Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/openrisc/include/asm/pgtable.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* OpenRISC Linux
4
*
5
* Linux architectural port borrowing liberally from similar works of
6
* others. All original copyrights apply as per the original source
7
* declaration.
8
*
9
* OpenRISC implementation:
10
* Copyright (C) 2003 Matjaz Breskvar <[email protected]>
11
* Copyright (C) 2010-2011 Jonas Bonn <[email protected]>
12
* et al.
13
*/
14
15
/* or1k pgtable.h - macros and functions to manipulate page tables
16
*
17
* Based on:
18
* include/asm-cris/pgtable.h
19
*/
20
21
#ifndef __ASM_OPENRISC_PGTABLE_H
22
#define __ASM_OPENRISC_PGTABLE_H
23
24
#include <asm-generic/pgtable-nopmd.h>
25
26
#ifndef __ASSEMBLER__
27
#include <asm/mmu.h>
28
#include <asm/fixmap.h>
29
30
/*
31
* The Linux memory management assumes a three-level page table setup. On
32
* or1k, we use that, but "fold" the mid level into the top-level page
33
* table. Since the MMU TLB is software loaded through an interrupt, it
34
* supports any page table structure, so we could have used a three-level
35
* setup, but for the amounts of memory we normally use, a two-level is
36
* probably more efficient.
37
*
38
* This file contains the functions and defines necessary to modify and use
39
* the or1k page table tree.
40
*/
41
42
extern void paging_init(void);
43
44
/* Certain architectures need to do special things when pte's
45
* within a page table are directly modified. Thus, the following
46
* hook is made available.
47
*/
48
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49
50
/*
51
* (pmds are folded into pgds so this doesn't get actually called,
52
* but the define is needed for a generic inline function.)
53
*/
54
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55
56
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
57
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58
#define PGDIR_MASK (~(PGDIR_SIZE-1))
59
60
/*
61
* entries per page directory level: we use a two-level, so
62
* we don't really have any PMD directory physically.
63
* pointers are 4 bytes so we can use the page size and
64
* divide it by 4 (shift by 2).
65
*/
66
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
67
68
#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
69
70
/* calculate how many PGD entries a user-level program can use
71
* the first mappable virtual address is 0
72
* (TASK_SIZE is the maximum virtual address space)
73
*/
74
75
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
76
77
/*
78
* Kernels own virtual memory area.
79
*/
80
81
/*
82
* The size and location of the vmalloc area are chosen so that modules
83
* placed in this area aren't more than a 28-bit signed offset from any
84
* kernel functions that they may need. This greatly simplifies handling
85
* of the relocations for l.j and l.jal instructions as we don't need to
86
* introduce any trampolines for reaching "distant" code.
87
*
88
* 64 MB of vmalloc area is comparable to what's available on other arches.
89
*/
90
91
#define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
92
#define VMALLOC_END (PAGE_OFFSET)
93
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
94
95
/* Define some higher level generic page attributes.
96
*
97
* If you change _PAGE_CI definition be sure to change it in
98
* io.h for ioremap() too.
99
*/
100
101
/*
102
* An OR32 PTE looks like this:
103
*
104
* | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
105
* Phys pg.num L PP Index D A WOM WBC CI CC
106
*
107
* L : link
108
* PPI: Page protection index
109
* D : Dirty
110
* A : Accessed
111
* WOM: Weakly ordered memory
112
* WBC: Write-back cache
113
* CI : Cache inhibit
114
* CC : Cache coherent
115
*
116
* The protection bits below should correspond to the layout of the actual
117
* PTE as per above
118
*/
119
120
#define _PAGE_CC 0x001 /* software: pte contains a translation */
121
#define _PAGE_CI 0x002 /* cache inhibit */
122
#define _PAGE_WBC 0x004 /* write back cache */
123
#define _PAGE_WOM 0x008 /* weakly ordered memory */
124
125
#define _PAGE_A 0x010 /* accessed */
126
#define _PAGE_D 0x020 /* dirty */
127
#define _PAGE_URE 0x040 /* user read enable */
128
#define _PAGE_UWE 0x080 /* user write enable */
129
130
#define _PAGE_SRE 0x100 /* superuser read enable */
131
#define _PAGE_SWE 0x200 /* superuser write enable */
132
#define _PAGE_EXEC 0x400 /* software: page is executable */
133
#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
134
135
/* 0x001 is cache coherency bit, which should always be set to
136
* 1 - for SMP (when we support it)
137
* 0 - otherwise
138
*
139
* we just reuse this bit in software for _PAGE_PRESENT and
140
* force it to 0 when loading it into TLB.
