Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/parisc/math-emu/dbl_float.h
26288 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
4
*
5
* Floating-point emulation code
6
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <[email protected]>
7
*/
8
#ifdef __NO_PA_HDRS
9
PA header file -- do not include this header file for non-PA builds.
10
#endif
11
12
/* 32-bit word grabbing functions */
13
#define Dbl_firstword(value) Dallp1(value)
14
#define Dbl_secondword(value) Dallp2(value)
15
#define Dbl_thirdword(value) dummy_location
16
#define Dbl_fourthword(value) dummy_location
17
18
#define Dbl_sign(object) Dsign(object)
19
#define Dbl_exponent(object) Dexponent(object)
20
#define Dbl_signexponent(object) Dsignexponent(object)
21
#define Dbl_mantissap1(object) Dmantissap1(object)
22
#define Dbl_mantissap2(object) Dmantissap2(object)
23
#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
24
#define Dbl_allp1(object) Dallp1(object)
25
#define Dbl_allp2(object) Dallp2(object)
26
27
/* dbl_and_signs ANDs the sign bits of each argument and puts the result
28
* into the first argument. dbl_or_signs ors those same sign bits */
29
#define Dbl_and_signs( src1dst, src2) \
30
Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
31
#define Dbl_or_signs( src1dst, src2) \
32
Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
33
34
/* The hidden bit is always the low bit of the exponent */
35
#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
36
#define Dbl_clear_signexponent_set_hidden(srcdst) \
37
Deposit_dsignexponent(srcdst,1)
38
#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
39
#define Dbl_clear_signexponent(srcdst) \
40
Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
41
42
/* Exponent field for doubles has already been cleared and may be
43
* included in the shift. Here we need to generate two double width
44
* variable shifts. The insignificant bits can be ignored.
45
* MTSAR f(varamount)
46
* VSHD srcdst.high,srcdst.low => srcdst.low
47
* VSHD 0,srcdst.high => srcdst.high
48
* This is very difficult to model with C expressions since the shift amount
49
* could exceed 32. */
50
/* varamount must be less than 64 */
51
#define Dbl_rightshift(srcdstA, srcdstB, varamount) \
52
{if((varamount) >= 32) { \
53
Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \
54
Dallp1(srcdstA)=0; \
55
} \
56
else if(varamount > 0) { \
57
Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \
58
(varamount), Dallp2(srcdstB)); \
59
Dallp1(srcdstA) >>= varamount; \
60
} }
61
/* varamount must be less than 64 */
62
#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \
63
{if((varamount) >= 32) { \
64
Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
65
Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \
66
} \
67
else if(varamount > 0) { \
68
Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
69
(varamount), Dallp2(srcdstB)); \
70
Deposit_dexponentmantissap1(srcdstA, \
71
(Dexponentmantissap1(srcdstA)>>varamount)); \
72
} }
73
/* varamount must be less than 64 */
74
#define Dbl_leftshift(srcdstA, srcdstB, varamount) \
75
{if((varamount) >= 32) { \
76
Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \
77
Dallp2(srcdstB)=0; \
78
} \
79
else { \
80
if ((varamount) > 0) { \
81
Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \
82
(Dallp2(srcdstB) >> (32-(varamount))); \
83
Dallp2(srcdstB) <<= varamount; \
84
} \
85
} }
86
#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \
87
Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \
88
Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
89
90
#define Dbl_rightshiftby1_withextent(leftb,right,dst) \
91
Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
92
Extlow(right)
93
94
#define Dbl_arithrightshiftby1(srcdstA,srcdstB) \
95
Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
96
Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
97
98
/* Sign extend the sign bit with an integer destination */
99
#define Dbl_signextendedsign(value) Dsignedsign(value)
100
101
#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
102
/* Singles and doubles may include the sign and exponent fields. The
103
* hidden bit and the hidden overflow must be included. */
104
#define Dbl_increment(dbl_valueA,dbl_valueB) \
105
if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1
106
#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
107
if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \
108
Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
109
#define Dbl_decrement(dbl_valueA,dbl_valueB) \
110
if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \
111
Dallp2(dbl_valueB) -= 1
112
113
#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
114
#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
115
#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
116
#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
117
#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
118
#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
119
#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
120
(Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
121
#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
122
(Dhiddenhigh7mantissa(dbl_value)!=0)
123
#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
124
#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
125
(Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
126
#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
127
