} else
1673
uasm_i_nop(p);
1674
# else
1675
uasm_i_nop(p);
1676
# endif
1677
#else
1678
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1679
if (cpu_has_64bits)
1680
uasm_i_sd(p, pte, 0, ptr);
1681
else
1682
# endif
1683
UASM_i_SW(p, pte, 0, ptr);
1684
1685
# ifdef CONFIG_PHYS_ADDR_T_64BIT
1686
if (!cpu_has_64bits) {
1687
uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1688
uasm_i_ori(p, pte, pte, hwmode);
1689
BUG_ON(hwmode & ~0xffff);
1690
uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1691
uasm_i_lw(p, pte, 0, ptr);
1692
}
1693
# endif
1694
#endif
1695
}
1696
1697
/*
1698
* Check if PTE is present, if not then jump to LABEL. PTR points to
1699
* the page table where this PTE is located, PTE will be re-loaded
1700
* with its original value.
1701
*/
1702
static void
1703
build_pte_present(u32 **p, struct uasm_reloc **r,
1704
int pte, int ptr, int scratch, enum label_id lid)
1705
{
1706
int t = scratch >= 0 ? scratch : pte;
1707
int cur = pte;
1708
1709
if (cpu_has_rixi) {
1710
if (use_bbit_insns()) {
1711
uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1712
uasm_i_nop(p);
1713
} else {
1714
if (_PAGE_PRESENT_SHIFT) {
1715
uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1716
cur = t;
1717
}
1718
uasm_i_andi(p, t, cur, 1);
1719
uasm_il_beqz(p, r, t, lid);
1720
if (pte == t)
1721
/* You lose the SMP race :-(*/
1722
iPTE_LW(p, pte, ptr);
1723
}
1724
} else {
1725
if (_PAGE_PRESENT_SHIFT) {
1726
uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1727
cur = t;
1728
}
1729
uasm_i_andi(p, t, cur,
1730
(_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1731
uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1732
uasm_il_bnez(p, r, t, lid);
1733
if (pte == t)
1734
/* You lose the SMP race :-(*/
1735
iPTE_LW(p, pte, ptr);
1736
}
1737
}
1738
1739
/* Make PTE valid, store result in PTR. */
1740
static void
1741
build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1742
unsigned int ptr, unsigned int scratch)
1743
{
1744
unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1745
1746
iPTE_SW(p, r, pte, ptr, mode, scratch);
1747
}
1748
1749
/*
1750
* Check if PTE can be written to, if not branch to LABEL. Regardless
1751
* restore PTE with value from PTR when done.
1752
*/
1753
static void
1754
build_pte_writable(u32 **p, struct uasm_reloc **r,
1755
unsigned int pte, unsigned int ptr, int scratch,
1756
enum label_id lid)
1757
{
1758
int t = scratch >= 0 ? scratch : pte;
1759
int cur = pte;
1760
1761
if (_PAGE_PRESENT_SHIFT) {
1762
uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1763
cur = t;
1764
}
1765
uasm_i_andi(p, t, cur,
1766
(_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1767
uasm_i_xori(p, t, t,
1768
(_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1769
uasm_il_bnez(p, r, t, lid);
1770
if (pte == t)
1771
/* You lose the SMP race :-(*/
1772
iPTE_LW(p, pte, ptr);
1773
else
1774
uasm_i_nop(p);
1775
}
1776
1777
/* Make PTE writable, update software status bits as well, then store
1778
* at PTR.
1779
*/
1780
static void
1781
build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1782
unsigned int ptr, unsigned int scratch)
1783
{
1784
unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1785
| _PAGE_DIRTY);
1786
1787
iPTE_SW(p, r, pte, ptr, mode, scratch);
1788
}
1789
1790
/*
1791
* Check if PTE can be modified, if not branch to LABEL. Regardless
1792
* restore PTE with value from PTR when done.
1793
*/
1794
static void
1795
build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1796
unsigned int pte, unsigned int ptr, int scratch,
1797
enum label_id lid)
1798
{
1799
if (use_bbit_insns()) {
1800
uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1801
uasm_i_nop(p);
1802
} else {
1803
int t = scratch >= 0 ? scratch : pte;
1804
uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1805
uasm_i_andi(p, t, t, 1);
1806
uasm_il_beqz(p, r, t, lid);
1807
if (pte == t)
1808
/* You lose the SMP race :-(*/
1809
iPTE_LW(p, pte, ptr);
1810
}
1811
}
1812
1813
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1814
1815
1816
/*
1817
* R3000 style TLB load/store/modify handlers.