141
*/
142
#define _PAGE_PRESENT _PAGE_CC
143
#define _PAGE_USER _PAGE_URE
144
#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
145
#define _PAGE_DIRTY _PAGE_D
146
#define _PAGE_ACCESSED _PAGE_A
147
#define _PAGE_NO_CACHE _PAGE_CI
148
#define _PAGE_SHARED _PAGE_U_SHARED
149
#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
150
151
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
152
#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
153
#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
154
#define _KERNPG_TABLE \
155
(_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
156
157
/* We borrow bit 11 to store the exclusive marker in swap PTEs. */
158
#define _PAGE_SWP_EXCLUSIVE _PAGE_U_SHARED
159
160
#define PAGE_NONE __pgprot(_PAGE_ALL)
161
#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
162
#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
163
#define PAGE_SHARED \
164
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
165
| _PAGE_SHARED)
166
#define PAGE_SHARED_X \
167
__pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168
| _PAGE_SHARED | _PAGE_EXEC)
169
#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
170
#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
171
172
#define PAGE_KERNEL \
173
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
174
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
175
#define PAGE_KERNEL_RO \
176
__pgprot(_PAGE_ALL | _PAGE_SRE \
177
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178
#define PAGE_KERNEL_NOCACHE \
179
__pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
180
| _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
181
182
/* zero page used for uninitialized stuff */
183
extern unsigned long empty_zero_page[2048];
184
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
185
186
/* number of bits that fit into a memory pointer */
187
#define BITS_PER_PTR (8*sizeof(unsigned long))
188
189
/* to align the pointer to a pointer address */
190
#define PTR_MASK (~(sizeof(void *)-1))
191
192
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
193
/* 64-bit machines, beware! SRB. */
194
#define SIZEOF_PTR_LOG2 2
195
196
/* to find an entry in a page-table */
197
#define PAGE_PTR(address) \
198
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
199
200
/* to set the page-dir */
201
#define SET_PAGE_DIR(tsk, pgdir)
202
203
#define pte_none(x) (!pte_val(x))
204
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
205
#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
206
207
#define pmd_none(x) (!pmd_val(x))
208
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
209
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
210
#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
211
212
/*
213
* The following only work if pte_present() is true.
214
* Undefined behaviour if not..
215
*/
216
217
static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
218
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
219
static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
220
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
221
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
222
223
static inline pte_t pte_wrprotect(pte_t pte)
224
{
225
pte_val(pte) &= ~(_PAGE_WRITE);
226
return pte;
227
}
228
229
static inline pte_t pte_rdprotect(pte_t pte)
230
{
231
pte_val(pte) &= ~(_PAGE_READ);
232
return pte;
233
}
234
235
static inline pte_t pte_exprotect(pte_t pte)
236
{
237
pte_val(pte) &= ~(_PAGE_EXEC);
238
return pte;
239
}
240
241
static inline pte_t pte_mkclean(pte_t pte)
242
{
243
pte_val(pte) &= ~(_PAGE_DIRTY);
244
return pte;
245
}
246
247
static inline pte_t pte_mkold(pte_t pte)
248
{
249
pte_val(pte) &= ~(_PAGE_ACCESSED);
250
return pte;
251
}
252
253
static inline pte_t pte_mkwrite_novma(pte_t pte)
254
{
255
pte_val(pte) |= _PAGE_WRITE;
256
return pte;
257
}
258
259
static inline pte_t pte_mkread(pte_t pte)
260
{
261
pte_val(pte) |= _PAGE_READ;
262
return pte;
263
}
264
265
static inline pte_t pte_mkexec(pte_t pte)
266
{
267
pte_val(pte) |= _PAGE_EXEC;
268
return pte;
269
}
270
271
static inline pte_t pte_mkdirty(pte_t pte)
272
{
273
pte_val(pte) |= _PAGE_DIRTY;
274
return pte;
275
}
276
277
static inline pte_t pte_mkyoung(pte_t pte)
278
{
279
pte_val(pte) |= _PAGE_ACCESSED;
280
return pte;
281
}
282
283
/*
284
* Conversion functions: convert a page and protection to a page entry,
285
* and a page entry and page directory to the page they refer to.
