Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/parisc/mm/init.c
26288 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* linux/arch/parisc/mm/init.c
4
*
5
* Copyright (C) 1995 Linus Torvalds
6
* Copyright 1999 SuSE GmbH
7
* changed by Philipp Rumpf
8
* Copyright 1999 Philipp Rumpf ([email protected])
9
* Copyright 2004 Randolph Chung ([email protected])
10
* Copyright 2006-2007 Helge Deller ([email protected])
11
*
12
*/
13
14
15
#include <linux/module.h>
16
#include <linux/mm.h>
17
#include <linux/memblock.h>
18
#include <linux/gfp.h>
19
#include <linux/delay.h>
20
#include <linux/init.h>
21
#include <linux/initrd.h>
22
#include <linux/swap.h>
23
#include <linux/unistd.h>
24
#include <linux/nodemask.h> /* for node_online_map */
25
#include <linux/pagemap.h> /* for release_pages */
26
#include <linux/compat.h>
27
#include <linux/execmem.h>
28
29
#include <asm/pgalloc.h>
30
#include <asm/tlb.h>
31
#include <asm/pdc_chassis.h>
32
#include <asm/mmzone.h>
33
#include <asm/sections.h>
34
#include <asm/msgbuf.h>
35
#include <asm/sparsemem.h>
36
#include <asm/asm-offsets.h>
37
#include <asm/shmbuf.h>
38
39
extern int data_start;
40
extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
41
42
#if CONFIG_PGTABLE_LEVELS == 3
43
pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
44
#endif
45
46
pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
47
pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
48
49
static struct resource data_resource = {
50
.name = "Kernel data",
51
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
52
};
53
54
static struct resource code_resource = {
55
.name = "Kernel code",
56
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
57
};
58
59
static struct resource pdcdata_resource = {
60
.name = "PDC data (Page Zero)",
61
.start = 0,
62
.end = 0x9ff,
63
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
64
};
65
66
static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
67
68
/* The following array is initialized from the firmware specific
69
* information retrieved in kernel/inventory.c.
70
*/
71
72
physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
73
int npmem_ranges __initdata;
74
75
#ifdef CONFIG_64BIT
76
#define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
77
#else /* !CONFIG_64BIT */
78
#define MAX_MEM (3584U*1024U*1024U)
79
#endif /* !CONFIG_64BIT */
80
81
static unsigned long mem_limit __read_mostly = MAX_MEM;
82
83
static void __init mem_limit_func(void)
84
{
85
char *cp, *end;
86
unsigned long limit;
87
88
/* We need this before __setup() functions are called */
89
90
limit = MAX_MEM;
91
for (cp = boot_command_line; *cp; ) {
92
if (memcmp(cp, "mem=", 4) == 0) {
93
cp += 4;
94
limit = memparse(cp, &end);
95
if (end != cp)
96
break;
97
cp = end;
98
} else {
99
while (*cp != ' ' && *cp)
100
++cp;
101
while (*cp == ' ')
102
++cp;
103
}
104
}
105
106
if (limit < mem_limit)
107
mem_limit = limit;
108
}
109
110
#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
111
112
static void __init setup_bootmem(void)
113
{
114
unsigned long mem_max;
115
#ifndef CONFIG_SPARSEMEM
116
physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117
int npmem_holes;
118
#endif
119
int i, sysram_resource_count;
120
121
disable_sr_hashing(); /* Turn off space register hashing */
122
123
/*
124
* Sort the ranges. Since the number of ranges is typically
125
* small, and performance is not an issue here, just do
126
* a simple insertion sort.
127
*/
128
129
for (i = 1; i < npmem_ranges; i++) {
130
int j;
131
132
for (j = i; j > 0; j--) {
133
if (pmem_ranges[j-1].start_pfn <
134
pmem_ranges[j].start_pfn) {
135
136
break;
137
}
138
swap(pmem_ranges[j-1], pmem_ranges[j]);
139
}
140
}
141
142
#ifndef CONFIG_SPARSEMEM
143
/*
144
* Throw out ranges that are too far apart (controlled by
145
* MAX_GAP).
