#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/mmzone.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/parisc-device.h>
#include <asm/tlbflush.h>
#undef DEBUG_PAT
int pdc_type __ro_after_init = PDC_TYPE_ILLEGAL;
unsigned long parisc_cell_num __ro_after_init;
unsigned long parisc_cell_loc __ro_after_init;
unsigned long parisc_pat_pdc_cap __ro_after_init;
void __init setup_pdc(void)
{
long status;
unsigned int bus_id;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
struct pdc_model model;
#ifdef CONFIG_64BIT
struct pdc_pat_cell_num cell_info;
#endif
printk(KERN_INFO "Determining PDC firmware type: ");
status = pdc_system_map_find_mods(&module_result, &module_path, 0);
if (status == PDC_OK) {
pdc_type = PDC_TYPE_SYSTEM_MAP;
pr_cont("System Map.\n");
return;
}
#ifdef CONFIG_64BIT
status = pdc_pat_cell_get_number(&cell_info);
if (status == PDC_OK) {
unsigned long legacy_rev, pat_rev;
pdc_type = PDC_TYPE_PAT;
pr_cont("64 bit PAT.\n");
parisc_cell_num = cell_info.cell_num;
parisc_cell_loc = cell_info.cell_loc;
pr_info("PAT: Running on cell %lu and location %lu.\n",
parisc_cell_num, parisc_cell_loc);
status = pdc_pat_pd_get_pdc_revisions(&legacy_rev,
&pat_rev, &parisc_pat_pdc_cap);
pr_info("PAT: legacy revision 0x%lx, pat_rev 0x%lx, pdc_cap 0x%lx, S-PTLB %d, HPMC_RENDEZ %d.\n",
legacy_rev, pat_rev, parisc_pat_pdc_cap,
parisc_pat_pdc_cap
& PDC_PAT_CAPABILITY_BIT_SIMULTANEOUS_PTLB ? 1:0,
parisc_pat_pdc_cap
& PDC_PAT_CAPABILITY_BIT_PDC_HPMC_RENDEZ ? 1:0);
return;
}
#endif
status = pdc_model_info(&model);
bus_id = (model.hversion >> (4 + 7)) & 0x1f;
switch (bus_id) {
case 0x4:
case 0x6:
case 0x7:
case 0x8:
case 0xA:
case 0xC:
pdc_type = PDC_TYPE_SNAKE;
pr_cont("Snake.\n");
return;
default:
pr_cont("Unsupported.\n");
panic("If this is a 64-bit machine, please try a 64-bit kernel.\n");
}
}
#define PDC_PAGE_ADJ_SHIFT (PAGE_SHIFT - 12)
static void __init
set_pmem_entry(physmem_range_t *pmem_ptr, unsigned long start,
unsigned long pages4k)
{
if (unlikely( ((start & (PAGE_SIZE - 1)) != 0)
|| ((pages4k & ((1UL << PDC_PAGE_ADJ_SHIFT) - 1)) != 0) )) {
panic("Memory range doesn't align with page size!\n");
}
pmem_ptr->start_pfn = (start >> PAGE_SHIFT);
pmem_ptr->pages = (pages4k >> PDC_PAGE_ADJ_SHIFT);
}
static void __init pagezero_memconfig(void)
{
unsigned long npages;
npages = (PAGE_ALIGN(PAGE0->imm_max_mem) >> PAGE_SHIFT);
set_pmem_entry(pmem_ranges,0UL,npages);
npmem_ranges = 1;
}
#ifdef CONFIG_64BIT
static int __init
pat_query_module(ulong pcell_loc, ulong mod_index)
{
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell;
unsigned long bytecnt;
unsigned long temp;
long status;
struct parisc_device *dev;
pa_pdc_cell = kmalloc(sizeof (*pa_pdc_cell), GFP_KERNEL);
if (!pa_pdc_cell)
panic("couldn't allocate memory for PDC_PAT_CELL!");
status = pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
PA_VIEW, pa_pdc_cell);
if (status != PDC_OK) {
kfree(pa_pdc_cell);
return status;
}
temp = pa_pdc_cell->cba;
dev = alloc_pa_dev(PAT_GET_CBA(temp), &(pa_pdc_cell->mod_path));
if (!dev) {
kfree(pa_pdc_cell);
return PDC_OK;
}
dev->pcell_loc = pcell_loc;
dev->mod_index = mod_index;
dev->mod_info = pa_pdc_cell->mod_info;
dev->pmod_loc = pa_pdc_cell->mod_location;
dev->mod0 = pa_pdc_cell->mod[0];
register_parisc_device(dev);
#ifdef DEBUG_PAT
switch (PAT_GET_ENTITY(dev->mod_info)) {
pdc_pat_cell_mod_maddr_block_t io_pdc_cell;
unsigned long i;
case PAT_ENTITY_PROC:
printk(KERN_DEBUG "PAT_ENTITY_PROC: id_eid 0x%lx\n",
pa_pdc_cell->mod[0]);
break;
case PAT_ENTITY_MEM:
printk(KERN_DEBUG
"PAT_ENTITY_MEM: amount 0x%lx min_gni_base 0x%lx min_gni_len 0x%lx\n",
pa_pdc_cell->mod[0], pa_pdc_cell->mod[1],
pa_pdc_cell->mod[2]);
break;
case PAT_ENTITY_CA:
printk(KERN_DEBUG "PAT_ENTITY_CA: %ld\n", pcell_loc);
