Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/parisc/kernel/module.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* Kernel dynamically loadable module help for PARISC.
3
*
4
* The best reference for this stuff is probably the Processor-
5
* Specific ELF Supplement for PA-RISC:
6
* https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
7
*
8
* Linux/PA-RISC Project
9
* Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10
* Copyright (C) 2008 Helge Deller <[email protected]>
11
*
12
* Notes:
13
* - PLT stub handling
14
* On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15
* ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16
* fail to reach their PLT stub if we only create one big stub array for
17
* all sections at the beginning of the core or init section.
18
* Instead we now insert individual PLT stub entries directly in front of
19
* of the code sections where the stubs are actually called.
20
* This reduces the distance between the PCREL location and the stub entry
21
* so that the relocations can be fulfilled.
22
* While calculating the final layout of the kernel module in memory, the
23
* kernel module loader calls arch_mod_section_prepend() to request the
24
* to be reserved amount of memory in front of each individual section.
25
*
26
* - SEGREL32 handling
27
* We are not doing SEGREL32 handling correctly. According to the ABI, we
28
* should do a value offset, like this:
29
* if (in_init(me, (void *)val))
30
* val -= (uint32_t)me->mem[MOD_INIT_TEXT].base;
31
* else
32
* val -= (uint32_t)me->mem[MOD_TEXT].base;
33
* However, SEGREL32 is used only for PARISC unwind entries, and we want
34
* those entries to have an absolute address, and not just an offset.
35
*
36
* The unwind table mechanism has the ability to specify an offset for
37
* the unwind table; however, because we split off the init functions into
38
* a different piece of memory, it is not possible to do this using a
39
* single offset. Instead, we use the above hack for now.
40
*/
41
42
#include <linux/moduleloader.h>
43
#include <linux/elf.h>
44
#include <linux/fs.h>
45
#include <linux/ftrace.h>
46
#include <linux/string.h>
47
#include <linux/kernel.h>
48
#include <linux/bug.h>
49
#include <linux/mm.h>
50
#include <linux/slab.h>
51
52
#include <asm/unwind.h>
53
#include <asm/sections.h>
54
55
#define RELOC_REACHABLE(val, bits) \
56
(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
57
( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
58
0 : 1)
59
60
#define CHECK_RELOC(val, bits) \
61
if (!RELOC_REACHABLE(val, bits)) { \
62
printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
63
me->name, strtab + sym->st_name, (unsigned long)val, bits); \
64
return -ENOEXEC; \
65
}
66
67
/* Maximum number of GOT entries. We use a long displacement ldd from
68
* the bottom of the table, which has a maximum signed displacement of
69
* 0x3fff; however, since we're only going forward, this becomes
70
* 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
71
* at most 1023 entries.
72
* To overcome this 14bit displacement with some kernel modules, we'll
73
* use instead the unusal 16bit displacement method (see reassemble_16a)
74
* which gives us a maximum positive displacement of 0x7fff, and as such
75
* allows us to allocate up to 4095 GOT entries. */
76
#define MAX_GOTS 4095
77
78
#ifndef CONFIG_64BIT
79
struct got_entry {
80
Elf32_Addr addr;
81
};
82
83
struct stub_entry {
84
Elf32_Word insns[2]; /* each stub entry has two insns */