1818
*/
1819
1820
/*
1821
* This places the pte into ENTRYLO0 and writes it with tlbwi.
1822
* Then it returns.
1823
*/
1824
static void
1825
build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1826
{
1827
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1828
uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1829
uasm_i_tlbwi(p);
1830
uasm_i_jr(p, tmp);
1831
uasm_i_rfe(p); /* branch delay */
1832
}
1833
1834
/*
1835
* This places the pte into ENTRYLO0 and writes it with tlbwi
1836
* or tlbwr as appropriate. This is because the index register
1837
* may have the probe fail bit set as a result of a trap on a
1838
* kseg2 access, i.e. without refill. Then it returns.
1839
*/
1840
static void
1841
build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1842
struct uasm_reloc **r, unsigned int pte,
1843
unsigned int tmp)
1844
{
1845
uasm_i_mfc0(p, tmp, C0_INDEX);
1846
uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1847
uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1848
uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1849
uasm_i_tlbwi(p); /* cp0 delay */
1850
uasm_i_jr(p, tmp);
1851
uasm_i_rfe(p); /* branch delay */
1852
uasm_l_r3000_write_probe_fail(l, *p);
1853
uasm_i_tlbwr(p); /* cp0 delay */
1854
uasm_i_jr(p, tmp);
1855
uasm_i_rfe(p); /* branch delay */
1856
}
1857
1858
static void
1859
build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1860
unsigned int ptr)
1861
{
1862
long pgdc = (long)pgd_current;
1863
1864
uasm_i_mfc0(p, pte, C0_BADVADDR);
1865
uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1866
uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1867
uasm_i_srl(p, pte, pte, 22); /* load delay */
1868
uasm_i_sll(p, pte, pte, 2);
1869
uasm_i_addu(p, ptr, ptr, pte);
1870
uasm_i_mfc0(p, pte, C0_CONTEXT);
1871
uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1872
uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1873
uasm_i_addu(p, ptr, ptr, pte);
1874
uasm_i_lw(p, pte, 0, ptr);
1875
uasm_i_tlbp(p); /* load delay */
1876
}
1877
1878
static void build_r3000_tlb_load_handler(void)
1879
{
1880
u32 *p = (u32 *)handle_tlbl;
1881
struct uasm_label *l = labels;
1882
struct uasm_reloc *r = relocs;
1883
1884
memset(p, 0, handle_tlbl_end - (char *)p);
1885
memset(labels, 0, sizeof(labels));
1886
memset(relocs, 0, sizeof(relocs));
1887
1888
build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1889
build_pte_present(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbl);
1890
uasm_i_nop(&p); /* load delay */
1891
build_make_valid(&p, &r, GPR_K0, GPR_K1, -1);
1892
build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1893
1894
uasm_l_nopage_tlbl(&l, p);
1895
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1896
uasm_i_nop(&p);
1897
1898
if (p >= (u32 *)handle_tlbl_end)
1899
panic("TLB load handler fastpath space exceeded");
1900
1901
uasm_resolve_relocs(relocs, labels);
1902
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1903
(unsigned int)(p - (u32 *)handle_tlbl));
1904
1905
dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1906
}
1907
1908
static void build_r3000_tlb_store_handler(void)
1909
{
1910
u32 *p = (u32 *)handle_tlbs;
1911
struct uasm_label *l = labels;
1912
struct uasm_reloc *r = relocs;
1913
1914
memset(p, 0, handle_tlbs_end - (char *)p);
1915
memset(labels, 0, sizeof(labels));
1916
memset(relocs, 0, sizeof(relocs));
1917
1918
build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1919
build_pte_writable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbs);
1920
uasm_i_nop(&p); /* load delay */
1921
build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1922
build_r3000_tlb_reload_write(&p, &l, &r, GPR_K0, GPR_K1);
1923
1924
uasm_l_nopage_tlbs(&l, p);
1925
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1926
uasm_i_nop(&p);
1927
1928
if (p >= (u32 *)handle_tlbs_end)
1929
panic("TLB store handler fastpath space exceeded");
1930
1931
uasm_resolve_relocs(relocs, labels);
