Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/sibyte/bcm1480/irq.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation
4
*/
5
#include <linux/kernel.h>
6
#include <linux/init.h>
7
#include <linux/linkage.h>
8
#include <linux/interrupt.h>
9
#include <linux/smp.h>
10
#include <linux/spinlock.h>
11
#include <linux/mm.h>
12
#include <linux/kernel_stat.h>
13
14
#include <asm/errno.h>
15
#include <asm/irq_regs.h>
16
#include <asm/signal.h>
17
#include <asm/io.h>
18
19
#include <asm/sibyte/bcm1480_regs.h>
20
#include <asm/sibyte/bcm1480_int.h>
21
#include <asm/sibyte/bcm1480_scd.h>
22
23
#include <asm/sibyte/sb1250_uart.h>
24
#include <asm/sibyte/sb1250.h>
25
26
/*
27
* These are the routines that handle all the low level interrupt stuff.
28
* Actions handled here are: initialization of the interrupt map, requesting of
29
* interrupt lines by handlers, dispatching if interrupts to handlers, probing
30
* for interrupt lines
31
*/
32
33
#ifdef CONFIG_PCI
34
extern unsigned long ht_eoi_space;
35
#endif
36
37
/* Store the CPU id (not the logical number) */
38
int bcm1480_irq_owner[BCM1480_NR_IRQS];
39
40
static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock);
41
42
void bcm1480_mask_irq(int cpu, int irq)
43
{
44
unsigned long flags, hl_spacing;
45
u64 cur_ints;
46
47
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
48
hl_spacing = 0;
49
if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
50
hl_spacing = BCM1480_IMR_HL_SPACING;
51
irq -= BCM1480_NR_IRQS_HALF;
52
}
53
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
54
cur_ints |= (((u64) 1) << irq);
55
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
56
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
57
}
58
59
void bcm1480_unmask_irq(int cpu, int irq)
60
{
61
unsigned long flags, hl_spacing;
62
u64 cur_ints;
63
64
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
65
hl_spacing = 0;
66
if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) {
67
hl_spacing = BCM1480_IMR_HL_SPACING;
68
irq -= BCM1480_NR_IRQS_HALF;
69
}
70
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
71
cur_ints &= ~(((u64) 1) << irq);
72
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing));
73
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
74
}
75
76
#ifdef CONFIG_SMP
77
static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask,
78
bool force)
79
{
80
unsigned int irq_dirty, irq = d->irq;
81
int i = 0, old_cpu, cpu, int_on, k;
82
u64 cur_ints;
83
unsigned long flags;
84
85
i = cpumask_first_and(mask, cpu_online_mask);
86
87
/* Convert logical CPU to physical CPU */
88
cpu = cpu_logical_map(i);
89
90
/* Protect against other affinity changers and IMR manipulation */
91
raw_spin_lock_irqsave(&bcm1480_imr_lock, flags);
92
93
/* Swizzle each CPU's IMR (but leave the IP selection alone) */
94
old_cpu = bcm1480_irq_owner[irq];
95
irq_dirty = irq;
96
if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
97
irq_dirty -= BCM1480_NR_IRQS_HALF;
98
}
99
100
for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */
101
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
102
int_on = !(cur_ints & (((u64) 1) << irq_dirty));
103
if (int_on) {
104
/* If it was on, mask it */
105
cur_ints |= (((u64) 1) << irq_dirty);
106
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
107
}
108
bcm1480_irq_owner[irq] = cpu;
109
if (int_on) {
110
/* unmask for the new CPU */
111
cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
112
cur_ints &= ~(((u64) 1) << irq_dirty);
113
____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING)));
114
}
115
}
116
raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags);
117
118
return 0;
119
}
120
#endif
121
122
123
/*****************************************************************************/
124
125
static void disable_bcm1480_irq(struct irq_data *d)
126
{
127
unsigned int irq = d->irq;
128
129
bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
130
}
131
132
static void enable_bcm1480_irq(struct irq_data *d)
133
{
134
unsigned int irq = d->irq;
135
136
bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq);
137
}
138
139
140
static void ack_bcm1480_irq(struct irq_data *d)
141
{
142
unsigned int irq_dirty, irq = d->irq;
143
u64 pending;
144
int k;
145
146
/*
147
* If the interrupt was an HT interrupt, now is the time to
148
* clear it. NOTE: we assume the HT bridge was set up to
149
* deliver the interrupts to all CPUs (which makes affinity
150
* changing easier for us)
151
*/
152
irq_dirty = irq;
153
if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) {
154
irq_dirty -= BCM1480_NR_IRQS_HALF;
155
}
156
for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */
157
pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq],
158
R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING))));
159
pending &= ((u64)1 << (irq_dirty));
160
if (pending) {
161
#ifdef CONFIG_SMP
162
int i;
163
for (i=0; i<NR_CPUS; i++) {
164
/*
165
* Clear for all CPUs so an affinity switch
166
* doesn't find an old status
167
*/
168
__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i),
169
R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
170
}
171
#else
172
__raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING))));
173
#endif
174
175
/*
176
* Generate EOI. For Pass 1 parts, EOI is a nop. For
177
* Pass 2, the LDT world may be edge-triggered, but
178
* this EOI shouldn't hurt. If they are
179
* level-sensitive, the EOI is required.