146
*/
147
148
for (i = 1; i < npmem_ranges; i++) {
149
if (pmem_ranges[i].start_pfn -
150
(pmem_ranges[i-1].start_pfn +
151
pmem_ranges[i-1].pages) > MAX_GAP) {
152
npmem_ranges = i;
153
printk("Large gap in memory detected (%ld pages). "
154
"Consider turning on CONFIG_SPARSEMEM\n",
155
pmem_ranges[i].start_pfn -
156
(pmem_ranges[i-1].start_pfn +
157
pmem_ranges[i-1].pages));
158
break;
159
}
160
}
161
#endif
162
163
/* Print the memory ranges */
164
pr_info("Memory Ranges:\n");
165
166
for (i = 0; i < npmem_ranges; i++) {
167
struct resource *res = &sysram_resources[i];
168
unsigned long start;
169
unsigned long size;
170
171
size = (pmem_ranges[i].pages << PAGE_SHIFT);
172
start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
173
pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
174
i, start, start + (size - 1), size >> 20);
175
176
/* request memory resource */
177
res->name = "System RAM";
178
res->start = start;
179
res->end = start + size - 1;
180
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
181
request_resource(&iomem_resource, res);
182
}
183
184
sysram_resource_count = npmem_ranges;
185
186
/*
187
* For 32 bit kernels we limit the amount of memory we can
188
* support, in order to preserve enough kernel address space
189
* for other purposes. For 64 bit kernels we don't normally
190
* limit the memory, but this mechanism can be used to
191
* artificially limit the amount of memory (and it is written
192
* to work with multiple memory ranges).
193
*/
194
195
mem_limit_func(); /* check for "mem=" argument */
196
197
mem_max = 0;
198
for (i = 0; i < npmem_ranges; i++) {
199
unsigned long rsize;
200
201
rsize = pmem_ranges[i].pages << PAGE_SHIFT;
202
if ((mem_max + rsize) > mem_limit) {
203
printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
204
if (mem_max == mem_limit)
205
npmem_ranges = i;
206
else {
207
pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
208
- (mem_max >> PAGE_SHIFT);
209
npmem_ranges = i + 1;
210
mem_max = mem_limit;
211
}
212
break;
213
}
214
mem_max += rsize;
215
}
216
217
printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
218
219
#ifndef CONFIG_SPARSEMEM
220
/* Merge the ranges, keeping track of the holes */
221
{
222
unsigned long end_pfn;
223
unsigned long hole_pages;
224
225
npmem_holes = 0;
226
end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
227
for (i = 1; i < npmem_ranges; i++) {
228
229
hole_pages = pmem_ranges[i].start_pfn - end_pfn;
230
if (hole_pages) {
231
pmem_holes[npmem_holes].start_pfn = end_pfn;
232
pmem_holes[npmem_holes++].pages = hole_pages;
233
end_pfn += hole_pages;
234
}
235
end_pfn += pmem_ranges[i].pages;
236
}
237
238
pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
239
npmem_ranges = 1;
240
}
241
#endif
242
243
/*
244
* Initialize and free the full range of memory in each range.
245
*/
246
247
max_pfn = 0;
248
for (i = 0; i < npmem_ranges; i++) {
249
unsigned long start_pfn;
250
unsigned long npages;
251
unsigned long start;
252
unsigned long size;
253
254
start_pfn = pmem_ranges[i].start_pfn;
255
npages = pmem_ranges[i].pages;
256
257
start = start_pfn << PAGE_SHIFT;
258
size = npages << PAGE_SHIFT;
259
260
/* add system RAM memblock */
261
memblock_add(start, size);
262
263
if ((start_pfn + npages) > max_pfn)
264
max_pfn = start_pfn + npages;
265
}
266
267
/*
268
* We can't use memblock top-down allocations because we only
269
* created the initial mapping up to KERNEL_INITIAL_SIZE in
270
* the assembly bootup code.
271
*/
272
memblock_set_bottom_up(true);
273
274
/* IOMMU is always used to access "high mem" on those boxes
275
* that can support enough mem that a PCI device couldn't
276
* directly DMA to any physical addresses.
277
* ISA DMA support will need to revisit this.