85
};
86
#else
87
struct got_entry {
88
Elf64_Addr addr;
89
};
90
91
struct stub_entry {
92
Elf64_Word insns[4]; /* each stub entry has four insns */
93
};
94
#endif
95
96
/* Field selection types defined by hppa */
97
#define rnd(x) (((x)+0x1000)&~0x1fff)
98
/* fsel: full 32 bits */
99
#define fsel(v,a) ((v)+(a))
100
/* lsel: select left 21 bits */
101
#define lsel(v,a) (((v)+(a))>>11)
102
/* rsel: select right 11 bits */
103
#define rsel(v,a) (((v)+(a))&0x7ff)
104
/* lrsel with rounding of addend to nearest 8k */
105
#define lrsel(v,a) (((v)+rnd(a))>>11)
106
/* rrsel with rounding of addend to nearest 8k */
107
#define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
108
109
#define mask(x,sz) ((x) & ~((1<<(sz))-1))
110
111
112
/* The reassemble_* functions prepare an immediate value for
113
insertion into an opcode. pa-risc uses all sorts of weird bitfields
114
in the instruction to hold the value. */
115
static inline int sign_unext(int x, int len)
116
{
117
int len_ones;
118
119
len_ones = (1 << len) - 1;
120
return x & len_ones;
121
}
122
123
static inline int low_sign_unext(int x, int len)
124
{
125
int sign, temp;
126
127
sign = (x >> (len-1)) & 1;
128
temp = sign_unext(x, len-1);
129
return (temp << 1) | sign;
130
}
131
132
static inline int reassemble_14(int as14)
133
{
134
return (((as14 & 0x1fff) << 1) |
135
((as14 & 0x2000) >> 13));
136
}
137
138
static inline int reassemble_16a(int as16)
139
{
140
int s, t;
141
142
/* Unusual 16-bit encoding, for wide mode only. */
143
t = (as16 << 1) & 0xffff;
144
s = (as16 & 0x8000);
145
return (t ^ s ^ (s >> 1)) | (s >> 15);
146
}
147
148
149
static inline int reassemble_17(int as17)
150
{
151
return (((as17 & 0x10000) >> 16) |
152
((as17 & 0x0f800) << 5) |
153
((as17 & 0x00400) >> 8) |
154
((as17 & 0x003ff) << 3));
155
}
156
157
static inline int reassemble_21(int as21)
158
{
159
return (((as21 & 0x100000) >> 20) |
160
((as21 & 0x0ffe00) >> 8) |
161
((as21 & 0x000180) << 7) |
162
((as21 & 0x00007c) << 14) |
163
((as21 & 0x000003) << 12));
164
}
165
166
static inline int reassemble_22(int as22)
167
{
168
return (((as22 & 0x200000) >> 21) |
169
((as22 & 0x1f0000) << 5) |
170
((as22 & 0x00f800) << 5) |
171
((as22 & 0x000400) >> 8) |
172
((as22 & 0x0003ff) << 3));
173
}
174
175
#ifndef CONFIG_64BIT
176
static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
177
{
178
return 0;
179
}
180
181
static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
182
{
183
return 0;
184
}
185
186
static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
187
{
188
unsigned long cnt = 0;
189
190
for (; n > 0; n--, rela++)
191
{
192
switch (ELF32_R_TYPE(rela->r_info)) {
193
case R_PARISC_PCREL17F:
194
case R_PARISC_PCREL22F:
195
cnt++;
196
}
197
}
198
199
return cnt;
200
}
201
#else
202
static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
203
{
204
unsigned long cnt = 0;
205
206
for (; n > 0; n--, rela++)
207
{
208
switch (ELF64_R_TYPE(rela->r_info)) {
209
case R_PARISC_LTOFF21L:
210
case R_PARISC_LTOFF14R:
211
case R_PARISC_PCREL22F:
212
cnt++;
213
}
214
}
215
216
return cnt;
217
}
218
219
static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
220
{
221
unsigned long cnt = 0;
222
223
for (; n > 0; n--, rela++)
224
{
225
switch (ELF64_R_TYPE(rela->r_info)) {
226
case R_PARISC_FPTR64:
227
cnt++;
228
}
229
}
230
231
return cnt;
232
}
233
234
static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
235
{
236
unsigned long cnt = 0;
237
238
for (; n > 0; n--, rela++)