286
*/
287
288
/* What actually goes as arguments to the various functions is less than
289
* obvious, but a rule of thumb is that struct page's goes as struct page *,
290
* really physical DRAM addresses are unsigned long's, and DRAM "virtual"
291
* addresses (the 0xc0xxxxxx's) goes as void *'s.
292
*/
293
294
static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
295
{
296
pte_t pte;
297
/* the PTE needs a physical address */
298
pte_val(pte) = __pa(page) | pgprot_val(pgprot);
299
return pte;
300
}
301
302
#define mk_pte_phys(physpage, pgprot) \
303
({ \
304
pte_t __pte; \
305
\
306
pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
307
__pte; \
308
})
309
310
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
311
{
312
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
313
return pte;
314
}
315
316
317
/*
318
* pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
319
* __pte_page(pte_val) refers to the "virtual" DRAM interval
320
* pte_pagenr refers to the page-number counted starting from the virtual
321
* DRAM start
322
*/
323
324
static inline unsigned long __pte_page(pte_t pte)
325
{
326
/* the PTE contains a physical address */
327
return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
328
}
329
330
#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
331
332
/* permanent address of a page */
333
334
#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
335
#define pte_page(pte) (mem_map+pte_pagenr(pte))
336
337
/*
338
* only the pte's themselves need to point to physical DRAM (see above)
339
* the pagetable links are purely handled within the kernel SW and thus
340
* don't need the __pa and __va transformations.
341
*/
342
static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
343
{
344
pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
345
}
346
347
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
348
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
349
350
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
351
{
352
return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
353
}
354
355
#define __pmd_offset(address) \
356
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
357
358
#define PFN_PTE_SHIFT PAGE_SHIFT
359
#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
360
#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
361
362
#define pte_ERROR(e) \
363
printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
364
__FILE__, __LINE__, &(e), pte_val(e))
365
#define pgd_ERROR(e) \
366
printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
367
__FILE__, __LINE__, &(e), pgd_val(e))
368
369
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
370
371
struct vm_area_struct;
372
373
static inline void update_tlb(struct vm_area_struct *vma,
374
unsigned long address, pte_t *pte)
375
{
376
}
377
378
extern void update_cache(struct vm_area_struct *vma,
379
unsigned long address, pte_t *pte);
380
381
static inline void update_mmu_cache_range(struct vm_fault *vmf,
382
struct vm_area_struct *vma, unsigned long address,
383
pte_t *ptep, unsigned int nr)
384
{
385
update_tlb(vma, address, ptep);
386
update_cache(vma, address, ptep);
387
}
388
389
#define update_mmu_cache(vma, addr, ptep) \
390
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
391
392
/* __PHX__ FIXME, SWAP, this probably doesn't work */
393
394
/*
395
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
396
* are !pte_none() && !pte_present().
397
*
398
* Format of swap PTEs:
399
*
400
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
401
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
402
* <-------------- offset ---------------> E <- type --> 0 0 0 0 0
403
*
404
* E is the exclusive marker that is not stored in swap entries.
405
* The zero'ed bits include _PAGE_PRESENT.
406
*/
407
#define __swp_type(x) (((x).val >> 5) & 0x3f)
408
#define __swp_offset(x) ((x).val >> 12)
409
#define __swp_entry(type, offset) \
410
((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) })
411
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
412
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
413
414
static inline bool pte_swp_exclusive(pte_t pte)
415
{
416
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
417
}
418
419
static inline pte_t pte_swp_mkexclusive(pte_t pte)
420
{
421
pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
422
return pte;
423
}
424
425
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
426
{
427
pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
428
return pte;
429
}
430
431
typedef pte_t *pte_addr_t;
432
433
#endif /* __ASSEMBLER__ */
434
#endif /* __ASM_OPENRISC_PGTABLE_H */
435
436