Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/mm/uasm-mips.c
26444 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* A small micro-assembler. It is intentionally kept simple, does only
7
* support a subset of instructions, and does not try to hide pipeline
8
* effects like branch delay slots.
9
*
10
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11
* Copyright (C) 2005, 2007 Maciej W. Rozycki
12
* Copyright (C) 2006 Ralf Baechle ([email protected])
13
* Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
14
*/
15
16
#include <linux/kernel.h>
17
#include <linux/types.h>
18
19
#include <asm/inst.h>
20
#include <asm/elf.h>
21
#include <asm/bugs.h>
22
#include <asm/uasm.h>
23
24
#define RS_MASK 0x1f
25
#define RS_SH 21
26
#define RT_MASK 0x1f
27
#define RT_SH 16
28
#define SCIMM_MASK 0xfffff
29
#define SCIMM_SH 6
30
31
/* This macro sets the non-variable bits of an instruction. */
32
#define M(a, b, c, d, e, f) \
33
((a) << OP_SH \
34
| (b) << RS_SH \
35
| (c) << RT_SH \
36
| (d) << RD_SH \
37
| (e) << RE_SH \
38
| (f) << FUNC_SH)
39
40
/* This macro sets the non-variable bits of an R6 instruction. */
41
#define M6(a, b, c, d, e) \
42
((a) << OP_SH \
43
| (b) << RS_SH \
44
| (c) << RT_SH \
45
| (d) << SIMM9_SH \
46
| (e) << FUNC_SH)
47
48
#include "uasm.c"
49
50
static const struct insn insn_table[insn_invalid] = {
51
[insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
52
[insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
53
[insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
54
[insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
55
[insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
56
[insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
57
[insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
58
[insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
59
[insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
60
[insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
61
[insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
62
[insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
63
[insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
64
[insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
65
[insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
66
[insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
67
#ifndef CONFIG_CPU_MIPSR6
68
[insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
69
#else
70
[insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9},
71
#endif
72
[insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
73
[insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
74
[insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
75
[insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
76
[insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
77
[insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
78
[insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
79
[insn_ddivu_r6] = {M(spec_op, 0, 0, 0, ddivu_ddivu6_op, ddivu_op),
80
RS | RT | RD},
81
[insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
82
[insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
83
[insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
84
[insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
85
[insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
86
[insn_divu_r6] = {M(spec_op, 0, 0, 0, divu_divu6_op, divu_op),
87
RS | RT | RD},
88
[insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
89
[insn_dmodu] = {M(spec_op, 0, 0, 0, ddivu_dmodu_op, ddivu_op),
90
RS | RT | RD},
91
[insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
92
[insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
93
[insn_dmulu] = {M(spec_op, 0, 0, 0, dmultu_dmulu_op, dmultu_op),
94
RS | RT | RD},
95
[insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
96
[insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
97
[insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
98
[insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
99
[insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
100
[insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
101
[insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD},
102
[insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
103
[insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
104
[insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD},
105
[insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
106
[insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
107
[insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD},
108
[insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
109
[insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0},
110
[insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
111
[insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
112
[insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM},
113
[insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM},
114
[insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
115
#ifndef CONFIG_CPU_MIPSR6
116
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS},
117
#else
118
[insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS},
119
#endif
120
[insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
121
[insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
122
[insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
123
[insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
124
[insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
125
[insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
126
[insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
127
[insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
128
#ifndef CONFIG_CPU_MIPSR6
129
[insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
130
[insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
131
#else
132
[insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9},
133
[insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9},
134
#endif
135
[insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM},
136
[insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