239
{
240
switch (ELF64_R_TYPE(rela->r_info)) {
241
case R_PARISC_PCREL22F:
242
cnt++;
243
}
244
}
245
246
return cnt;
247
}
248
#endif
249
250
void module_arch_freeing_init(struct module *mod)
251
{
252
kfree(mod->arch.section);
253
mod->arch.section = NULL;
254
}
255
256
/* Additional bytes needed in front of individual sections */
257
unsigned int arch_mod_section_prepend(struct module *mod,
258
unsigned int section)
259
{
260
/* size needed for all stubs of this section (including
261
* one additional for correct alignment of the stubs) */
262
return (mod->arch.section[section].stub_entries + 1)
263
* sizeof(struct stub_entry);
264
}
265
266
#define CONST
267
int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
268
CONST Elf_Shdr *sechdrs,
269
CONST char *secstrings,
270
struct module *me)
271
{
272
unsigned long gots = 0, fdescs = 0, len;
273
unsigned int i;
274
struct module_memory *mod_mem;
275
276
len = hdr->e_shnum * sizeof(me->arch.section[0]);
277
me->arch.section = kzalloc(len, GFP_KERNEL);
278
if (!me->arch.section)
279
return -ENOMEM;
280
281
for (i = 1; i < hdr->e_shnum; i++) {
282
const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
283
unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
284
unsigned int count, s;
285
286
if (strncmp(secstrings + sechdrs[i].sh_name,
287
".PARISC.unwind", 14) == 0)
288
me->arch.unwind_section = i;
289
290
if (sechdrs[i].sh_type != SHT_RELA)
291
continue;
292
293
/* some of these are not relevant for 32-bit/64-bit
294
* we leave them here to make the code common. the
295
* compiler will do its thing and optimize out the
296
* stuff we don't need
297
*/
298
gots += count_gots(rels, nrels);
299
fdescs += count_fdescs(rels, nrels);
300
301
/* XXX: By sorting the relocs and finding duplicate entries
302
* we could reduce the number of necessary stubs and save
303
* some memory. */
304
count = count_stubs(rels, nrels);
305
if (!count)
306
continue;
307
308
/* so we need relocation stubs. reserve necessary memory. */
309
/* sh_info gives the section for which we need to add stubs. */
310
s = sechdrs[i].sh_info;
311
312
/* each code section should only have one relocation section */
313
WARN_ON(me->arch.section[s].stub_entries);
314
315
/* store number of stubs we need for this section */
316
me->arch.section[s].stub_entries += count;
317
}
318
319
mod_mem = &me->mem[MOD_TEXT];
320
/* align things a bit */
321
mod_mem->size = ALIGN(mod_mem->size, 16);
322
me->arch.got_offset = mod_mem->size;
323
mod_mem->size += gots * sizeof(struct got_entry);
324
325
mod_mem->size = ALIGN(mod_mem->size, 16);
326
me->arch.fdesc_offset = mod_mem->size;
327
mod_mem->size += fdescs * sizeof(Elf_Fdesc);
328
329
me->arch.got_max = gots;
330
me->arch.fdesc_max = fdescs;
331
332
return 0;
333
}
334
335
#ifdef CONFIG_64BIT
336
static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
337
{
338
unsigned int i;
339
struct got_entry *got;
340
341
value += addend;
342
343
BUG_ON(value == 0);
344
345
got = me->mem[MOD_TEXT].base + me->arch.got_offset;
346
for (i = 0; got[i].addr; i++)
347
if (got[i].addr == value)
348
goto out;
349
350
BUG_ON(++me->arch.got_count > me->arch.got_max);
351
352
got[i].addr = value;
353
out:
354
pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
355
value);
356
return i * sizeof(struct got_entry);
357
}
358
#endif /* CONFIG_64BIT */
359
360
#ifdef CONFIG_64BIT
361
static Elf_Addr get_fdesc(struct module *me, unsigned long value)
362
{
363