1932
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1933
(unsigned int)(p - (u32 *)handle_tlbs));
1934
1935
dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1936
}
1937
1938
static void build_r3000_tlb_modify_handler(void)
1939
{
1940
u32 *p = (u32 *)handle_tlbm;
1941
struct uasm_label *l = labels;
1942
struct uasm_reloc *r = relocs;
1943
1944
memset(p, 0, handle_tlbm_end - (char *)p);
1945
memset(labels, 0, sizeof(labels));
1946
memset(relocs, 0, sizeof(relocs));
1947
1948
build_r3000_tlbchange_handler_head(&p, GPR_K0, GPR_K1);
1949
build_pte_modifiable(&p, &r, GPR_K0, GPR_K1, -1, label_nopage_tlbm);
1950
uasm_i_nop(&p); /* load delay */
1951
build_make_write(&p, &r, GPR_K0, GPR_K1, -1);
1952
build_r3000_pte_reload_tlbwi(&p, GPR_K0, GPR_K1);
1953
1954
uasm_l_nopage_tlbm(&l, p);
1955
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1956
uasm_i_nop(&p);
1957
1958
if (p >= (u32 *)handle_tlbm_end)
1959
panic("TLB modify handler fastpath space exceeded");
1960
1961
uasm_resolve_relocs(relocs, labels);
1962
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1963
(unsigned int)(p - (u32 *)handle_tlbm));
1964
1965
dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
1966
}
1967
#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1968
1969
static bool cpu_has_tlbex_tlbp_race(void)
1970
{
1971
/*
1972
* When a Hardware Table Walker is running it can replace TLB entries
1973
* at any time, leading to a race between it & the CPU.
1974
*/
1975
if (cpu_has_htw)
1976
return true;
1977
1978
/*
1979
* If the CPU shares FTLB RAM with its siblings then our entry may be
1980
* replaced at any time by a sibling performing a write to the FTLB.
1981
*/
1982
if (cpu_has_shared_ftlb_ram)
1983
return true;
1984
1985
/* In all other cases there ought to be no race condition to handle */
1986
return false;
1987
}
1988
1989
/*
1990
* R4000 style TLB load/store/modify handlers.
1991
*/
1992
static struct work_registers
1993
build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1994
struct uasm_reloc **r)
1995
{
1996
struct work_registers wr = build_get_work_registers(p);
1997
1998
#ifdef CONFIG_64BIT
1999
build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2000
#else
2001
build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2002
#endif
2003
2004
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2005
/*
2006
* For huge tlb entries, pmd doesn't contain an address but
2007
* instead contains the tlb pte. Check the PAGE_HUGE bit and
2008
* see if we need to jump to huge tlb processing.
2009
*/
2010
build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2011
#endif
2012
2013
UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2014
UASM_i_LW(p, wr.r2, 0, wr.r2);
2015
UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT - PTE_T_LOG2);
2016
uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2017
UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2018
2019
#ifdef CONFIG_SMP
2020
uasm_l_smp_pgtable_change(l, *p);
2021
#endif
2022
iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2023
if (!m4kc_tlbp_war()) {
2024
build_tlb_probe_entry(p);
2025
if (cpu_has_tlbex_tlbp_race()) {
2026
/* race condition happens, leaving */
2027
uasm_i_ehb(p);
2028
uasm_i_mfc0(p, wr.r3, C0_INDEX);
2029
uasm_il_bltz(p, r, wr.r3, label_leave);
2030
uasm_i_nop(p);
2031
}
2032
}
2033
return wr;
2034
}
2035
2036
static void
2037
build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2038
struct uasm_reloc **r, unsigned int tmp,
2039
unsigned int ptr)
2040
{
2041
uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2042
uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2043
build_update_entries(p, tmp, ptr);
2044
build_tlb_write_entry(p, l, r, tlb_indexed);
2045
uasm_l_leave(l, *p);
2046
build_restore_work_registers(p);
2047
uasm_i_eret(p); /* return from trap */
2048
2049
#ifdef CONFIG_64BIT
2050
build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2051
