Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/parisc/mm/fault.c
26288 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
*
7
* Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8
* Copyright 1999 SuSE GmbH (Philipp Rumpf, [email protected])
9
* Copyright 1999 Hewlett Packard Co.
10
*
11
*/
12
13
#include <linux/mm.h>
14
#include <linux/ptrace.h>
15
#include <linux/sched.h>
16
#include <linux/sched/debug.h>
17
#include <linux/interrupt.h>
18
#include <linux/extable.h>
19
#include <linux/uaccess.h>
20
#include <linux/hugetlb.h>
21
#include <linux/perf_event.h>
22
23
#include <asm/traps.h>
24
25
#define DEBUG_NATLB 0
26
27
/* Various important other fields */
28
#define bit22set(x) (x & 0x00000200)
29
#define bits23_25set(x) (x & 0x000001c0)
30
#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
31
/* extended opcode is 0x6a */
32
33
#define BITSSET 0x1c0 /* for identifying LDCW */
34
35
36
int show_unhandled_signals = 1;
37
38
/*
39
* parisc_acctyp(unsigned int inst) --
40
* Given a PA-RISC memory access instruction, determine if the
41
* instruction would perform a memory read or memory write
42
* operation.
43
*
44
* This function assumes that the given instruction is a memory access
45
* instruction (i.e. you should really only call it if you know that
46
* the instruction has generated some sort of a memory access fault).
47
*
48
* Returns:
49
* VM_READ if read operation
50
* VM_WRITE if write operation
51
* VM_EXEC if execute operation
52
*/
53
unsigned long
54
parisc_acctyp(unsigned long code, unsigned int inst)
55
{
56
if (code == 6 || code == 16)
57
return VM_EXEC;
58
59
switch (inst & 0xf0000000) {
60
case 0x40000000: /* load */
61
case 0x50000000: /* new load */
62
return VM_READ;
63
64
case 0x60000000: /* store */
65
case 0x70000000: /* new store */
66
return VM_WRITE;
67
68
case 0x20000000: /* coproc */
69
case 0x30000000: /* coproc2 */
70
if (bit22set(inst))
71
return VM_WRITE;
72
fallthrough;
73
74
case 0x0: /* indexed/memory management */
75
if (bit22set(inst)) {
76
/*
77
* Check for the 'Graphics Flush Read' instruction.
78
* It resembles an FDC instruction, except for bits
79
* 20 and 21. Any combination other than zero will
80
* utilize the block mover functionality on some
81
* older PA-RISC platforms. The case where a block
82
* move is performed from VM to graphics IO space
83
* should be treated as a READ.
84
*
85
* The significance of bits 20,21 in the FDC
86
* instruction is:
87
*
88
* 00 Flush data cache (normal instruction behavior)
89
* 01 Graphics flush write (IO space -> VM)
90
* 10 Graphics flush read (VM -> IO space)
91
* 11 Graphics flush read/write (VM <-> IO space)
92
*/
93
if (isGraphicsFlushRead(inst))
94
return VM_READ;
95
return VM_WRITE;
96
} else {
97
/*
98
* Check for LDCWX and LDCWS (semaphore instructions).
99
* If bits 23 through 25 are all 1's it is one of
100
* the above two instructions and is a write.
101
*
102
* Note: With the limited bits we are looking at,
103
* this will also catch PROBEW and PROBEWI. However,
104
* these should never get in here because they don't
105
* generate exceptions of the type:
106
* Data TLB miss fault/data page fault
107
* Data memory protection trap
108
*/
109
if (bits23_25set(inst) == BITSSET)
110
return VM_WRITE;
111
}
112
return VM_READ; /* Default */
113
}
114
return VM_READ; /* Default */
115
}
116
117
#undef bit22set
118
#undef bits23_25set
119
#undef isGraphicsFlushRead
120
#undef BITSSET
121
122
123
#if 0
124
/* This is the treewalk to find a vma which is the highest that has
125
* a start < addr. We're using find_vma_prev instead right now, but
126
* we might want to use this at some point in the future. Probably
127
* not, but I want it committed to CVS so I don't lose it :-)
128
*/
129
while (tree != vm_avl_empty) {
130
if (tree->vm_start > addr) {
131
tree = tree->vm_avl_left;
132
} else {
133
prev = tree;
134
if (prev->vm_next == NULL)
135
break;
136
if (prev->vm_next->vm_start > addr)
137
break;
138
tree = tree->vm_avl_right;
139
}
140
}
141
#endif
142
143
int fixup_exception(struct pt_regs *regs)
144
{
145
const struct exception_table_entry *fix;
146
147
fix = search_exception_tables(regs->iaoq[0]);
148
if (fix) {
149
/*
150
* Fix up get_user() and put_user().