Elf_Fdesc *fdesc = me->mem[MOD_TEXT].base + me->arch.fdesc_offset;
364
365
if (!value) {
366
printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
367
return 0;
368
}
369
370
/* Look for existing fdesc entry. */
371
while (fdesc->addr) {
372
if (fdesc->addr == value)
373
return (Elf_Addr)fdesc;
374
fdesc++;
375
}
376
377
BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
378
379
/* Create new one */
380
fdesc->addr = value;
381
fdesc->gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
382
return (Elf_Addr)fdesc;
383
}
384
#endif /* CONFIG_64BIT */
385
386
enum elf_stub_type {
387
ELF_STUB_GOT,
388
ELF_STUB_MILLI,
389
ELF_STUB_DIRECT,
390
};
391
392
static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
393
enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
394
{
395
struct stub_entry *stub;
396
int __maybe_unused d;
397
398
/* initialize stub_offset to point in front of the section */
399
if (!me->arch.section[targetsec].stub_offset) {
400
loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
401
sizeof(struct stub_entry);
402
/* get correct alignment for the stubs */
403
loc0 = ALIGN(loc0, sizeof(struct stub_entry));
404
me->arch.section[targetsec].stub_offset = loc0;
405
}
406
407
/* get address of stub entry */
408
stub = (void *) me->arch.section[targetsec].stub_offset;
409
me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
410
411
/* do not write outside available stub area */
412
BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
413
414
415
#ifndef CONFIG_64BIT
416
/* for 32-bit the stub looks like this:
417
* ldil L'XXX,%r1
418
* be,n R'XXX(%sr4,%r1)
419
*/
420
//value = *(unsigned long *)((value + addend) & ~3); /* why? */
421
422
stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
423
stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
424
425
stub->insns[0] |= reassemble_21(lrsel(value, addend));
426
stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
427
428
#else
429
/* for 64-bit we have three kinds of stubs:
430
* for normal function calls:
431
* ldd 0(%dp),%dp
432
* ldd 10(%dp), %r1
433
* bve (%r1)
434
* ldd 18(%dp), %dp
435
*
436
* for millicode:
437
* ldil 0, %r1
438
* ldo 0(%r1), %r1
439
* ldd 10(%r1), %r1
440
* bve,n (%r1)
441
*
442
* for direct branches (jumps between different section of the
443
* same module):
444
* ldil 0, %r1
445
* ldo 0(%r1), %r1
446
* bve,n (%r1)
447
*/
448
switch (stub_type) {
449
case ELF_STUB_GOT:
450
d = get_got(me, value, addend);
451
if (d <= 15) {
452
/* Format 5 */
453
stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
454
stub->insns[0] |= low_sign_unext(d, 5) << 16;
455
} else {
456
/* Format 3 */
457
stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
458
stub->insns[0] |= reassemble_16a(d);
459
}
460
stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
461
stub->insns[2] = 0xe820d000; /* bve (%r1) */
462
stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
463
break;
464
case ELF_STUB_MILLI:
465
stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
466
stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
467
stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
468
stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
469
470
stub->insns[0] |= reassemble_21(lrsel(value, addend));
471
stub->insns[1] |= reassemble_14(rrsel(value, addend));
472
break;
473
case ELF_STUB_DIRECT:
474
stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
475
stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
476
stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
477
478
stub->insns[0] |= reassemble_21(lrsel(value, addend));
479
stub->insns[1] |= reassemble_14(rrsel(value, addend));
480
break;
481
}
482
483
#endif
484
485
return (Elf_Addr)stub;
486
}
487
488
#ifndef CONFIG_64BIT
489
int apply_relocate_add(Elf_Shdr *sechdrs,
490
const char *strtab,
491
unsigned int symindex,
492
unsigned int relsec,
493
struct module *me)
494
{
495
int i;
496
Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
497
Elf32_Sym *sym;
498
Elf32_Word *loc;
499
Elf32_Addr val;
500
Elf32_Sword addend;
501
Elf32_Addr dot;
502
Elf_Addr loc0;
503
unsigned int targetsec = sechdrs[relsec].sh_info;
504
//unsigned long dp = (unsigned long)$global$;
505
register unsigned long dp asm ("r27");
506
507
pr_debug("Applying relocate section %u to %u\n", relsec,
508
targetsec);
509
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
510
/* This is where to make the change */
511
loc = (void *)sechdrs[targetsec].sh_addr
512
+ rel[i].r_offset;
513
/* This is the start of the target section */
514
loc0 = sechdrs[targetsec].sh_addr;
515
/* This is the symbol it is referring to */
516
sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
517
+ ELF32_R_SYM(rel[i].r_info);
518
if (!sym->st_value) {
519
printk(KERN_WARNING "%s: Unknown symbol %s\n",
520
me->name, strtab + sym->st_name);
521
return -ENOENT;
522
}
523
//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
524
dot = (Elf32_Addr)loc & ~0x03;
525
526
val = sym->st_value;
527
addend = rel[i].r_addend;
528
529
#if 0
530
#define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
531
pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
532
strtab + sym->st_name,
533
(uint32_t)loc, val, addend,
534
r(R_PARISC_PLABEL32)
535
r(R_PARISC_DIR32)
536
r(R_PARISC_DIR21L)
537
r(R_PARISC_DIR14R)
538
r(R_PARISC_SEGREL32)
539
r(R_PARISC_DPREL21L)
540
r(R_PARISC_DPREL14R)
541
r(R_PARISC_PCREL17F)
542
r(R_PARISC_PCREL22F)
543
"UNKNOWN");
544
#undef r
545
#endif
546
547
switch (ELF32_R_TYPE(rel[i].r_info)) {
548
case R_PARISC_PLABEL32:
549
/* 32-bit function address */
550
/* no function descriptors... */
551
*loc = fsel(val, addend);
552
break;
553
case R_PARISC_DIR32:
554
/* direct 32-bit ref */
555
*loc = fsel(val, addend);
556
break;
557
case R_PARISC_DIR21L:
558
/* left 21 bits of effective address */
559
val = lrsel(val, addend);
560
*loc = mask(*loc, 21) | reassemble_21(val);
561
break;
562
case R_PARISC_DIR14R:
563
/* right 14 bits of effective address */
564
val = rrsel(val, addend);
565
*loc = mask(*loc, 14) | reassemble_14(val);
566
break;
567
case R_PARISC_SEGREL32:
568
/* 32-bit segment relative address */
569
/* See note about special handling of SEGREL32 at
570
* the beginning of this file.
571
*/
572
*loc = fsel(val, addend);
573
break;
574
case R_PARISC_SECREL32:
575
/* 32-bit section relative address. */
576
*loc = fsel(val, addend);
577
break;
578
case R_PARISC_DPREL21L:
579
/* left 21 bit of relative address */
580
val = lrsel(val - dp, addend);
581
*loc = mask(*loc, 21) | reassemble_21(val);
582
break;
583
case R_PARISC_DPREL14R:
584
/* right 14 bit of relative address */
585
val = rrsel(val - dp, addend);
586
*loc = mask(*loc, 14) | reassemble_14(val);
587
break;
588
case R_PARISC_PCREL17F:
589
/* 17-bit PC relative address */
590
/* calculate direct call offset */
591
val += addend;
592
val = (val - dot - 8)/4;
593
if (!RELOC_REACHABLE(val, 17)) {
594
/* direct distance too far, create
595
* stub entry instead */