break;
case PAT_ENTITY_PBC:
printk(KERN_DEBUG "PAT_ENTITY_PBC: ");
goto print_ranges;
case PAT_ENTITY_SBA:
printk(KERN_DEBUG "PAT_ENTITY_SBA: ");
goto print_ranges;
case PAT_ENTITY_LBA:
printk(KERN_DEBUG "PAT_ENTITY_LBA: ");
print_ranges:
pdc_pat_cell_module(&bytecnt, pcell_loc, mod_index,
IO_VIEW, &io_pdc_cell);
printk(KERN_DEBUG "ranges %ld\n", pa_pdc_cell->mod[1]);
for (i = 0; i < pa_pdc_cell->mod[1]; i++) {
printk(KERN_DEBUG
" PA_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, pa_pdc_cell->mod[2 + i * 3],
pa_pdc_cell->mod[3 + i * 3],
pa_pdc_cell->mod[4 + i * 3]);
printk(KERN_DEBUG
" IO_VIEW %ld: 0x%016lx 0x%016lx 0x%016lx\n",
i, io_pdc_cell.mod[2 + i * 3],
io_pdc_cell.mod[3 + i * 3],
io_pdc_cell.mod[4 + i * 3]);
}
printk(KERN_DEBUG "\n");
break;
}
#endif
kfree(pa_pdc_cell);
return PDC_OK;
}
#define PAT_MAX_RANGES (4 * MAX_PHYSMEM_RANGES)
static void __init pat_memconfig(void)
{
unsigned long actual_len;
struct pdc_pat_pd_addr_map_entry mem_table[PAT_MAX_RANGES+1];
struct pdc_pat_pd_addr_map_entry *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
unsigned long length;
int i;
length = (PAT_MAX_RANGES + 1) * sizeof(struct pdc_pat_pd_addr_map_entry);
status = pdc_pat_pd_get_addr_map(&actual_len, mem_table, length, 0L);
if ((status != PDC_OK)
|| ((actual_len % sizeof(struct pdc_pat_pd_addr_map_entry)) != 0)) {
printk("\n\n\n");
printk(KERN_WARNING "WARNING! Could not get full memory configuration. "
"All memory may not be used!\n\n\n");
pagezero_memconfig();
return;
}
entries = actual_len / sizeof(struct pdc_pat_pd_addr_map_entry);
if (entries > PAT_MAX_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
}
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges;
for (i = 0; i < entries; i++,mtbl_ptr++) {
if ( (mtbl_ptr->entry_type != PAT_MEMORY_DESCRIPTOR)
|| (mtbl_ptr->memory_type != PAT_MEMTYPE_MEMORY)
|| (mtbl_ptr->pages == 0)
|| ( (mtbl_ptr->memory_usage != PAT_MEMUSE_GENERAL)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GI)
&& (mtbl_ptr->memory_usage != PAT_MEMUSE_GNI) ) ) {
continue;
}
if (npmem_ranges == MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
break;
}
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
static int __init pat_inventory(void)
{
int status;
ulong mod_index = 0;
struct pdc_pat_cell_num cell_info;
status = pdc_pat_cell_get_number(&cell_info);
if (status != PDC_OK) {
return 0;
}
#ifdef DEBUG_PAT
printk(KERN_DEBUG "CELL_GET_NUMBER: 0x%lx 0x%lx\n", cell_info.cell_num,
cell_info.cell_loc);
#endif
while (PDC_OK == pat_query_module(cell_info.cell_loc, mod_index)) {
mod_index++;
}
return mod_index;
}
static void __init sprockets_memconfig(void)
{
struct pdc_memory_table_raddr r_addr;
struct pdc_memory_table mem_table[MAX_PHYSMEM_RANGES];
struct pdc_memory_table *mtbl_ptr;
physmem_range_t *pmem_ptr;
long status;
int entries;
int i;
status = pdc_mem_mem_table(&r_addr,mem_table,
(unsigned long)MAX_PHYSMEM_RANGES);
if (status != PDC_OK) {
pagezero_memconfig();
return;
}
if (r_addr.entries_total > MAX_PHYSMEM_RANGES) {
printk(KERN_WARNING "This Machine has more memory ranges than we support!\n");
printk(KERN_WARNING "Some memory will not be used!\n");
}
entries = (int)r_addr.entries_returned;
npmem_ranges = 0;
mtbl_ptr = mem_table;
pmem_ptr = pmem_ranges;
for (i = 0; i < entries; i++,mtbl_ptr++) {
set_pmem_entry(pmem_ptr++,mtbl_ptr->paddr,mtbl_ptr->pages);
npmem_ranges++;
}
}
#else
#define pat_inventory() do { } while (0)
#define pat_memconfig() do { } while (0)
#define sprockets_memconfig() pagezero_memconfig()
#endif
#ifndef CONFIG_PA20
static struct parisc_device * __init
legacy_create_device(struct pdc_memory_map *r_addr,
struct pdc_module_path *module_path)
{
struct parisc_device *dev;