151
* ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
152
* bit in the relative address of the fixup routine to indicate
153
* that the register encoded in the "or %r0,%r0,register"
154
* opcode should be loaded with -EFAULT to report a userspace
155
* access error.
156
*/
157
if (fix->fixup & 1) {
158
int fault_error_reg = fix->err_opcode & 0x1f;
159
if (!WARN_ON(!fault_error_reg))
160
regs->gr[fault_error_reg] = -EFAULT;
161
pr_debug("Unalignment fixup of register %d at %pS\n",
162
fault_error_reg, (void*)regs->iaoq[0]);
163
164
/* zero target register for get_user() */
165
if (parisc_acctyp(0, regs->iir) == VM_READ) {
166
int treg = regs->iir & 0x1f;
167
BUG_ON(treg == 0);
168
regs->gr[treg] = 0;
169
}
170
}
171
172
regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
173
regs->iaoq[0] &= ~3;
174
/*
175
* NOTE: In some cases the faulting instruction
176
* may be in the delay slot of a branch. We
177
* don't want to take the branch, so we don't
178
* increment iaoq[1], instead we set it to be
179
* iaoq[0]+4, and clear the B bit in the PSW
180
*/
181
regs->iaoq[1] = regs->iaoq[0] + 4;
182
regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
183
184
return 1;
185
}
186
187
return 0;
188
}
189
190
/*
191
* parisc hardware trap list
192
*
193
* Documented in section 3 "Addressing and Access Control" of the
194
* "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
195
* https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
196
*
197
* For implementation see handle_interruption() in traps.c
198
*/
199
static const char * const trap_description[] = {
200
[1] = "High-priority machine check (HPMC)",
201
[2] = "Power failure interrupt",
202
[3] = "Recovery counter trap",
203
[5] = "Low-priority machine check",
204
[6] = "Instruction TLB miss fault",
205
[7] = "Instruction access rights / protection trap",
206
[8] = "Illegal instruction trap",
207
[9] = "Break instruction trap",
208
[10] = "Privileged operation trap",
209
[11] = "Privileged register trap",
210
[12] = "Overflow trap",
211
[13] = "Conditional trap",
212
[14] = "FP Assist Exception trap",
213
[15] = "Data TLB miss fault",
214
[16] = "Non-access ITLB miss fault",
215
[17] = "Non-access DTLB miss fault",
216
[18] = "Data memory protection/unaligned access trap",
217
[19] = "Data memory break trap",
218
[20] = "TLB dirty bit trap",
219
[21] = "Page reference trap",
220
[22] = "Assist emulation trap",
221
[25] = "Taken branch trap",
222
[26] = "Data memory access rights trap",
223
[27] = "Data memory protection ID trap",
224
[28] = "Unaligned data reference trap",
225
};
226
227
const char *trap_name(unsigned long code)
228
{
229
const char *t = NULL;
230
231
if (code < ARRAY_SIZE(trap_description))
232
t = trap_description[code];
233
234
return t ? t : "Unknown trap";
235
}
236
237
/*
238
* Print out info about fatal segfaults, if the show_unhandled_signals
239
* sysctl is set:
240
*/
241
static inline void
242
show_signal_msg(struct pt_regs *regs, unsigned long code,
243
unsigned long address, struct task_struct *tsk,
244
struct vm_area_struct *vma)
245
{
246
if (!unhandled_signal(tsk, SIGSEGV))
247
return;
248
249
if (!printk_ratelimit())
250
return;
251
252
pr_warn("\n");
253
pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
254
tsk->comm, code, address);
255
print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
256
257
pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
258
vma ? ',':'\n');
259
260
if (vma)
261
pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
262
vma->vm_start, vma->vm_end);
263
264
show_regs(regs);
265
}
266
267
void do_page_fault(struct pt_regs *regs, unsigned long code,
268
unsigned long address)
269
{
270
struct vm_area_struct *vma, *prev_vma;
271