596
val = get_stub(me, sym->st_value, addend,
597
ELF_STUB_DIRECT, loc0, targetsec);
598
val = (val - dot - 8)/4;
599
CHECK_RELOC(val, 17);
600
}
601
*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
602
break;
603
case R_PARISC_PCREL22F:
604
/* 22-bit PC relative address; only defined for pa20 */
605
/* calculate direct call offset */
606
val += addend;
607
val = (val - dot - 8)/4;
608
if (!RELOC_REACHABLE(val, 22)) {
609
/* direct distance too far, create
610
* stub entry instead */
611
val = get_stub(me, sym->st_value, addend,
612
ELF_STUB_DIRECT, loc0, targetsec);
613
val = (val - dot - 8)/4;
614
CHECK_RELOC(val, 22);
615
}
616
*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
617
break;
618
case R_PARISC_PCREL32:
619
/* 32-bit PC relative address */
620
*loc = val - dot - 8 + addend;
621
break;
622
623
default:
624
printk(KERN_ERR "module %s: Unknown relocation: %u\n",
625
me->name, ELF32_R_TYPE(rel[i].r_info));
626
return -ENOEXEC;
627
}
628
}
629
630
return 0;
631
}
632
633
#else
634
int apply_relocate_add(Elf_Shdr *sechdrs,
635
const char *strtab,
636
unsigned int symindex,
637
unsigned int relsec,
638
struct module *me)
639
{
640
int i;
641
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
642
Elf64_Sym *sym;
643
Elf64_Word *loc;
644
Elf64_Xword *loc64;
645
Elf64_Addr val;
646
Elf64_Sxword addend;
647
Elf64_Addr dot;
648
Elf_Addr loc0;
649
unsigned int targetsec = sechdrs[relsec].sh_info;
650
651
pr_debug("Applying relocate section %u to %u\n", relsec,
652
targetsec);
653
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
654
/* This is where to make the change */
655
loc = (void *)sechdrs[targetsec].sh_addr
656
+ rel[i].r_offset;
657
/* This is the start of the target section */
658
loc0 = sechdrs[targetsec].sh_addr;
659
/* This is the symbol it is referring to */
660
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
661
+ ELF64_R_SYM(rel[i].r_info);
662
if (!sym->st_value) {
663
printk(KERN_WARNING "%s: Unknown symbol %s\n",
664
me->name, strtab + sym->st_name);
665
return -ENOENT;
666
}
667
//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
668
dot = (Elf64_Addr)loc & ~0x03;
669
loc64 = (Elf64_Xword *)loc;
670
671
val = sym->st_value;
672
addend = rel[i].r_addend;
673
674
#if 0
675
#define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
676
printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
677
strtab + sym->st_name,
678
loc, val, addend,
679
r(R_PARISC_LTOFF14R)
680
r(R_PARISC_LTOFF21L)
681
r(R_PARISC_PCREL22F)
682
r(R_PARISC_DIR64)
683
r(R_PARISC_SEGREL32)
684
r(R_PARISC_FPTR64)
685
"UNKNOWN");
686
#undef r
687
#endif
688
689
switch (ELF64_R_TYPE(rel[i].r_info)) {
690
case R_PARISC_LTOFF21L:
691
/* LT-relative; left 21 bits */
692
val = get_got(me, val, addend);
693
pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
694
strtab + sym->st_name,
695
loc, val);
696
val = lrsel(val, 0);
697
*loc = mask(*loc, 21) | reassemble_21(val);
698
break;
699
case R_PARISC_LTOFF14R:
700
/* L(ltoff(val+addend)) */
701
/* LT-relative; right 14 bits */
702
val = get_got(me, val, addend);
703
val = rrsel(val, 0);
704
pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
705
strtab + sym->st_name,
706
loc, val);
707
*loc = mask(*loc, 14) | reassemble_14(val);
708
break;
709
case R_PARISC_PCREL22F:
710
/* PC-relative; 22 bits */
711
pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
712
strtab + sym->st_name,
713
loc, val);
714
val += addend;
715
/* can we reach it locally? */
716