#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
128
#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
129
(Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
130
#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
131
#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
132
Dallp2(dbl_valueB)==0)
133
#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
134
#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
135
#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
136
#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
137
#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
138
(Dhiddenhigh3mantissa(dbl_value)==0)
139
#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
140
(Dhiddenhigh7mantissa(dbl_value)==0)
141
#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
142
#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
143
#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
144
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
145
#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
146
(Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
147
#define Dbl_isinfinity_exponent(dbl_value) \
148
(Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
149
#define Dbl_isnotinfinity_exponent(dbl_value) \
150
(Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
151
#define Dbl_isinfinity(dbl_valueA,dbl_valueB) \
152
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
153
Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
154
#define Dbl_isnan(dbl_valueA,dbl_valueB) \
155
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
156
(Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
157
#define Dbl_isnotnan(dbl_valueA,dbl_valueB) \
158
(Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \
159
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
160
161
#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
162
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
163
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
164
Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
165
#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
166
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
167
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
168
Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
169
#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
170
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
171
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
172
Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
173
#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
174
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
175
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
176
Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
177
#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
178
((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \
179
(Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
180
181
#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
182
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
183
Dallp2(dbl_valueB) <<= 8
184
#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
185
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
186
Dallp2(dbl_valueB) <<= 7
187
#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
188
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
189
Dallp2(dbl_valueB) <<= 4
190
#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
191
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
192
Dallp2(dbl_valueB) <<= 3
193
#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
194
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
195
Dallp2(dbl_valueB) <<= 2
196
#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
197
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
198
Dallp2(dbl_valueB) <<= 1
199
200
#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
201
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
202
Dallp1(dbl_valueA) >>= 8
203
#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
204
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
205
Dallp1(dbl_valueA) >>= 4
206
#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
207
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
208
Dallp1(dbl_valueA) >>= 2
209
#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
210
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
211
Dallp1(dbl_valueA) >>= 1
212
213
/* This magnitude comparison uses the signless first words and
214
* the regular part2 words. The comparison is graphically:
215
*
216
* 1st greater? -------------
217
* |
218
* 1st less?-----------------+---------
219
* | |
220
* 2nd greater or equal----->| |
221
* False True
222
*/
223
#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
224
((signlessleft <= signlessright) && \
225
( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
226
227
#define Dbl_copytoint_exponentmantissap1(src,dest) \
228
dest = Dexponentmantissap1(src)
229
230
/* A quiet NaN has the high mantissa bit clear and at least on other (in this
231
* case the adjacent bit) bit set. */
232
#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
233
#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
234
235
#define Dbl_set_mantissa(desta,destb,valuea,valueb) \
236
Deposit_dmantissap1(desta,valuea); \
237
Dmantissap2(destb) = Dmantissap2(valueb)
238
#define Dbl_set_mantissap1(desta,valuea) \
239
Deposit_dmantissap1(desta,valuea)
240
#define Dbl_set_mantissap2(destb,valueb) \
241