#endif
2052
}
2053
2054
static void build_r4000_tlb_load_handler(void)
2055
{
2056
u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2057
struct uasm_label *l = labels;
2058
struct uasm_reloc *r = relocs;
2059
struct work_registers wr;
2060
2061
memset(p, 0, handle_tlbl_end - (char *)p);
2062
memset(labels, 0, sizeof(labels));
2063
memset(relocs, 0, sizeof(relocs));
2064
2065
if (bcm1250_m3_war()) {
2066
unsigned int segbits = 44;
2067
2068
uasm_i_dmfc0(&p, GPR_K0, C0_BADVADDR);
2069
uasm_i_dmfc0(&p, GPR_K1, C0_ENTRYHI);
2070
uasm_i_xor(&p, GPR_K0, GPR_K0, GPR_K1);
2071
uasm_i_dsrl_safe(&p, GPR_K1, GPR_K0, 62);
2072
uasm_i_dsrl_safe(&p, GPR_K0, GPR_K0, 12 + 1);
2073
uasm_i_dsll_safe(&p, GPR_K0, GPR_K0, 64 + 12 + 1 - segbits);
2074
uasm_i_or(&p, GPR_K0, GPR_K0, GPR_K1);
2075
uasm_il_bnez(&p, &r, GPR_K0, label_leave);
2076
/* No need for uasm_i_nop */
2077
}
2078
2079
wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2080
build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2081
if (m4kc_tlbp_war())
2082
build_tlb_probe_entry(&p);
2083
2084
if (cpu_has_rixi && !cpu_has_rixiex) {
2085
/*
2086
* If the page is not _PAGE_VALID, RI or XI could not
2087
* have triggered it. Skip the expensive test..
2088
*/
2089
if (use_bbit_insns()) {
2090
uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2091
label_tlbl_goaround1);
2092
} else {
2093
uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2094
uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2095
}
2096
uasm_i_nop(&p);
2097
2098
/*
2099
* Warn if something may race with us & replace the TLB entry
2100
* before we read it here. Everything with such races should
2101
* also have dedicated RiXi exception handlers, so this
2102
* shouldn't be hit.
2103
*/
2104
WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2105
2106
uasm_i_tlbr(&p);
2107
2108
if (cpu_has_mips_r2_exec_hazard)
2109
uasm_i_ehb(&p);
2110
2111
/* Examine entrylo 0 or 1 based on ptr. */
2112
if (use_bbit_insns()) {
2113
uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2114
} else {
2115
uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2116
uasm_i_beqz(&p, wr.r3, 8);
2117
}
2118
/* load it in the delay slot*/
2119
UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2120
/* load it if ptr is odd */
2121
UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2122
/*
2123
* If the entryLo (now in wr.r3) is valid (bit 1), RI or
2124
* XI must have triggered it.
2125
*/
2126
if (use_bbit_insns()) {
2127
uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2128
uasm_i_nop(&p);
2129
uasm_l_tlbl_goaround1(&l, p);
2130
} else {
2131
uasm_i_andi(&p, wr.r3, wr.r3, 2);
2132
uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2133
uasm_i_nop(&p);
2134
}
2135
uasm_l_tlbl_goaround1(&l, p);
2136
}
2137
build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2138
build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2139
2140
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2141
/*
2142
* This is the entry point when build_r4000_tlbchange_handler_head
2143
* spots a huge page.
2144
*/
2145
uasm_l_tlb_huge_update(&l, p);
2146
iPTE_LW(&p, wr.r1, wr.r2);
2147
build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2148
build_tlb_probe_entry(&p);
2149
2150
if (cpu_has_rixi && !cpu_has_rixiex) {
2151
/*
2152
* If the page is not _PAGE_VALID, RI or XI could not
2153
* have triggered it. Skip the expensive test..
2154
*/
2155
if (use_bbit_insns()) {
2156
uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2157
label_tlbl_goaround2);
2158
} else {
2159
uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2160
uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2161
}
2162
uasm_i_nop(&p);
2163
2164
/*
2165
* Warn if something may race with us & replace the TLB entry
2166
* before we read it here. Everything with such races should
2167
* also have dedicated RiXi exception handlers, so this
2168
* shouldn't be hit.