137
[insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
138
[insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
139
[insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
140
[insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
141
[insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
142
[insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
143
[insn_modu] = {M(spec_op, 0, 0, 0, divu_modu_op, divu_op),
144
RS | RT | RD},
145
[insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
146
[insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
147
[insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
148
[insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
149
[insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
150
[insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
151
[insn_mulu] = {M(spec_op, 0, 0, 0, multu_mulu_op, multu_op),
152
RS | RT | RD},
153
[insn_muhu] = {M(spec_op, 0, 0, 0, multu_muhu_op, multu_op),
154
RS | RT | RD},
155
#ifndef CONFIG_CPU_MIPSR6
156
[insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
157
#else
158
[insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
159
#endif
160
[insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
161
[insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD},
162
[insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD},
163
[insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
164
#ifndef CONFIG_CPU_MIPSR6
165
[insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
166
#else
167
[insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9},
168
#endif
169
[insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0},
170
[insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE},
171
[insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
172
#ifndef CONFIG_CPU_MIPSR6
173
[insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
174
[insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
175
#else
176
[insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9},
177
[insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9},
178
#endif
179
[insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
180
[insn_seleqz] = {M(spec_op, 0, 0, 0, 0, seleqz_op), RS | RT | RD},
181
[insn_selnez] = {M(spec_op, 0, 0, 0, 0, selnez_op), RS | RT | RD},
182
[insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
183
[insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE},
184
[insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD},
185
[insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD},
186
[insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
187
[insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
188
[insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
189
[insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE},
190
[insn_srav] = {M(spec_op, 0, 0, 0, 0, srav_op), RS | RT | RD},
191
[insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE},
192
[insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD},
193
[insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD},
194
[insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
195
[insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
196
[insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
197
[insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0},
198
[insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0},
199
[insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0},
200
[insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0},
201
[insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
202
[insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
203
[insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD},
204
[insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
205
[insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
206
};
207
208
#undef M
209
210
static inline u32 build_bimm(s32 arg)
211
{
212
WARN(arg > 0x1ffff || arg < -0x20000,
213
KERN_WARNING "Micro-assembler field overflow\n");
214
215
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
216
217
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
218
}
219
220
static inline u32 build_jimm(u32 arg)
221
{
222
WARN(arg & ~(JIMM_MASK << 2),
223
KERN_WARNING "Micro-assembler field overflow\n");
224
225
return (arg >> 2) & JIMM_MASK;
226
}
227
228
/*
229
* The order of opcode arguments is implicitly left to right,
230
* starting with RS and ending with FUNC or IMM.
231
*/
232
static void build_insn(u32 **buf, enum opcode opc, ...)
233
{
234
const struct insn *ip;
235
va_list ap;
236
u32 op;
237
238
if (opc < 0 || opc >= insn_invalid ||
239
(opc == insn_daddiu && r4k_daddiu_bug()) ||
240
(insn_table[opc].match == 0 && insn_table[opc].fields == 0))
241
panic("Unsupported Micro-assembler instruction %d", opc);
242
243
ip = &insn_table[opc];
244
245
op = ip->match;
246
va_start(ap, opc);
247
if (ip->fields & RS)
248
op |= build_rs(va_arg(ap, u32));
249
if (ip->fields & RT)
250
op |= build_rt(va_arg(ap, u32));
251
if (ip->fields & RD)
252
op |= build_rd(va_arg(ap, u32));
253
if (ip->fields & RE)
254
op |= build_re(va_arg(ap, u32));
255
if (ip->fields & SIMM)
256
op |= build_simm(va_arg(ap, s32));
257
if (ip->fields & UIMM)
258
op |= build_uimm(va_arg(ap, u32));
259
if (ip->fields & BIMM)
260
op |= build_bimm(va_arg(ap, s32));
261
if (ip->fields & JIMM)
262
op |= build_jimm(va_arg(ap, u32));
263
if (ip->fields & FUNC)
264
op |= build_func(va_arg(ap, u32));
265
if (ip->fields & SET)
266
op |= build_set(va_arg(ap, u32));
267
if (ip->fields & SCIMM)
268
op |= build_scimm(va_arg(ap, u32));
269
if (ip->fields & SIMM9)
270
op |= build_scimm9(va_arg(ap, u32));
271
va_end(ap);
272
273
**buf = op;
274
(*buf)++;
275
}
276
277
static inline void
278
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
279
{
280
long laddr = (long)lab->addr;
281
long raddr = (long)rel->addr;
282
283
switch (rel->type) {
284
case R_MIPS_PC16:
285
*rel->addr |= build_bimm(laddr - (raddr + 4));
286
break;
287
288
default:
289
panic("Unsupported Micro-assembler relocation %d",
290
rel->type);
291
}
292
}
293
294