struct task_struct *tsk;
272
struct mm_struct *mm;
273
unsigned long acc_type;
274
vm_fault_t fault = 0;
275
unsigned int flags;
276
char *msg;
277
278
tsk = current;
279
mm = tsk->mm;
280
if (!mm) {
281
msg = "Page fault: no context";
282
goto no_context;
283
}
284
285
flags = FAULT_FLAG_DEFAULT;
286
if (user_mode(regs))
287
flags |= FAULT_FLAG_USER;
288
289
acc_type = parisc_acctyp(code, regs->iir);
290
if (acc_type & VM_WRITE)
291
flags |= FAULT_FLAG_WRITE;
292
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
293
retry:
294
mmap_read_lock(mm);
295
vma = find_vma_prev(mm, address, &prev_vma);
296
if (!vma || address < vma->vm_start) {
297
if (!prev_vma || !(prev_vma->vm_flags & VM_GROWSUP))
298
goto bad_area;
299
vma = expand_stack(mm, address);
300
if (!vma)
301
goto bad_area_nosemaphore;
302
}
303
304
/*
305
* Ok, we have a good vm_area for this memory access. We still need to
306
* check the access permissions.
307
*/
308
309
if ((vma->vm_flags & acc_type) != acc_type)
310
goto bad_area;
311
312
/*
313
* If for any reason at all we couldn't handle the fault, make
314
* sure we exit gracefully rather than endlessly redo the
315
* fault.
316
*/
317
318
fault = handle_mm_fault(vma, address, flags, regs);
319
320
if (fault_signal_pending(fault, regs)) {
321
if (!user_mode(regs)) {
322
msg = "Page fault: fault signal on kernel memory";
323
goto no_context;
324
}
325
return;
326
}
327
328
/* The fault is fully completed (including releasing mmap lock) */
329
if (fault & VM_FAULT_COMPLETED)
330
return;
331
332
if (unlikely(fault & VM_FAULT_ERROR)) {
333
/*
334
* We hit a shared mapping outside of the file, or some
335
* other thing happened to us that made us unable to
336
* handle the page fault gracefully.
337
*/
338
if (fault & VM_FAULT_OOM)
339
goto out_of_memory;
340
else if (fault & VM_FAULT_SIGSEGV)
341
goto bad_area;
342
else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
343
VM_FAULT_HWPOISON_LARGE))
344
goto bad_area;
345
BUG();
346
}
347
if (fault & VM_FAULT_RETRY) {
348
/*
349
* No need to mmap_read_unlock(mm) as we would
350
* have already released it in __lock_page_or_retry
351
* in mm/filemap.c.
352
*/
353
flags |= FAULT_FLAG_TRIED;
354
goto retry;
355
}
356
mmap_read_unlock(mm);
357
return;
358
359
/*
360
* Something tried to access memory that isn't in our memory map..
361
*/
362
bad_area:
363
mmap_read_unlock(mm);
364
365
bad_area_nosemaphore:
366
if (!user_mode(regs) && fixup_exception(regs)) {
367
return;
368
}
369
370
if (user_mode(regs)) {
371
int signo, si_code;
372
373
switch (code) {
374
case 15: /* Data TLB miss fault/Data page fault */
375
/* send SIGSEGV when outside of vma */
376
if (!vma ||
377
address < vma->vm_start || address >= vma->vm_end) {
378
signo = SIGSEGV;
379
si_code = SEGV_MAPERR;
380
break;
381
}
382
383
/* send SIGSEGV for wrong permissions */
384
if ((vma->vm_flags & acc_type) != acc_type) {
385
signo = SIGSEGV;
386
si_code = SEGV_ACCERR;
387
break;
388
}
389
390
/* probably address is outside of mapped file */
391
fallthrough;
392
case 17: /* NA data TLB miss / page fault */
393
case 18: /* Unaligned access - PCXS only */
394
signo = SIGBUS;
395
si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
396
break;
397
case 16: /* Non-access instruction TLB miss fault */
398
case 26: /* PCXL: Data memory access rights trap */
399
default:
400
signo = SIGSEGV;
401
si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
402
break;
403
}
404
#ifdef CONFIG_MEMORY_FAILURE
405
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
406
unsigned int lsb = 0;
407
printk(KERN_ERR
408
"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
409
tsk->comm, tsk->pid, address);
410
/*
411
* Either small page or large page may be poisoned.