2169
*/
2170
WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2171
2172
uasm_i_tlbr(&p);
2173
2174
if (cpu_has_mips_r2_exec_hazard)
2175
uasm_i_ehb(&p);
2176
2177
/* Examine entrylo 0 or 1 based on ptr. */
2178
if (use_bbit_insns()) {
2179
uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2180
} else {
2181
uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2182
uasm_i_beqz(&p, wr.r3, 8);
2183
}
2184
/* load it in the delay slot*/
2185
UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2186
/* load it if ptr is odd */
2187
UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2188
/*
2189
* If the entryLo (now in wr.r3) is valid (bit 1), RI or
2190
* XI must have triggered it.
2191
*/
2192
if (use_bbit_insns()) {
2193
uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2194
} else {
2195
uasm_i_andi(&p, wr.r3, wr.r3, 2);
2196
uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2197
}
2198
if (PM_DEFAULT_MASK == 0)
2199
uasm_i_nop(&p);
2200
/*
2201
* We clobbered C0_PAGEMASK, restore it. On the other branch
2202
* it is restored in build_huge_tlb_write_entry.
2203
*/
2204
build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2205
2206
uasm_l_tlbl_goaround2(&l, p);
2207
}
2208
uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2209
build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2210
#endif
2211
2212
uasm_l_nopage_tlbl(&l, p);
2213
if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2214
uasm_i_sync(&p, 0);
2215
build_restore_work_registers(&p);
2216
#ifdef CONFIG_CPU_MICROMIPS
2217
if ((unsigned long)tlb_do_page_fault_0 & 1) {
2218
uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2219
uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2220
uasm_i_jr(&p, GPR_K0);
2221
} else
2222
#endif
2223
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2224
uasm_i_nop(&p);
2225
2226
if (p >= (u32 *)handle_tlbl_end)
2227
panic("TLB load handler fastpath space exceeded");
2228
2229
uasm_resolve_relocs(relocs, labels);
2230
pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2231
(unsigned int)(p - (u32 *)handle_tlbl));
2232
2233
dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2234
}
2235
2236
static void build_r4000_tlb_store_handler(void)
2237
{
2238
u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2239
struct uasm_label *l = labels;
2240
struct uasm_reloc *r = relocs;
2241
struct work_registers wr;
2242
2243
memset(p, 0, handle_tlbs_end - (char *)p);
2244
memset(labels, 0, sizeof(labels));
2245
memset(relocs, 0, sizeof(relocs));
2246
2247
wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2248
build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2249
if (m4kc_tlbp_war())
2250
build_tlb_probe_entry(&p);
2251
build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2252
build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2253
2254
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2255
/*
2256
* This is the entry point when
2257
* build_r4000_tlbchange_handler_head spots a huge page.
2258
*/
2259
uasm_l_tlb_huge_update(&l, p);
2260
iPTE_LW(&p, wr.r1, wr.r2);
2261
build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2262
build_tlb_probe_entry(&p);
2263
uasm_i_ori(&p, wr.r1, wr.r1,
2264
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2265
build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2266
#endif
2267
2268
uasm_l_nopage_tlbs(&l, p);
2269
if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2270
uasm_i_sync(&p, 0);
2271
build_restore_work_registers(&p);
2272
#ifdef CONFIG_CPU_MICROMIPS
2273
if ((unsigned long)tlb_do_page_fault_1 & 1) {
2274
uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2275
uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2276
uasm_i_jr(&p, GPR_K0);
2277
} else
2278
#endif
2279
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2280
uasm_i_nop(&p);
2281
2282
if (p >= (u32 *)handle_tlbs_end)
2283
panic("TLB store handler fastpath space exceeded");
2284
2285
uasm_resolve_relocs(relocs, labels);
2286
pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2287
(unsigned int)(p - (u32 *)handle_tlbs));
2288
2289
dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2290
}
2291
2292
static void build_r4000_tlb_modify_handler(void)
2293
{
2294
u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2295
struct uasm_label *l = labels;
2296
struct uasm_reloc *r = relocs;
2297
struct work_registers wr;
2298
2299
memset(p, 0, handle_tlbm_end - (char *)p);
2300
memset(labels, 0, sizeof(labels));
2301
memset(relocs, 0, sizeof(relocs));
2302
2303
wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2304
build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2305
if (m4kc_tlbp_war())
2306
build_tlb_probe_entry(&p);
2307
/* Present and writable bits set, set accessed and dirty bits. */
2308
build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2309
build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2310
2311
#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2312
/*
2313
* This is the entry point when
2314
* build_r4000_tlbchange_handler_head spots a huge page.