278
*/
279
max_low_pfn = max_pfn;
280
281
/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
282
283
#define PDC_CONSOLE_IO_IODC_SIZE 32768
284
285
memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
286
PDC_CONSOLE_IO_IODC_SIZE));
287
memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
288
(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
289
290
#ifndef CONFIG_SPARSEMEM
291
292
/* reserve the holes */
293
294
for (i = 0; i < npmem_holes; i++) {
295
memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
296
(pmem_holes[i].pages << PAGE_SHIFT));
297
}
298
#endif
299
300
#ifdef CONFIG_BLK_DEV_INITRD
301
if (initrd_start) {
302
printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
303
if (__pa(initrd_start) < mem_max) {
304
unsigned long initrd_reserve;
305
306
if (__pa(initrd_end) > mem_max) {
307
initrd_reserve = mem_max - __pa(initrd_start);
308
} else {
309
initrd_reserve = initrd_end - initrd_start;
310
}
311
initrd_below_start_ok = 1;
312
printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
313
314
memblock_reserve(__pa(initrd_start), initrd_reserve);
315
}
316
}
317
#endif
318
319
data_resource.start = virt_to_phys(&data_start);
320
data_resource.end = virt_to_phys(_end) - 1;
321
code_resource.start = virt_to_phys(_text);
322
code_resource.end = virt_to_phys(&data_start)-1;
323
324
/* We don't know which region the kernel will be in, so try
325
* all of them.
326
*/
327
for (i = 0; i < sysram_resource_count; i++) {
328
struct resource *res = &sysram_resources[i];
329
request_resource(res, &code_resource);
330
request_resource(res, &data_resource);
331
}
332
request_resource(&sysram_resources[0], &pdcdata_resource);
333
334
/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
335
pdc_pdt_init();
336
337
memblock_allow_resize();
338
memblock_dump_all();
339
}
340
341
static bool kernel_set_to_readonly;
342
343
static void __ref map_pages(unsigned long start_vaddr,
344
unsigned long start_paddr, unsigned long size,
345
pgprot_t pgprot, int force)
346
{
347
pmd_t *pmd;
348
pte_t *pg_table;
349
unsigned long end_paddr;
350
unsigned long start_pmd;
351
unsigned long start_pte;
352
unsigned long tmp1;
353
unsigned long tmp2;
354
unsigned long address;
355
unsigned long vaddr;
356
unsigned long ro_start;
357
unsigned long ro_end;
358
unsigned long kernel_start, kernel_end;
359
360
ro_start = __pa((unsigned long)_text);
361
ro_end = __pa((unsigned long)&data_start);
362
kernel_start = __pa((unsigned long)&__init_begin);
363
kernel_end = __pa((unsigned long)&_end);
364
365
end_paddr = start_paddr + size;
366
367
/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
368
start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
369
start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
370
371
address = start_paddr;
372
vaddr = start_vaddr;
373
while (address < end_paddr) {
374
pgd_t *pgd = pgd_offset_k(vaddr);
375
p4d_t *p4d = p4d_offset(pgd, vaddr);
376
pud_t *pud = pud_offset(p4d, vaddr);
377
378
#if CONFIG_PGTABLE_LEVELS == 3
379
if (pud_none(*pud)) {
380
pmd = memblock_alloc_or_panic(PAGE_SIZE << PMD_TABLE_ORDER,
381
PAGE_SIZE << PMD_TABLE_ORDER);
382
pud_populate(NULL, pud, pmd);
383
}
384
#endif
385
386
pmd = pmd_offset(pud, vaddr);
387
for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
388
if (pmd_none(*pmd)) {
389
pg_table = memblock_alloc_or_panic(PAGE_SIZE, PAGE_SIZE);
390
pmd_populate_kernel(NULL, pmd, pg_table);
391
}
392
393
pg_table = pte_offset_kernel(pmd, vaddr);
394
for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
395
pte_t pte;
396
pgprot_t prot;
397
bool huge = false;
398
399
if (force) {
400
prot = pgprot;
401
} else if (address < kernel_start || address >= kernel_end) {
402
/* outside kernel memory */
403
prot = PAGE_KERNEL;
404
} else if (!kernel_set_to_readonly) {
405
/* still initializing, allow writing to RO memory */
406
prot = PAGE_KERNEL_RWX;
407
huge = true;
408
} else if (address >= ro_start) {
409
/* Code (ro) and Data areas */
410
prot = (address < ro_end) ?