int status = pdc_mem_map_hpa(r_addr, module_path);
if (status != PDC_OK)
return NULL;
dev = alloc_pa_dev(r_addr->hpa, &module_path->path);
if (dev == NULL)
return NULL;
register_parisc_device(dev);
return dev;
}
static void __init snake_inventory(void)
{
int mod;
for (mod = 0; mod < 16; mod++) {
struct parisc_device *dev;
struct pdc_module_path module_path;
struct pdc_memory_map r_addr;
unsigned int func;
memset(module_path.path.bc, 0xff, 6);
module_path.path.mod = mod;
dev = legacy_create_device(&r_addr, &module_path);
if ((!dev) || (dev->id.hw_type != HPHW_BA))
continue;
memset(module_path.path.bc, 0xff, 4);
module_path.path.bc[4] = mod;
for (func = 0; func < 16; func++) {
module_path.path.bc[5] = 0;
module_path.path.mod = func;
legacy_create_device(&r_addr, &module_path);
}
}
}
#else
#define snake_inventory() do { } while (0)
#endif
static void __init
add_system_map_addresses(struct parisc_device *dev, int num_addrs,
int module_instance)
{
int i;
long status;
struct pdc_system_map_addr_info addr_result;
dev->addr = kmalloc_array(num_addrs, sizeof(*dev->addr), GFP_KERNEL);
if(!dev->addr) {
printk(KERN_ERR "%s %s(): memory allocation failure\n",
__FILE__, __func__);
return;
}
for(i = 1; i <= num_addrs; ++i) {
status = pdc_system_map_find_addrs(&addr_result,
module_instance, i);
if(PDC_OK == status) {
dev->addr[dev->num_addrs] = (unsigned long)addr_result.mod_addr;
dev->num_addrs++;
} else {
printk(KERN_WARNING
"Bad PDC_FIND_ADDRESS status return (%ld) for index %d\n",
status, i);
}
}
}
static void __init system_map_inventory(void)
{
int i;
long status = PDC_OK;
for (i = 0; i < 256; i++) {
struct parisc_device *dev;
struct pdc_system_map_mod_info module_result;
struct pdc_module_path module_path;
status = pdc_system_map_find_mods(&module_result,
&module_path, i);
if ((status == PDC_BAD_PROC) || (status == PDC_NE_MOD))
break;
if (status != PDC_OK)
continue;
dev = alloc_pa_dev(module_result.mod_addr, &module_path.path);
if (!dev)
continue;
register_parisc_device(dev);
if (!module_result.add_addrs)
continue;
add_system_map_addresses(dev, module_result.add_addrs, i);
}
walk_central_bus();
return;
}
void __init do_memory_inventory(void)
{
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_memconfig();
break;
case PDC_TYPE_SYSTEM_MAP:
sprockets_memconfig();
break;
case PDC_TYPE_SNAKE:
pagezero_memconfig();
return;
default:
panic("Unknown PDC type!\n");
}
if (npmem_ranges == 0 || pmem_ranges[0].start_pfn != 0) {
printk(KERN_WARNING "Bad memory configuration returned!\n");
printk(KERN_WARNING "Some memory may not be used!\n");
pagezero_memconfig();
}
}
void __init do_device_inventory(void)
{
printk(KERN_INFO "Searching for devices...\n");
init_parisc_bus();
switch (pdc_type) {
case PDC_TYPE_PAT:
pat_inventory();
break;
case PDC_TYPE_SYSTEM_MAP:
system_map_inventory();
break;
case PDC_TYPE_SNAKE:
snake_inventory();
break;
default:
panic("Unknown PDC type!\n");
}
printk(KERN_INFO "Found devices:\n");
print_parisc_devices();
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
pa_serialize_tlb_flushes = machine_has_merced_bus();
if (pa_serialize_tlb_flushes)
pr_info("Merced bus found: Enable PxTLB serialization.\n");
#endif
#if defined(CONFIG_FW_CFG_SYSFS)
if (running_on_qemu) {
struct resource res[3] = {0,};
unsigned int base;
base = ((unsigned long long) PAGE0->pad0[2] << 32)
| PAGE0->pad0[3];
res[0].name = "fw_cfg";
res[0].start = base;
res[0].end = base + 8 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].name = "ctrl";
res[1].start = 0;
res[1].flags = IORESOURCE_REG;
res[2].name = "data";
res[2].start = 4;
res[2].flags = IORESOURCE_REG;
if (base) {
pr_info("Found qemu fw_cfg interface at %#08x\n", base);
platform_device_register_simple("fw_cfg",
PLATFORM_DEVID_NONE, res, 3);
}
}
#endif
}