Dmantissap2(destb) = Dmantissap2(valueb)
242
243
#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \
244
Deposit_dexponentmantissap1(desta,valuea); \
245
Dmantissap2(destb) = Dmantissap2(valueb)
246
#define Dbl_set_exponentmantissap1(dest,value) \
247
Deposit_dexponentmantissap1(dest,value)
248
249
#define Dbl_copyfromptr(src,desta,destb) \
250
Dallp1(desta) = src->wd0; \
251
Dallp2(destb) = src->wd1
252
#define Dbl_copytoptr(srca,srcb,dest) \
253
dest->wd0 = Dallp1(srca); \
254
dest->wd1 = Dallp2(srcb)
255
256
/* An infinity is represented with the max exponent and a zero mantissa */
257
#define Dbl_setinfinity_exponent(dbl_value) \
258
Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
259
#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \
260
Deposit_dexponentmantissap1(dbl_valueA, \
261
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \
262
Dmantissap2(dbl_valueB) = 0
263
#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \
264
Dallp1(dbl_valueA) \
265
= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
266
Dmantissap2(dbl_valueB) = 0
267
#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \
268
Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \
269
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
270
Dmantissap2(dbl_valueB) = 0
271
#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \
272
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
273
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
274
Dmantissap2(dbl_valueB) = 0
275
276
#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
277
#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
278
#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
279
#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
280
#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
281
#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
282
#define Dbl_setzero_exponent(dbl_value) \
283
Dallp1(dbl_value) &= 0x800fffff
284
#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \
285
Dallp1(dbl_valueA) &= 0xfff00000; \
286
Dallp2(dbl_valueB) = 0
287
#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
288
#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
289
#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \
290
Dallp1(dbl_valueA) &= 0x80000000; \
291
Dallp2(dbl_valueB) = 0
292
#define Dbl_setzero_exponentmantissap1(dbl_valueA) \
293
Dallp1(dbl_valueA) &= 0x80000000
294
#define Dbl_setzero(dbl_valueA,dbl_valueB) \
295
Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
296
#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
297
#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
298
#define Dbl_setnegativezero(dbl_value) \
299
Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
300
#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
301
302
/* Use the following macro for both overflow & underflow conditions */
303
#define ovfl -
304
#define unfl +
305
#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
306
Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
307
308
#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \
309
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
310
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \
311
Dallp2(dbl_valueB) = 0xFFFFFFFF
312
#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \
313
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
314
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \
315
| ((unsigned int)1<<31); \
316
Dallp2(dbl_valueB) = 0xFFFFFFFF
317
#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \
318
Deposit_dexponentmantissap1(dbl_valueA, \
319
(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
320
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \
321
Dallp2(dbl_valueB) = 0xFFFFFFFF
322
323
#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \
324
Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \
325
<< (32-(1+DBL_EXP_LENGTH)) ; \
326
Dallp2(dbl_valueB) = 0
327
#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \
328
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
329
((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \
330
((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \
331
Dallp2(dbl_valueB) = 0xFFFFFFFF
332
333
334
/* The high bit is always zero so arithmetic or logical shifts will work. */
335
#define Dbl_right_align(srcdstA,srcdstB,shift,extent) \
336
if( shift >= 32 ) \
337
{ \
338
/* Big shift requires examining the portion shift off \
339
the end to properly set inexact. */ \
340
if(shift < 64) \
341
{ \
342
if(shift > 32) \
343
{ \
344
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \
345
shift-32, Extall(extent)); \
346
if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
347
} \
348
else Extall(extent) = Dallp2(srcdstB); \
349
Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \
350
} \
351
else \
352
{ \
353
Extall(extent) = Dallp1(srcdstA); \
354
if(Dallp2(srcdstB)) Ext_setone_low(extent); \
355
Dallp2(srcdstB) = 0; \
356
} \
357
Dallp1(srcdstA) = 0; \
358
} \
359
else \
360
{ \
361
/* Small alignment is simpler. Extension is easily set. */ \
362
if (shift > 0) \
363
{ \
364
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
365
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
366
Dallp2(srcdstB)); \
367
Dallp1(srcdstA) >>= shift; \
368
} \
369
else Extall(extent) = 0; \
370
}
371
372
/*
373
* Here we need to shift the result right to correct for an overshift
374
* (due to the exponent becoming negative) during normalization.