if (within_module(val, me)) {
717
/* this is the case where the symbol is local
718
* to the module, but in a different section,
719
* so stub the jump in case it's more than 22
720
* bits away */
721
val = (val - dot - 8)/4;
722
if (!RELOC_REACHABLE(val, 22)) {
723
/* direct distance too far, create
724
* stub entry instead */
725
val = get_stub(me, sym->st_value,
726
addend, ELF_STUB_DIRECT,
727
loc0, targetsec);
728
} else {
729
/* Ok, we can reach it directly. */
730
val = sym->st_value;
731
val += addend;
732
}
733
} else {
734
val = sym->st_value;
735
if (strncmp(strtab + sym->st_name, "$$", 2)
736
== 0)
737
val = get_stub(me, val, addend, ELF_STUB_MILLI,
738
loc0, targetsec);
739
else
740
val = get_stub(me, val, addend, ELF_STUB_GOT,
741
loc0, targetsec);
742
}
743
pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
744
strtab + sym->st_name, loc, sym->st_value,
745
addend, val);
746
val = (val - dot - 8)/4;
747
CHECK_RELOC(val, 22);
748
*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
749
break;
750
case R_PARISC_PCREL32:
751
/* 32-bit PC relative address */
752
*loc = val - dot - 8 + addend;
753
break;
754
case R_PARISC_PCREL64:
755
/* 64-bit PC relative address */
756
*loc64 = val - dot - 8 + addend;
757
break;
758
case R_PARISC_DIR64:
759
/* 64-bit effective address */
760
*loc64 = val + addend;
761
break;
762
case R_PARISC_SEGREL32:
763
/* 32-bit segment relative address */
764
/* See note about special handling of SEGREL32 at
765
* the beginning of this file.
766
*/
767
*loc = fsel(val, addend);
768
break;
769
case R_PARISC_SECREL32:
770
/* 32-bit section relative address. */
771
*loc = fsel(val, addend);
772
break;
773
case R_PARISC_FPTR64:
774
/* 64-bit function address */
775
if (within_module(val + addend, me)) {
776
*loc64 = get_fdesc(me, val+addend);
777
pr_debug("FDESC for %s at %llx points to %llx\n",
778
strtab + sym->st_name, *loc64,
779
((Elf_Fdesc *)*loc64)->addr);
780
} else {
781
/* if the symbol is not local to this
782
* module then val+addend is a pointer
783
* to the function descriptor */
784
pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
785
strtab + sym->st_name,
786
loc, val);
787
*loc64 = val + addend;
788
}
789
break;
790
791
default:
792
printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
793
me->name, ELF64_R_TYPE(rel[i].r_info));
794
return -ENOEXEC;
795
}
796
}
797
return 0;
798
}
799
#endif
800
801
static void
802
register_unwind_table(struct module *me,
803
const Elf_Shdr *sechdrs)
804
{
805
unsigned char *table, *end;
806
unsigned long gp;
807
808
if (!me->arch.unwind_section)
809
return;
810
811
table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
812
end = table + sechdrs[me->arch.unwind_section].sh_size;
813
gp = (Elf_Addr)me->mem[MOD_TEXT].base + me->arch.got_offset;
814
815
pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816
me->arch.unwind_section, table, end, gp);
817
me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
818
}
819
820
static void
821
deregister_unwind_table(struct module *me)
822
{
823
if (me->arch.unwind)
824
unwind_table_remove(me->arch.unwind);
825
}
826
827
int module_finalize(const Elf_Ehdr *hdr,
828
const Elf_Shdr *sechdrs,
829
struct module *me)
830
{
831
int i;
832
unsigned long nsyms;
833
const char *strtab = NULL;
834
const Elf_Shdr *s;
835
char *secstrings;
836
int symindex __maybe_unused = -1;
837
Elf_Sym *newptr, *oldptr;
838
Elf_Shdr *symhdr = NULL;
839
#ifdef DEBUG
840
Elf_Fdesc *entry;
841
u32 *addr;