2315
*/
2316
uasm_l_tlb_huge_update(&l, p);
2317
iPTE_LW(&p, wr.r1, wr.r2);
2318
build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2319
build_tlb_probe_entry(&p);
2320
uasm_i_ori(&p, wr.r1, wr.r1,
2321
_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2322
build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2323
#endif
2324
2325
uasm_l_nopage_tlbm(&l, p);
2326
if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2327
uasm_i_sync(&p, 0);
2328
build_restore_work_registers(&p);
2329
#ifdef CONFIG_CPU_MICROMIPS
2330
if ((unsigned long)tlb_do_page_fault_1 & 1) {
2331
uasm_i_lui(&p, GPR_K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2332
uasm_i_addiu(&p, GPR_K0, GPR_K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2333
uasm_i_jr(&p, GPR_K0);
2334
} else
2335
#endif
2336
uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2337
uasm_i_nop(&p);
2338
2339
if (p >= (u32 *)handle_tlbm_end)
2340
panic("TLB modify handler fastpath space exceeded");
2341
2342
uasm_resolve_relocs(relocs, labels);
2343
pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2344
(unsigned int)(p - (u32 *)handle_tlbm));
2345
2346
dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2347
}
2348
2349
static void flush_tlb_handlers(void)
2350
{
2351
local_flush_icache_range((unsigned long)handle_tlbl,
2352
(unsigned long)handle_tlbl_end);
2353
local_flush_icache_range((unsigned long)handle_tlbs,
2354
(unsigned long)handle_tlbs_end);
2355
local_flush_icache_range((unsigned long)handle_tlbm,
2356
(unsigned long)handle_tlbm_end);
2357
local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2358
(unsigned long)tlbmiss_handler_setup_pgd_end);
2359
}
2360
2361
static void print_htw_config(void)
2362
{
2363
unsigned long config;
2364
unsigned int pwctl;
2365
const int field = 2 * sizeof(unsigned long);
2366
2367
config = read_c0_pwfield();
2368
pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2369
field, config,
2370
(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2371
(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2372
(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2373
(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2374
(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2375
2376
config = read_c0_pwsize();
2377
pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2378
field, config,
2379
(config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2380
(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2381
(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2382
(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2383
(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2384
(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2385
2386
pwctl = read_c0_pwctl();
2387
pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2388
pwctl,
2389
(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2390
(pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2391
(pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2392
(pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2393
(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2394
(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2395
(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2396
}
2397
2398
static void config_htw_params(void)
2399
{
2400
unsigned long pwfield, pwsize, ptei;
2401
unsigned int config;
2402
2403
/*
2404
* We are using 2-level page tables, so we only need to
2405
* setup GDW and PTW appropriately. UDW and MDW will remain 0.
2406
* The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2407
* write values less than 0xc in these fields because the entire
2408
* write will be dropped. As a result of which, we must preserve
2409
* the original reset values and overwrite only what we really want.
2410
*/
2411
2412
pwfield = read_c0_pwfield();
2413
/* re-initialize the GDI field */
2414
pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2415
pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2416
/* re-initialize the PTI field including the even/odd bit */
2417
pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2418
pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2419
if (CONFIG_PGTABLE_LEVELS >= 3) {
2420
pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2421
pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2422
}
2423
/* Set the PTEI right shift */
2424
ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2425
pwfield |= ptei;
2426
write_c0_pwfield(pwfield);
2427
/* Check whether the PTEI value is supported */
2428
back_to_back_c0_hazard();
2429
pwfield = read_c0_pwfield();
2430
if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2431
!= ptei) {
2432
pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2433
ptei);
2434
/*
2435
* Drop option to avoid HTW being enabled via another path
2436
* (eg htw_reset())
2437
*/
2438
current_cpu_data.options &= ~MIPS_CPU_HTW;
2439
return;
2440
}
2441
2442
pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2443
pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2444
if (CONFIG_PGTABLE_LEVELS >= 3)
2445
pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2446
2447
/* Set pointer size to size of directory pointers */
2448
if (IS_ENABLED(CONFIG_64BIT))
2449
pwsize |= MIPS_PWSIZE_PS_MASK;
2450
/* PTEs may be multiple pointers long (e.g. with XPA) */
2451
pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2452
& MIPS_PWSIZE_PTEW_MASK;
2453
2454
write_c0_pwsize(pwsize);
2455
2456
/* Make sure everything is set before we enable the HTW */
2457
back_to_back_c0_hazard();
2458
2459
/*
2460
* Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2461
* the pwctl fields.