180
*/
181
#ifdef CONFIG_PCI
182
if (ht_eoi_space)
183
*(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0;
184
#endif
185
}
186
}
187
bcm1480_mask_irq(bcm1480_irq_owner[irq], irq);
188
}
189
190
static struct irq_chip bcm1480_irq_type = {
191
.name = "BCM1480-IMR",
192
.irq_mask_ack = ack_bcm1480_irq,
193
.irq_mask = disable_bcm1480_irq,
194
.irq_unmask = enable_bcm1480_irq,
195
#ifdef CONFIG_SMP
196
.irq_set_affinity = bcm1480_set_affinity
197
#endif
198
};
199
200
void __init init_bcm1480_irqs(void)
201
{
202
int i;
203
204
for (i = 0; i < BCM1480_NR_IRQS; i++) {
205
irq_set_chip_and_handler(i, &bcm1480_irq_type,
206
handle_level_irq);
207
bcm1480_irq_owner[i] = 0;
208
}
209
}
210
211
/*
212
* init_IRQ is called early in the boot sequence from init/main.c. It
213
* is responsible for setting up the interrupt mapper and installing the
214
* handler that will be responsible for dispatching interrupts to the
215
* "right" place.
216
*/
217
/*
218
* For now, map all interrupts to IP[2]. We could save
219
* some cycles by parceling out system interrupts to different
220
* IP lines, but keep it simple for bringup. We'll also direct
221
* all interrupts to a single CPU; we should probably route
222
* PCI and LDT to one cpu and everything else to the other
223
* to balance the load a bit.
224
*
225
* On the second cpu, everything is set to IP5, which is
226
* ignored, EXCEPT the mailbox interrupt. That one is
227
* set to IP[2] so it is handled. This is needed so we
228
* can do cross-cpu function calls, as required by SMP
229
*/
230
231
#define IMR_IP2_VAL K_BCM1480_INT_MAP_I0
232
#define IMR_IP3_VAL K_BCM1480_INT_MAP_I1
233
#define IMR_IP4_VAL K_BCM1480_INT_MAP_I2
234
#define IMR_IP5_VAL K_BCM1480_INT_MAP_I3
235
#define IMR_IP6_VAL K_BCM1480_INT_MAP_I4
236
237
void __init arch_init_irq(void)
238
{
239
unsigned int i, cpu;
240
u64 tmp;
241
unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
242
STATUSF_IP1 | STATUSF_IP0;
243
244
/* Default everything to IP2 */
245
/* Start with _high registers which has no bit 0 interrupt source */
246
for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) { /* was I0 */
247
for (cpu = 0; cpu < 4; cpu++) {
248
__raw_writeq(IMR_IP2_VAL,
249
IOADDR(A_BCM1480_IMR_REGISTER(cpu,
250
R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3)));
251
}
252
}
253
254
/* Now do _low registers */
255
for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) {
256
for (cpu = 0; cpu < 4; cpu++) {
257
__raw_writeq(IMR_IP2_VAL,
258
IOADDR(A_BCM1480_IMR_REGISTER(cpu,
259
R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3)));
260
}
261
}
262
263
init_bcm1480_irqs();
264
265
/*
266
* Map the high 16 bits of mailbox_0 registers to IP[3], for
267
* inter-cpu messages
268
*/
269
/* Was I1 */
270
for (cpu = 0; cpu < 4; cpu++) {
271
__raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) +
272
(K_BCM1480_INT_MBOX_0_0 << 3)));
273
}
274
275
276
/* Clear the mailboxes. The firmware may leave them dirty */
277
for (cpu = 0; cpu < 4; cpu++) {
278
__raw_writeq(0xffffffffffffffffULL,
279
IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU)));
280
__raw_writeq(0xffffffffffffffffULL,
281
IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU)));
282
}
283
284
285
/* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */
286
tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0));
287
for (cpu = 0; cpu < 4; cpu++) {
288
__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H)));
289
}
290
tmp = ~((u64) 0);
291
for (cpu = 0; cpu < 4; cpu++) {
292
__raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L)));
293
}
294
295
/*
296
* Note that the timer interrupts are also mapped, but this is
297
* done in bcm1480_time_init(). Also, the profiling driver
298
* does its own management of IP7.
299
*/
300
301
/* Enable necessary IPs, disable the rest */
302
change_c0_status(ST0_IM, imask);
303
}
304
305
extern void bcm1480_mailbox_interrupt(void);
306
307
static inline void dispatch_ip2(void)
308
{
309
unsigned long long mask_h, mask_l;
310
unsigned int cpu = smp_processor_id();
311
unsigned long base;
312
313
/*
314
* Default...we've hit an IP[2] interrupt, which means we've got to
315
* check the 1480 interrupt registers to figure out what to do. Need
316
* to detect which CPU we're on, now that smp_affinity is supported.
317
*/
318
base = A_BCM1480_IMR_MAPPER(cpu);
319
mask_h = __raw_readq(
320
IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H));
321
mask_l = __raw_readq(
322
IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L));
323
324
if (mask_h) {
325
if (mask_h ^ 1)
326
do_IRQ(fls64(mask_h) - 1);
327
else if (mask_l)
328
do_IRQ(63 + fls64(mask_l));
329
}
330
}
331
332
asmlinkage void plat_irq_dispatch(void)
333
{
334
unsigned int cpu = smp_processor_id();
335
unsigned int pending;
336
337
pending = read_c0_cause() & read_c0_status();
338
339
if (pending & CAUSEF_IP4)
340
do_IRQ(K_BCM1480_INT_TIMER_0 + cpu);
341
#ifdef CONFIG_SMP
342
else if (pending & CAUSEF_IP3)
343
bcm1480_mailbox_interrupt();
344
#endif
345
346
else if (pending & CAUSEF_IP2)
347
dispatch_ip2();
348
}
349
350