375
*/
376
#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \
377
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
378
Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \
379
(Dallp2(srcdstB) >> (shift)); \
380
Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
381
382
#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
383
#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
384
#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
385
386
/* The left argument is never smaller than the right argument */
387
#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \
388
if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \
389
Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \
390
Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
391
392
/* Subtract right augmented with extension from left augmented with zeros and
393
* store into result and extension. */
394
#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \
395
Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \
396
if( (Extall(extent) = 0-Extall(extent)) ) \
397
{ \
398
if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \
399
}
400
401
#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \
402
/* If the sum of the low words is less than either source, then \
403
* an overflow into the next word occurred. */ \
404
Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \
405
if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
406
Dallp1(resulta)++
407
408
#define Dbl_xortointp1(left,right,result) \
409
result = Dallp1(left) XOR Dallp1(right)
410
411
#define Dbl_xorfromintp1(left,right,result) \
412
Dallp1(result) = left XOR Dallp1(right)
413
414
#define Dbl_swap_lower(left,right) \
415
Dallp2(left) = Dallp2(left) XOR Dallp2(right); \
416
Dallp2(right) = Dallp2(left) XOR Dallp2(right); \
417
Dallp2(left) = Dallp2(left) XOR Dallp2(right)
418
419
/* Need to Initialize */
420
#define Dbl_makequietnan(desta,destb) \
421
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
422
| (1<<(32-(1+DBL_EXP_LENGTH+2))); \
423
Dallp2(destb) = 0
424
#define Dbl_makesignalingnan(desta,destb) \
425
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
426
| (1<<(32-(1+DBL_EXP_LENGTH+1))); \
427
Dallp2(destb) = 0
428
429
#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \
430
while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \
431
Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \
432
exponent -= 8; \
433
} \
434
if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \
435
Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \
436
exponent -= 4; \
437
} \
438
while(Dbl_iszero_hidden(dbl_opndA)) { \
439
Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \
440
exponent -= 1; \
441
}
442
443
#define Twoword_add(src1dstA,src1dstB,src2A,src2B) \
444
/* \
445
* want this macro to generate: \
446
* ADD src1dstB,src2B,src1dstB; \
447
* ADDC src1dstA,src2A,src1dstA; \
448
*/ \
449
if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
450
Dallp1(src1dstA) += (src2A); \
451
Dallp2(src1dstB) += (src2B)
452
453
#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \
454
/* \
455
* want this macro to generate: \
456
* SUB src1dstB,src2B,src1dstB; \
457
* SUBB src1dstA,src2A,src1dstA; \
458
*/ \
459
if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \
460
Dallp1(src1dstA) -= (src2A); \
461
Dallp2(src1dstB) -= (src2B)
462
463
#define Dbl_setoverflow(resultA,resultB) \
464
/* set result to infinity or largest number */ \
465
switch (Rounding_mode()) { \
466
case ROUNDPLUS: \
467
if (Dbl_isone_sign(resultA)) { \
468
Dbl_setlargestnegative(resultA,resultB); \
469
} \
470
else { \
471
Dbl_setinfinitypositive(resultA,resultB); \
472
} \
473
break; \
474
case ROUNDMINUS: \
475
if (Dbl_iszero_sign(resultA)) { \
476
Dbl_setlargestpositive(resultA,resultB); \
477
} \
478
else { \
479
Dbl_setinfinitynegative(resultA,resultB); \
480
} \
481
break; \
482
case ROUNDNEAREST: \
483
Dbl_setinfinity_exponentmantissa(resultA,resultB); \
484
break; \
485
case ROUNDZERO: \
486
Dbl_setlargest_exponentmantissa(resultA,resultB); \
487
}
488
489
#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \
490
Dbl_clear_signexponent_set_hidden(opndp1); \
491
if (exponent >= (1-DBL_P)) { \
492
if (exponent >= -31) { \
493
guard = (Dallp2(opndp2) >> -exponent) & 1; \
494
if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
495
if (exponent > -31) { \
496
Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \
497
Dallp1(opndp1) >>= 1-exponent; \
498
} \
499
else { \
500
Dallp2(opndp2) = Dallp1(opndp1); \
501
Dbl_setzerop1(opndp1); \
502
} \
503
} \
504
else { \
505
guard = (Dallp1(opndp1) >> -32-exponent) & 1; \
506
if (exponent == -32) sticky |= Dallp2(opndp2); \
507
else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
508
Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \
509
Dbl_setzerop1(opndp1); \
510
} \
511
inexact = guard | sticky; \
512
} \
513
else { \
514
guard = 0; \
515
sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \
516
Dbl_setzero(opndp1,opndp2); \
517
inexact = sticky; \
518
}
519
520
/*
521
* The fused multiply add instructions requires a double extended format,
522
* with 106 bits of mantissa.
