Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/parisc/kernel/time.c
26289 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Common time service routines for parisc machines.
4
* based on arch/loongarch/kernel/time.c
5
*
6
* Copyright (C) 2024 Helge Deller <[email protected]>
7
*/
8
#include <linux/clockchips.h>
9
#include <linux/delay.h>
10
#include <linux/export.h>
11
#include <linux/init.h>
12
#include <linux/interrupt.h>
13
#include <linux/kernel.h>
14
#include <linux/sched_clock.h>
15
#include <linux/spinlock.h>
16
#include <linux/rtc.h>
17
#include <linux/platform_device.h>
18
#include <asm/processor.h>
19
20
static u64 cr16_clock_freq;
21
static unsigned long clocktick;
22
23
int time_keeper_id; /* CPU used for timekeeping */
24
25
static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device);
26
27
static void parisc_event_handler(struct clock_event_device *dev)
28
{
29
}
30
31
static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt)
32
{
33
unsigned long new_cr16;
34
35
new_cr16 = mfctl(16) + delta;
36
mtctl(new_cr16, 16);
37
38
return 0;
39
}
40
41
irqreturn_t timer_interrupt(int irq, void *data)
42
{
43
struct clock_event_device *cd;
44
int cpu = smp_processor_id();
45
46
cd = &per_cpu(parisc_clockevent_device, cpu);
47
48
if (clockevent_state_periodic(cd))
49
parisc_timer_next_event(clocktick, cd);
50
51
if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd))
52
cd->event_handler(cd);
53
54
return IRQ_HANDLED;
55
}
56
57
static int parisc_set_state_oneshot(struct clock_event_device *evt)
58
{
59
parisc_timer_next_event(clocktick, evt);
60
61
return 0;
62
}
63
64
static int parisc_set_state_periodic(struct clock_event_device *evt)
65
{
66
parisc_timer_next_event(clocktick, evt);
67
68
return 0;
69
}
70
71
static int parisc_set_state_shutdown(struct clock_event_device *evt)
72
{
73
return 0;
74
}
75
76
void parisc_clockevent_init(void)
77
{
78
unsigned int cpu = smp_processor_id();
79
unsigned long min_delta = 0x600; /* XXX */
80
unsigned long max_delta = (1UL << (BITS_PER_LONG - 1));
81
struct clock_event_device *cd;
82
83
cd = &per_cpu(parisc_clockevent_device, cpu);
84
85
cd->name = "cr16_clockevent";
86
cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC |
87
CLOCK_EVT_FEAT_PERCPU;
88
89
cd->irq = TIMER_IRQ;
90
cd->rating = 320;
91
cd->cpumask = cpumask_of(cpu);
92
cd->set_state_oneshot = parisc_set_state_oneshot;
93
cd->set_state_oneshot_stopped = parisc_set_state_shutdown;
94
cd->set_state_periodic = parisc_set_state_periodic;
95
cd->set_state_shutdown = parisc_set_state_shutdown;
96
cd->set_next_event = parisc_timer_next_event;
97
cd->event_handler = parisc_event_handler;
98
99
clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta);
100
}
101
102
unsigned long notrace profile_pc(struct pt_regs *regs)
103
{
104
unsigned long pc = instruction_pointer(regs);
105
106
if (regs->gr[0] & PSW_N)
107
pc -= 4;
108
109
#ifdef CONFIG_SMP
110
if (in_lock_functions(pc))
111
pc = regs->gr[2];
112
#endif
113
114
return pc;
115
}
116
EXPORT_SYMBOL(profile_pc);
117
118
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
119
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
120
{
121
struct pdc_tod tod_data;
122
123
memset(tm, 0, sizeof(*tm));
124
if (pdc_tod_read(&tod_data) < 0)
125
return -EOPNOTSUPP;
126
127
/* we treat tod_sec as unsigned, so this can work until year 2106 */
128
rtc_time64_to_tm(tod_data.tod_sec, tm);
129
return 0;
130
}
131
132
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
133
{
134
time64_t secs = rtc_tm_to_time64(tm);
135
int ret;
136
137
/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
138
ret = pdc_tod_set(secs, 0);
139
if (ret != 0) {
140
pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
141
if (ret == PDC_INVALID_ARG)
142
return -EINVAL;
143
return -EOPNOTSUPP;
144
}
145
146
return 0;
147
}
148
149
static const struct rtc_class_ops rtc_generic_ops = {
150
.read_time = rtc_generic_get_time,
151
.set_time = rtc_generic_set_time,
152
};
153
154
static int __init rtc_init(void)
155
{
156
struct platform_device *pdev;
157
158
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
159
&rtc_generic_ops,
160
sizeof(rtc_generic_ops));
161
162
return PTR_ERR_OR_ZERO(pdev);
163
}
164
device_initcall(rtc_init);
165
#endif
166
167
void read_persistent_clock64(struct timespec64 *ts)
168
{
169
static struct pdc_tod tod_data;
170
if (pdc_tod_read(&tod_data) == 0) {
171
ts->tv_sec = tod_data.tod_sec;
172
ts->tv_nsec = tod_data.tod_usec * 1000;
173
} else {
174
printk(KERN_ERR "Error reading tod clock\n");
175
ts->tv_sec = 0;
176
ts->tv_nsec = 0;
177
}
178
}
179
180
static u64 notrace read_cr16_sched_clock(void)
181
{
182
return get_cycles();
183
}
184
185
static u64 notrace read_cr16(struct clocksource *cs)
186
{
187
return get_cycles();
188
}
189
190
static struct clocksource clocksource_cr16 = {
191
.name = "cr16",
192
.rating = 300,
193
.read = read_cr16,
194
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
195
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
196
CLOCK_SOURCE_VALID_FOR_HRES |
197
CLOCK_SOURCE_MUST_VERIFY |
198
CLOCK_SOURCE_VERIFY_PERCPU,
199
};
200
201
202
/*
203
* timer interrupt and sched_clock() initialization
204
*/
205
206
void __init time_init(void)
207
{
208
cr16_clock_freq = 100 * PAGE0->mem_10msec; /* Hz */
209
clocktick = cr16_clock_freq / HZ;
210
211
/* register as sched_clock source */
212
sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq);
213
214
parisc_clockevent_init();
215
216
/* register at clocksource framework */
217
clocksource_register_hz(&clocksource_cr16, cr16_clock_freq);
218
}
219
220