2462
*/
2463
config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2464
if (IS_ENABLED(CONFIG_64BIT))
2465
config |= MIPS_PWCTL_XU_MASK;
2466
write_c0_pwctl(config);
2467
pr_info("Hardware Page Table Walker enabled\n");
2468
2469
print_htw_config();
2470
}
2471
2472
static void config_xpa_params(void)
2473
{
2474
#ifdef CONFIG_XPA
2475
unsigned int pagegrain;
2476
2477
if (mips_xpa_disabled) {
2478
pr_info("Extended Physical Addressing (XPA) disabled\n");
2479
return;
2480
}
2481
2482
pagegrain = read_c0_pagegrain();
2483
write_c0_pagegrain(pagegrain | PG_ELPA);
2484
back_to_back_c0_hazard();
2485
pagegrain = read_c0_pagegrain();
2486
2487
if (pagegrain & PG_ELPA)
2488
pr_info("Extended Physical Addressing (XPA) enabled\n");
2489
else
2490
panic("Extended Physical Addressing (XPA) disabled");
2491
#endif
2492
}
2493
2494
static void check_pabits(void)
2495
{
2496
unsigned long entry;
2497
unsigned pabits, fillbits;
2498
2499
if (!cpu_has_rixi || _PAGE_NO_EXEC == 0) {
2500
/*
2501
* We'll only be making use of the fact that we can rotate bits
2502
* into the fill if the CPU supports RIXI, so don't bother
2503
* probing this for CPUs which don't.
2504
*/
2505
return;
2506
}
2507
2508
write_c0_entrylo0(~0ul);
2509
back_to_back_c0_hazard();
2510
entry = read_c0_entrylo0();
2511
2512
/* clear all non-PFN bits */
2513
entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2514
entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2515
2516
/* find a lower bound on PABITS, and upper bound on fill bits */
2517
pabits = fls_long(entry) + 6;
2518
fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2519
2520
/* minus the RI & XI bits */
2521
fillbits -= min_t(unsigned, fillbits, 2);
2522
2523
if (fillbits >= ilog2(_PAGE_NO_EXEC))
2524
fill_includes_sw_bits = true;
2525
2526
pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2527
}
2528
2529
void build_tlb_refill_handler(void)
2530
{
2531
/*
2532
* The refill handler is generated per-CPU, multi-node systems
2533
* may have local storage for it. The other handlers are only
2534
* needed once.
2535
*/
2536
static int run_once = 0;
2537
2538
if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2539
panic("Kernels supporting XPA currently require CPUs with RIXI");
2540
2541
output_pgtable_bits_defines();
2542
check_pabits();
2543
2544
#ifdef CONFIG_64BIT
2545
check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_TABLE_ORDER + PAGE_SHIFT - 3);
2546
#endif
2547
2548
if (cpu_has_3kex) {
2549
#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2550
if (!run_once) {
2551
build_setup_pgd();
2552
build_r3000_tlb_refill_handler();
2553
build_r3000_tlb_load_handler();
2554
build_r3000_tlb_store_handler();
2555
build_r3000_tlb_modify_handler();
2556
flush_tlb_handlers();
2557
run_once++;
2558
}
2559
#else
2560
panic("No R3000 TLB refill handler");
2561
#endif
2562
return;
2563
}
2564
2565
if (cpu_has_ldpte)
2566
setup_pw();
2567
2568
if (!run_once) {
2569
scratch_reg = allocate_kscratch();
2570
build_setup_pgd();
2571
build_r4000_tlb_load_handler();
2572
build_r4000_tlb_store_handler();
2573
build_r4000_tlb_modify_handler();
2574
if (cpu_has_ldpte)
2575
build_loongson3_tlb_refill_handler();
2576
else
2577
build_r4000_tlb_refill_handler();
2578
flush_tlb_handlers();
2579
run_once++;
2580
}
2581
if (cpu_has_xpa)
2582
config_xpa_params();
2583
if (cpu_has_htw)
2584
config_htw_params();
2585
}
2586
2587