411
PAGE_KERNEL_EXEC : PAGE_KERNEL;
412
huge = true;
413
} else {
414
prot = PAGE_KERNEL;
415
}
416
417
pte = __mk_pte(address, prot);
418
if (huge)
419
pte = pte_mkhuge(pte);
420
421
if (address >= end_paddr)
422
break;
423
424
set_pte(pg_table, pte);
425
426
address += PAGE_SIZE;
427
vaddr += PAGE_SIZE;
428
}
429
start_pte = 0;
430
431
if (address >= end_paddr)
432
break;
433
}
434
start_pmd = 0;
435
}
436
}
437
438
void __init set_kernel_text_rw(int enable_read_write)
439
{
440
unsigned long start = (unsigned long) __init_begin;
441
unsigned long end = (unsigned long) &data_start;
442
443
map_pages(start, __pa(start), end-start,
444
PAGE_KERNEL_RWX, enable_read_write ? 1:0);
445
446
/* force the kernel to see the new page table entries */
447
flush_cache_all();
448
flush_tlb_all();
449
}
450
451
void free_initmem(void)
452
{
453
unsigned long init_begin = (unsigned long)__init_begin;
454
unsigned long init_end = (unsigned long)__init_end;
455
unsigned long kernel_end = (unsigned long)&_end;
456
457
/* Remap kernel text and data, but do not touch init section yet. */
458
map_pages(init_end, __pa(init_end), kernel_end - init_end,
459
PAGE_KERNEL, 0);
460
461
/* The init text pages are marked R-X. We have to
462
* flush the icache and mark them RW-
463
*
464
* Do a dummy remap of the data section first (the data
465
* section is already PAGE_KERNEL) to pull in the TLB entries
466
* for map_kernel */
467
map_pages(init_begin, __pa(init_begin), init_end - init_begin,
468
PAGE_KERNEL_RWX, 1);
469
/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
470
* map_pages */
471
map_pages(init_begin, __pa(init_begin), init_end - init_begin,
472
PAGE_KERNEL, 1);
473
474
/* force the kernel to see the new TLB entries */
475
__flush_tlb_range(0, init_begin, kernel_end);
476
477
/* finally dump all the instructions which were cached, since the
478
* pages are no-longer executable */
479
flush_icache_range(init_begin, init_end);
480
481
free_initmem_default(POISON_FREE_INITMEM);
482
483
/* set up a new led state on systems shipped LED State panel */
484
pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
485
}
486
487
488
#ifdef CONFIG_STRICT_KERNEL_RWX
489
void mark_rodata_ro(void)
490
{
491
unsigned long start = (unsigned long) &__start_rodata;
492
unsigned long end = (unsigned long) &__end_rodata;
493
494
pr_info("Write protecting the kernel read-only data: %luk\n",
495
(end - start) >> 10);
496
497
kernel_set_to_readonly = true;
498
map_pages(start, __pa(start), end - start, PAGE_KERNEL, 0);
499
500
/* force the kernel to see the new page table entries */
501
flush_cache_all();
502
flush_tlb_all();
503
}
504
#endif
505
506
507
/*
508
* Just an arbitrary offset to serve as a "hole" between mapping areas
509
* (between top of physical memory and a potential pcxl dma mapping
510
* area, and below the vmalloc mapping area).
511
*
512
* The current 32K value just means that there will be a 32K "hole"
513
* between mapping areas. That means that any out-of-bounds memory
514
* accesses will hopefully be caught. The vmalloc() routines leaves
515
* a hole of 4kB between each vmalloced area for the same reason.
516
*/
517
518
/* Leave room for gateway page expansion */
519
#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
520
#error KERNEL_MAP_START is in gateway reserved region
521
#endif
522
#define MAP_START (KERNEL_MAP_START)
523
524
#define VM_MAP_OFFSET (32*1024)
525
#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
526
& ~(VM_MAP_OFFSET-1)))
527
528
void *parisc_vmalloc_start __ro_after_init;
529
EXPORT_SYMBOL(parisc_vmalloc_start);
530
531
void __init mem_init(void)
532
{
533
/* Do sanity checks on IPC (compat) structures */
534
BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
535
#ifndef CONFIG_64BIT
536
BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
537
BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
538
BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
539
#endif
540
#ifdef CONFIG_COMPAT
541
BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
542
BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
543
BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
544
BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
545
#endif
546
547
/* Do sanity checks on page table constants */
548
BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
549
BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
550
BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
551
BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
552
> BITS_PER_LONG);
553
#if CONFIG_PGTABLE_LEVELS == 3
554
BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
555
#else
556
BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
557
#endif
558
559
#ifdef CONFIG_64BIT
560
/* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
561
BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
562
BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
563
#endif
564
565
#ifdef CONFIG_PA11
566
if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
567
pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
568
parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
569
+ PCXL_DMA_MAP_SIZE);
570
} else
571
#endif
572
parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
573
574
#if 0
575
/*
576
* Do not expose the virtual kernel memory layout to userspace.
