Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/mips/sni/time.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/types.h>
3
#include <linux/i8253.h>
4
#include <linux/interrupt.h>
5
#include <linux/irq.h>
6
#include <linux/smp.h>
7
#include <linux/time.h>
8
#include <linux/clockchips.h>
9
10
#include <asm/sni.h>
11
#include <asm/time.h>
12
13
#define SNI_CLOCK_TICK_RATE 3686400
14
#define SNI_COUNTER2_DIV 64
15
#define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16
17
static int a20r_set_periodic(struct clock_event_device *evt)
18
{
19
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
20
wmb();
21
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
22
wmb();
23
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
24
wmb();
25
26
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
27
wmb();
28
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
29
wmb();
30
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
31
wmb();
32
return 0;
33
}
34
35
static struct clock_event_device a20r_clockevent_device = {
36
.name = "a20r-timer",
37
.features = CLOCK_EVT_FEAT_PERIODIC,
38
39
/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
40
41
.rating = 300,
42
.irq = SNI_A20R_IRQ_TIMER,
43
.set_state_periodic = a20r_set_periodic,
44
};
45
46
static irqreturn_t a20r_interrupt(int irq, void *dev_id)
47
{
48
struct clock_event_device *cd = dev_id;
49
50
*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
51
wmb();
52
53
cd->event_handler(cd);
54
55
return IRQ_HANDLED;
56
}
57
58
/*
59
* a20r platform uses 2 counters to divide the input frequency.
60
* Counter 2 output is connected to Counter 0 & 1 input.
61
*/
62
static void __init sni_a20r_timer_setup(void)
63
{
64
struct clock_event_device *cd = &a20r_clockevent_device;
65
unsigned int cpu = smp_processor_id();
66
67
cd->cpumask = cpumask_of(cpu);
68
clockevents_register_device(cd);
69
if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
70
IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
71
pr_err("Failed to register a20r-timer interrupt\n");
72
}
73
74
#define SNI_8254_TICK_RATE 1193182UL
75
76
#define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
77
78
static __init unsigned long dosample(void)
79
{
80
u32 ct0, ct1;
81
volatile u8 msb;
82
83
/* Start the counter. */
84
outb_p(0x34, 0x43);
85
outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
86
outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
87
88
/* Get initial counter invariant */
89
ct0 = read_c0_count();
90
91
/* Latch and spin until top byte of counter0 is zero */
92
do {
93
outb(0x00, 0x43);
94
(void) inb(0x40);
95
msb = inb(0x40);
96
ct1 = read_c0_count();
97
} while (msb);
98
99
/* Stop the counter. */
100
outb(0x38, 0x43);
101
/*
102
* Return the difference, this is how far the r4k counter increments
103
* for every 1/HZ seconds. We round off the nearest 1 MHz of master
104
* clock (= 1000000 / HZ / 2).
105
*/
106
/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107
return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
108
}
109
110
/*
111
* Here we need to calibrate the cycle counter to at least be close.
112
*/
113
void __init plat_time_init(void)
114
{
115
unsigned long r4k_ticks[3];
116
unsigned long r4k_tick;
117
118
/*
119
* Figure out the r4k offset, the algorithm is very simple and works in
120
* _all_ cases as long as the 8254 counter register itself works ok (as
121
* an interrupt driving timer it does not because of bug, this is why
122
* we are using the onchip r4k counter/compare register to serve this
123
* purpose, but for r4k_offset calculation it will work ok for us).
124
* There are other very complicated ways of performing this calculation
125
* but this one works just fine so I am not going to futz around. ;-)
126
*/
127
printk(KERN_INFO "Calibrating system timer... ");
128
dosample(); /* Prime cache. */
129
dosample(); /* Prime cache. */
130
/* Zero is NOT an option. */
131
do {
132
r4k_ticks[0] = dosample();
133
} while (!r4k_ticks[0]);
134
do {
135
r4k_ticks[1] = dosample();
136
} while (!r4k_ticks[1]);
137
138
if (r4k_ticks[0] != r4k_ticks[1]) {
139
printk("warning: timer counts differ, retrying... ");
140
r4k_ticks[2] = dosample();
141
if (r4k_ticks[2] == r4k_ticks[0]
142
|| r4k_ticks[2] == r4k_ticks[1])
143
r4k_tick = r4k_ticks[2];
144
else {
145
printk("disagreement, using average... ");
146
r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
147
+ r4k_ticks[2]) / 3;
148
}
149
} else
150
r4k_tick = r4k_ticks[0];
151
152
printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
153
(int) (r4k_tick / (500000 / HZ)),
154
(int) (r4k_tick % (500000 / HZ)));
155
156
mips_hpt_frequency = r4k_tick * HZ;
157
158
switch (sni_brd_type) {
159
case SNI_BRD_10:
160
case SNI_BRD_10NEW:
161
case SNI_BRD_TOWER_OASIC:
162
case SNI_BRD_MINITOWER:
163
sni_a20r_timer_setup();
164
break;
165
}
166
setup_pit_timer();
167
}
168
169