842
843
entry = (Elf_Fdesc *)me->init;
844
printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
845
entry->gp, entry->addr);
846
addr = (u32 *)entry->addr;
847
printk("INSNS: %x %x %x %x\n",
848
addr[0], addr[1], addr[2], addr[3]);
849
printk("got entries used %ld, gots max %ld\n"
850
"fdescs used %ld, fdescs max %ld\n",
851
me->arch.got_count, me->arch.got_max,
852
me->arch.fdesc_count, me->arch.fdesc_max);
853
#endif
854
855
register_unwind_table(me, sechdrs);
856
857
/* haven't filled in me->symtab yet, so have to find it
858
* ourselves */
859
for (i = 1; i < hdr->e_shnum; i++) {
860
if(sechdrs[i].sh_type == SHT_SYMTAB
861
&& (sechdrs[i].sh_flags & SHF_ALLOC)) {
862
int strindex = sechdrs[i].sh_link;
863
symindex = i;
864
/* FIXME: AWFUL HACK
865
* The cast is to drop the const from
866
* the sechdrs pointer */
867
symhdr = (Elf_Shdr *)&sechdrs[i];
868
strtab = (char *)sechdrs[strindex].sh_addr;
869
break;
870
}
871
}
872
873
pr_debug("module %s: strtab %p, symhdr %p\n",
874
me->name, strtab, symhdr);
875
876
if(me->arch.got_count > MAX_GOTS) {
877
printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
878
me->name, me->arch.got_count, MAX_GOTS);
879
return -EINVAL;
880
}
881
882
kfree(me->arch.section);
883
me->arch.section = NULL;
884
885
/* no symbol table */
886
if(symhdr == NULL)
887
return 0;
888
889
oldptr = (void *)symhdr->sh_addr;
890
newptr = oldptr + 1; /* we start counting at 1 */
891
nsyms = symhdr->sh_size / sizeof(Elf_Sym);
892
pr_debug("OLD num_symtab %lu\n", nsyms);
893
894
for (i = 1; i < nsyms; i++) {
895
oldptr++; /* note, count starts at 1 so preincrement */
896
if(strncmp(strtab + oldptr->st_name,
897
".L", 2) == 0)
898
continue;
899
900
if(newptr != oldptr)
901
*newptr++ = *oldptr;
902
else
903
newptr++;
904
905
}
906
nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
907
pr_debug("NEW num_symtab %lu\n", nsyms);
908
symhdr->sh_size = nsyms * sizeof(Elf_Sym);
909
910
/* find .altinstructions section */
911
secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
912
for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
913
void *aseg = (void *) s->sh_addr;
914
char *secname = secstrings + s->sh_name;
915
916
if (!strcmp(".altinstructions", secname))
917
/* patch .altinstructions */
918
apply_alternatives(aseg, aseg + s->sh_size, me->name);
919
920
#ifdef CONFIG_DYNAMIC_FTRACE
921
/* For 32 bit kernels we're compiling modules with
922
* -ffunction-sections so we must relocate the addresses in the
923
* ftrace callsite section.
924
*/
925
if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
926
int err;
927
if (s->sh_type == SHT_REL)
928
err = apply_relocate((Elf_Shdr *)sechdrs,
929
strtab, symindex,
930
s - sechdrs, me);
931
else if (s->sh_type == SHT_RELA)
932
err = apply_relocate_add((Elf_Shdr *)sechdrs,
933
strtab, symindex,
934
s - sechdrs, me);
935
if (err)
936
return err;
937
}
938
#endif
939
}
940
return 0;
941
}
942
943
void module_arch_cleanup(struct module *mod)
944
{
945
deregister_unwind_table(mod);
946
}
947
948
#ifdef CONFIG_64BIT
949
void *dereference_module_function_descriptor(struct module *mod, void *ptr)
950
{
951
unsigned long start_opd = (Elf64_Addr)mod->mem[MOD_TEXT].base +
952
mod->arch.fdesc_offset;
953
unsigned long end_opd = start_opd +
954
mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
955
956
if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
957
return ptr;
958
959
return dereference_function_descriptor(ptr);
960
}
961
#endif
962
963