577
* But keep code for debugging purposes.
578
*/
579
printk("virtual kernel memory layout:\n"
580
" vmalloc : 0x%px - 0x%px (%4ld MB)\n"
581
" fixmap : 0x%px - 0x%px (%4ld kB)\n"
582
" memory : 0x%px - 0x%px (%4ld MB)\n"
583
" .init : 0x%px - 0x%px (%4ld kB)\n"
584
" .data : 0x%px - 0x%px (%4ld kB)\n"
585
" .text : 0x%px - 0x%px (%4ld kB)\n",
586
587
(void*)VMALLOC_START, (void*)VMALLOC_END,
588
(VMALLOC_END - VMALLOC_START) >> 20,
589
590
(void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
591
(unsigned long)(FIXMAP_SIZE / 1024),
592
593
__va(0), high_memory,
594
((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
595
596
__init_begin, __init_end,
597
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
598
599
_etext, _edata,
600
((unsigned long)_edata - (unsigned long)_etext) >> 10,
601
602
_text, _etext,
603
((unsigned long)_etext - (unsigned long)_text) >> 10);
604
#endif
605
}
606
607
unsigned long *empty_zero_page __ro_after_init;
608
EXPORT_SYMBOL(empty_zero_page);
609
610
/*
611
* pagetable_init() sets up the page tables
612
*
613
* Note that gateway_init() places the Linux gateway page at page 0.
614
* Since gateway pages cannot be dereferenced this has the desirable
615
* side effect of trapping those pesky NULL-reference errors in the
616
* kernel.
617
*/
618
static void __init pagetable_init(void)
619
{
620
int range;
621
622
/* Map each physical memory range to its kernel vaddr */
623
624
for (range = 0; range < npmem_ranges; range++) {
625
unsigned long start_paddr;
626
unsigned long size;
627
628
start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
629
size = pmem_ranges[range].pages << PAGE_SHIFT;
630
631
map_pages((unsigned long)__va(start_paddr), start_paddr,
632
size, PAGE_KERNEL, 0);
633
}
634
635
#ifdef CONFIG_BLK_DEV_INITRD
636
if (initrd_end && initrd_end > mem_limit) {
637
printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
638
map_pages(initrd_start, __pa(initrd_start),
639
initrd_end - initrd_start, PAGE_KERNEL, 0);
640
}
641
#endif
642
643
empty_zero_page = memblock_alloc_or_panic(PAGE_SIZE, PAGE_SIZE);
644
645
}
646
647
static void __init gateway_init(void)
648
{
649
unsigned long linux_gateway_page_addr;
650
/* FIXME: This is 'const' in order to trick the compiler
651
into not treating it as DP-relative data. */
652
extern void * const linux_gateway_page;
653
654
linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
655
656
/*
657
* Setup Linux Gateway page.
658
*
659
* The Linux gateway page will reside in kernel space (on virtual
660
* page 0), so it doesn't need to be aliased into user space.