523
*/
524
#define DBLEXT_THRESHOLD 106
525
526
#define Dblext_setzero(valA,valB,valC,valD) \
527
Dextallp1(valA) = 0; Dextallp2(valB) = 0; \
528
Dextallp3(valC) = 0; Dextallp4(valD) = 0
529
530
531
#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
532
#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
533
#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
534
#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
535
#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
536
#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
537
Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
538
539
#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
540
Dextallp1(desta) = Dextallp4(srca); \
541
Dextallp2(destb) = Dextallp4(srcb); \
542
Dextallp3(destc) = Dextallp4(srcc); \
543
Dextallp4(destd) = Dextallp4(srcd)
544
545
#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \
546
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
547
Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
548
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
549
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
550
Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
551
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
552
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
553
Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
554
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4)
555
556
#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
557
558
/* The high bit is always zero so arithmetic or logical shifts will work. */
559
#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
560
{int shiftamt, sticky; \
561
shiftamt = shift % 32; \
562
sticky = 0; \
563
switch (shift/32) { \
564
case 0: if (shiftamt > 0) { \
565
sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \
566
Variable_shift_double(Dextallp3(srcdstC), \
567
Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \
568
Variable_shift_double(Dextallp2(srcdstB), \
569
Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \
570
Variable_shift_double(Dextallp1(srcdstA), \
571
Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \
572
Dextallp1(srcdstA) >>= shiftamt; \
573
} \
574
break; \
575
case 1: if (shiftamt > 0) { \
576
sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \
577
Dextallp4(srcdstD); \
578
Variable_shift_double(Dextallp2(srcdstB), \
579
Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \
580
Variable_shift_double(Dextallp1(srcdstA), \
581
Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \
582
} \
583
else { \
584
sticky = Dextallp4(srcdstD); \
585
Dextallp4(srcdstD) = Dextallp3(srcdstC); \
586
Dextallp3(srcdstC) = Dextallp2(srcdstB); \
587
} \
588
Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \
589
Dextallp1(srcdstA) = 0; \
590
break; \
591
case 2: if (shiftamt > 0) { \
592
sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \
593
Dextallp3(srcdstC) | Dextallp4(srcdstD); \
594
Variable_shift_double(Dextallp1(srcdstA), \
595
Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \
596
} \
597
else { \
598
sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \
599
Dextallp4(srcdstD) = Dextallp2(srcdstB); \
600
} \
601
Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \
602
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
603
break; \
604
case 3: if (shiftamt > 0) { \
605
sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \
606
Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
607
Dextallp4(srcdstD); \
608
} \
609
else { \
610
sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
611
Dextallp4(srcdstD); \
612
} \
613
Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \
614
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
615
Dextallp3(srcdstC) = 0; \
616
break; \
617
} \
618
if (sticky) Dblext_setone_lowmantissap4(srcdstD); \
619
}
620
621
/* The left argument is never smaller than the right argument */
622
#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
623
if( Dextallp4(rightd) > Dextallp4(leftd) ) \
624
if( (Dextallp3(leftc)--) == 0) \
625
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
626
Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \
627
if( Dextallp3(rightc) > Dextallp3(leftc) ) \
628
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
629
Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \
630
if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
631
Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \
632
Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
633
634
#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
635
/* If the sum of the low words is less than either source, then \
636
* an overflow into the next word occurred. */ \
637
if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
638
Dextallp4(rightd)) \
639
if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
640
Dextallp3(rightc)) \
641
if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
642
<= Dextallp2(rightb)) \
643
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
644
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
645
else \
646
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
647
Dextallp2(rightb)) \
648
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
649
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
650
else \
651
if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
652
Dextallp3(rightc)) \
653
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
654
<= Dextallp2(rightb)) \
655
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
656
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
657
else \
658
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
659
Dextallp2(rightb)) \
660
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
661
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
662
663
664
#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \
665
Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
666
Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
667
Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
668
Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
669
670
#define Dblext_leftshiftby8(valA,valB,valC,valD) \
671
Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
672
Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
673
Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
674
Dextallp4(valD) <<= 8
675
#define Dblext_leftshiftby4(valA,valB,valC,valD) \
676
Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
677
Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
678
Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
679
Dextallp4(valD) <<= 4
680
#define Dblext_leftshiftby3(valA,valB,valC,valD) \
681
Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
682
Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
683
Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
684
Dextallp4(valD) <<= 3
685
#define Dblext_leftshiftby2(valA,valB,valC,valD) \
686
Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
687
Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
688
Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
689
Dextallp4(valD) <<= 2
690
#define Dblext_leftshiftby1(valA,valB,valC,valD) \
691
Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
692
Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
693
Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
694
Dextallp4(valD) <<= 1
695
696
#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
697
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
698
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
699
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
700
Dextallp1(valueA) >>= 4
701
#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
702
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
703
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
704
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
705
Dextallp1(valueA) >>= 1
706
707
#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
708
709
#define Dblext_xorfromintp1(left,right,result) \
710
Dbl_xorfromintp1(left,right,result)
711
712
#define Dblext_copytoint_exponentmantissap1(src,dest) \
713
Dbl_copytoint_exponentmantissap1(src,dest)
714
715
#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
716
Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
717
718
#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
719
Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
720
Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
721
722
#define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign)
723
#define Dblext_clear_signexponent_set_hidden(srcdst) \
724
Dbl_clear_signexponent_set_hidden(srcdst)
725
#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
726
#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
727
#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
728
729
/*
730
* The Fourword_add() macro assumes that integers are 4 bytes in size.