412
* In other words, VM_FAULT_HWPOISON_LARGE and
413
* VM_FAULT_HWPOISON are mutually exclusive.
414
*/
415
if (fault & VM_FAULT_HWPOISON_LARGE)
416
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
417
else if (fault & VM_FAULT_HWPOISON)
418
lsb = PAGE_SHIFT;
419
420
force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
421
lsb);
422
return;
423
}
424
#endif
425
show_signal_msg(regs, code, address, tsk, vma);
426
427
force_sig_fault(signo, si_code, (void __user *) address);
428
return;
429
}
430
msg = "Page fault: bad address";
431
432
no_context:
433
434
if (!user_mode(regs) && fixup_exception(regs)) {
435
return;
436
}
437
438
parisc_terminate(msg, regs, code, address);
439
440
out_of_memory:
441
mmap_read_unlock(mm);
442
if (!user_mode(regs)) {
443
msg = "Page fault: out of memory";
444
goto no_context;
445
}
446
pagefault_out_of_memory();
447
}
448
449
/* Handle non-access data TLB miss faults.
450
*
451
* For probe instructions, accesses to userspace are considered allowed
452
* if they lie in a valid VMA and the access type matches. We are not
453
* allowed to handle MM faults here so there may be situations where an
454
* actual access would fail even though a probe was successful.
455
*/
456
int
457
handle_nadtlb_fault(struct pt_regs *regs)
458
{
459
unsigned long insn = regs->iir;
460
int breg, treg, xreg, val = 0;
461
struct vm_area_struct *vma;
462
struct task_struct *tsk;
463
struct mm_struct *mm;
464
unsigned long address;
465
unsigned long acc_type;
466
467
switch (insn & 0x380) {
468
case 0x280:
469
/* FDC instruction */
470
fallthrough;
471
case 0x380:
472
/* PDC and FIC instructions */
473
if (DEBUG_NATLB && printk_ratelimit()) {
474
pr_warn("WARNING: nullifying cache flush/purge instruction\n");
475
show_regs(regs);
476
}
477
if (insn & 0x20) {
478
/* Base modification */
479
breg = (insn >> 21) & 0x1f;
480
xreg = (insn >> 16) & 0x1f;
481
if (breg && xreg)
482
regs->gr[breg] += regs->gr[xreg];
483
}
484
regs->gr[0] |= PSW_N;
485
return 1;
486
487
case 0x180:
488
/* PROBE instruction */
489
treg = insn & 0x1f;
490
if (regs->isr) {
491
tsk = current;
492
mm = tsk->mm;
493
if (mm) {
494
/* Search for VMA */
495
address = regs->ior;
496
mmap_read_lock(mm);
497
vma = vma_lookup(mm, address);
498
mmap_read_unlock(mm);
499
500
/*
501
* Check if access to the VMA is okay.
502
* We don't allow for stack expansion.
503
*/
504
acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
505
if (vma
506
&& (vma->vm_flags & acc_type) == acc_type)
507
val = 1;
508
}
509
}
510
if (treg)
511
regs->gr[treg] = val;
512
regs->gr[0] |= PSW_N;
513
return 1;
514
515
case 0x300:
516
/* LPA instruction */
517
if (insn & 0x20) {
518
/* Base modification */
519
breg = (insn >> 21) & 0x1f;
520
xreg = (insn >> 16) & 0x1f;
521
if (breg && xreg)
522
regs->gr[breg] += regs->gr[xreg];
523
}
524
treg = insn & 0x1f;
525
if (treg)
526
regs->gr[treg] = 0;
527
regs->gr[0] |= PSW_N;
528
return 1;
529
530
default:
531
break;
532
}
533
534
return 0;
535
}
536
537