661
*/
662
663
map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
664
PAGE_SIZE, PAGE_GATEWAY, 1);
665
}
666
667
static void __init fixmap_init(void)
668
{
669
unsigned long addr = FIXMAP_START;
670
unsigned long end = FIXMAP_START + FIXMAP_SIZE;
671
pgd_t *pgd = pgd_offset_k(addr);
672
p4d_t *p4d = p4d_offset(pgd, addr);
673
pud_t *pud = pud_offset(p4d, addr);
674
pmd_t *pmd;
675
676
BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
677
678
#if CONFIG_PGTABLE_LEVELS == 3
679
if (pud_none(*pud)) {
680
pmd = memblock_alloc_or_panic(PAGE_SIZE << PMD_TABLE_ORDER,
681
PAGE_SIZE << PMD_TABLE_ORDER);
682
pud_populate(NULL, pud, pmd);
683
}
684
#endif
685
686
pmd = pmd_offset(pud, addr);
687
do {
688
pte_t *pte = memblock_alloc_or_panic(PAGE_SIZE, PAGE_SIZE);
689
690
pmd_populate_kernel(&init_mm, pmd, pte);
691
692
addr += PAGE_SIZE;
693
} while (addr < end);
694
}
695
696
static void __init parisc_bootmem_free(void)
697
{
698
unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
699
700
max_zone_pfn[0] = memblock_end_of_DRAM();
701
702
free_area_init(max_zone_pfn);
703
}
704
705
void __init paging_init(void)
706
{
707
setup_bootmem();
708
pagetable_init();
709
gateway_init();
710
fixmap_init();
711
flush_cache_all_local(); /* start with known state */
712
flush_tlb_all_local(NULL);
713
714
sparse_init();
715
parisc_bootmem_free();
716
}
717
718
static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
719
unsigned long entry_info)
720
{
721
const int slot_max = btlb_info.fixed_range_info.num_comb;
722
int min_num_pages = btlb_info.min_size;
723
unsigned long size;
724
725
/* map at minimum 4 pages */
726
if (min_num_pages < 4)
727
min_num_pages = 4;
728
729
size = HUGEPAGE_SIZE;
730
while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
731
/* starting address must have same alignment as size! */
732
/* if correctly aligned and fits in double size, increase */
733
if (((start & (2 * size - 1)) == 0) &&
734
(end - start) >= (2 * size)) {
735
size <<= 1;
736
continue;
737
}
738
/* if current size alignment is too big, try smaller size */
739
if ((start & (size - 1)) != 0) {
740
size >>= 1;
741
continue;
742
}
743
if ((end - start) >= size) {
744
if ((size >> PAGE_SHIFT) >= min_num_pages)
745
pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
746
size >> PAGE_SHIFT, entry_info, *slot);
747
(*slot)++;
748
start += size;
749
continue;
750
}
751
size /= 2;
752
continue;
753
}
754
}
755
756
void btlb_init_per_cpu(void)
757
{
758
unsigned long s, t, e;
759
int slot;
760
761
/* BTLBs are not available on 64-bit CPUs */
762
if (IS_ENABLED(CONFIG_PA20))
763
return;
764
else if (pdc_btlb_info(&btlb_info) < 0) {
765
memset(&btlb_info, 0, sizeof btlb_info);
766
}
767
768
/* insert BLTLBs for code and data segments */
769
s = (uintptr_t) dereference_function_descriptor(&_stext);
770
e = (uintptr_t) dereference_function_descriptor(&_etext);
771
t = (uintptr_t) dereference_function_descriptor(&_sdata);
772
BUG_ON(t != e);
773
774
/* code segments */
775
slot = 0;
776
alloc_btlb(s, e, &slot, 0x13800000);
777
778
/* sanity check */
779
t = (uintptr_t) dereference_function_descriptor(&_edata);
780
e = (uintptr_t) dereference_function_descriptor(&__bss_start);
781
BUG_ON(t != e);
782
783
/* data segments */
784
s = (uintptr_t) dereference_function_descriptor(&_sdata);
785
e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
786
alloc_btlb(s, e, &slot, 0x11800000);
787
}
788
789
#ifdef CONFIG_PA20
790
791
/*
792
* Currently, all PA20 chips have 18 bit protection IDs, which is the
793
* limiting factor (space ids are 32 bits).
794
*/
795
796
#define NR_SPACE_IDS 262144
797
798
#else
799
800
/*
801
* Currently we have a one-to-one relationship between space IDs and
802
* protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
803
* support 15 bit protection IDs, so that is the limiting factor.
804
* PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
805
* probably not worth the effort for a special case here.