731
* It will break if this is not the case.
732
*/
733
734
#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
735
/* \
736
* want this macro to generate: \
737
* ADD src1dstD,src2D,src1dstD; \
738
* ADDC src1dstC,src2C,src1dstC; \
739
* ADDC src1dstB,src2B,src1dstB; \
740
* ADDC src1dstA,src2A,src1dstA; \
741
*/ \
742
if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
743
if ((unsigned int)(src1dstC += (src2C) + 1) <= \
744
(unsigned int)(src2C)) { \
745
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
746
(unsigned int)(src2B)) src1dstA++; \
747
} \
748
else if ((unsigned int)(src1dstB += (src2B)) < \
749
(unsigned int)(src2B)) src1dstA++; \
750
} \
751
else { \
752
if ((unsigned int)(src1dstC += (src2C)) < \
753
(unsigned int)(src2C)) { \
754
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
755
(unsigned int)(src2B)) src1dstA++; \
756
} \
757
else if ((unsigned int)(src1dstB += (src2B)) < \
758
(unsigned int)(src2B)) src1dstA++; \
759
} \
760
src1dstA += (src2A)
761
762
#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
763
{int shiftamt, sticky; \
764
is_tiny = TRUE; \
765
if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \
766
switch (Rounding_mode()) { \
767
case ROUNDPLUS: \
768
if (Dbl_iszero_sign(opndp1)) { \
769
Dbl_increment(opndp1,opndp2); \
770
if (Dbl_isone_hiddenoverflow(opndp1)) \
771
is_tiny = FALSE; \
772
Dbl_decrement(opndp1,opndp2); \
773
} \
774
break; \
775
case ROUNDMINUS: \
776
if (Dbl_isone_sign(opndp1)) { \
777
Dbl_increment(opndp1,opndp2); \
778
if (Dbl_isone_hiddenoverflow(opndp1)) \
779
is_tiny = FALSE; \
780
Dbl_decrement(opndp1,opndp2); \
781
} \
782
break; \
783
case ROUNDNEAREST: \
784
if (Dblext_isone_highp3(opndp3) && \
785
(Dblext_isone_lowp2(opndp2) || \
786
Dblext_isnotzero_low31p3(opndp3))) { \
787
Dbl_increment(opndp1,opndp2); \
788
if (Dbl_isone_hiddenoverflow(opndp1)) \
789
is_tiny = FALSE; \
790
Dbl_decrement(opndp1,opndp2); \
791
} \
792
break; \
793
} \
794
} \
795
Dblext_clear_signexponent_set_hidden(opndp1); \
796
if (exponent >= (1-QUAD_P)) { \
797
shiftamt = (1-exponent) % 32; \
798
switch((1-exponent)/32) { \
799
case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \
800
Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \
801
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \
802
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \
803
Dextallp1(opndp1) >>= shiftamt; \
804
break; \
805
case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \
806
Dextallp4(opndp4); \
807
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \
808
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \
809
Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \
810
Dextallp1(opndp1) = 0; \
811
break; \
812
case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \
813
Dextallp3(opndp3) | Dextallp4(opndp4); \
814
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \
815
Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \
816
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
817
break; \
818
case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \
819
Dextallp2(opndp2) | Dextallp3(opndp3) | \
820
Dextallp4(opndp4); \
821
Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \
822
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
823
Dextallp3(opndp3) = 0; \
824
break; \
825
} \
826
} \
827
else { \
828
sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \
829
Dextallp3(opndp3) | Dextallp4(opndp4); \
830
Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \
831
} \
832
if (sticky) Dblext_setone_lowmantissap4(opndp4); \
833
exponent = 0; \
834
}
835
836