806
*/
807
808
#define NR_SPACE_IDS 32768
809
810
#endif /* !CONFIG_PA20 */
811
812
#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
813
#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
814
815
static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
816
static unsigned long dirty_space_id[SID_ARRAY_SIZE];
817
static unsigned long space_id_index;
818
static unsigned long free_space_ids = NR_SPACE_IDS - 1;
819
static unsigned long dirty_space_ids;
820
821
static DEFINE_SPINLOCK(sid_lock);
822
823
unsigned long alloc_sid(void)
824
{
825
unsigned long index;
826
827
spin_lock(&sid_lock);
828
829
if (free_space_ids == 0) {
830
if (dirty_space_ids != 0) {
831
spin_unlock(&sid_lock);
832
flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
833
spin_lock(&sid_lock);
834
}
835
BUG_ON(free_space_ids == 0);
836
}
837
838
free_space_ids--;
839
840
index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
841
space_id[BIT_WORD(index)] |= BIT_MASK(index);
842
space_id_index = index;
843
844
spin_unlock(&sid_lock);
845
846
return index << SPACEID_SHIFT;
847
}
848
849
void free_sid(unsigned long spaceid)
850
{
851
unsigned long index = spaceid >> SPACEID_SHIFT;
852
unsigned long *dirty_space_offset, mask;
853
854
dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
855
mask = BIT_MASK(index);
856
857
spin_lock(&sid_lock);
858
859
BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
860
861
*dirty_space_offset |= mask;
862
dirty_space_ids++;
863
864
spin_unlock(&sid_lock);
865
}
866
867
868
#ifdef CONFIG_SMP
869
static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
870
{
871
int i;
872
873
/* NOTE: sid_lock must be held upon entry */
874
875
*ndirtyptr = dirty_space_ids;
876
if (dirty_space_ids != 0) {
877
for (i = 0; i < SID_ARRAY_SIZE; i++) {
878
dirty_array[i] = dirty_space_id[i];
879
dirty_space_id[i] = 0;
880
}
881
dirty_space_ids = 0;
882
}
883
884
return;
885
}
886
887
static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
888
{
889
int i;
890
891
/* NOTE: sid_lock must be held upon entry */
892
893
if (ndirty != 0) {
894
for (i = 0; i < SID_ARRAY_SIZE; i++) {
895
space_id[i] ^= dirty_array[i];
896
}
897
898
free_space_ids += ndirty;
899
space_id_index = 0;
900
}
901
}
902
903
#else /* CONFIG_SMP */
904
905
static void recycle_sids(void)
906
{
907
int i;
908
909
/* NOTE: sid_lock must be held upon entry */
910
911
if (dirty_space_ids != 0) {
912
for (i = 0; i < SID_ARRAY_SIZE; i++) {
913
space_id[i] ^= dirty_space_id[i];
914
dirty_space_id[i] = 0;
915
}
916
917
free_space_ids += dirty_space_ids;
918
dirty_space_ids = 0;
919
space_id_index = 0;
920
}
921
}
922
#endif
923
924
/*
925
* flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
926
* purged, we can safely reuse the space ids that were released but
927
* not flushed from the tlb.
928
*/
929
930
#ifdef CONFIG_SMP
931
932
static unsigned long recycle_ndirty;
933
static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
934
static unsigned int recycle_inuse;
935
936
void flush_tlb_all(void)
937
{
938
int do_recycle;
939
940
do_recycle = 0;
941
spin_lock(&sid_lock);
942
__inc_irq_stat(irq_tlb_count);
943
if (dirty_space_ids > RECYCLE_THRESHOLD) {
944
BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
945
get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
946
recycle_inuse++;
947
do_recycle++;
948
}
949
spin_unlock(&sid_lock);
950
on_each_cpu(flush_tlb_all_local, NULL, 1);
951
if (do_recycle) {
952
spin_lock(&sid_lock);
953
recycle_sids(recycle_ndirty,recycle_dirty_array);
954
recycle_inuse = 0;
955
spin_unlock(&sid_lock);
956
}
957
}
958
#else
959
void flush_tlb_all(void)
960
{
961
spin_lock(&sid_lock);
962
__inc_irq_stat(irq_tlb_count);
963
flush_tlb_all_local(NULL);
964
recycle_sids();
965
spin_unlock(&sid_lock);
966
}
967
#endif
968
969
static const pgprot_t protection_map[16] = {
970
[VM_NONE] = PAGE_NONE,
971
[VM_READ] = PAGE_READONLY,
972
[VM_WRITE] = PAGE_NONE,
973
[VM_WRITE | VM_READ] = PAGE_READONLY,
974
[VM_EXEC] = PAGE_EXECREAD,
975
[VM_EXEC | VM_READ] = PAGE_EXECREAD,
976
[VM_EXEC | VM_WRITE] = PAGE_EXECREAD,
977
[VM_EXEC | VM_WRITE | VM_READ] = PAGE_EXECREAD,
978
[VM_SHARED] = PAGE_NONE,
979
[VM_SHARED | VM_READ] = PAGE_READONLY,
980
[VM_SHARED | VM_WRITE] = PAGE_WRITEONLY,
981
[VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
982
[VM_SHARED | VM_EXEC] = PAGE_EXECREAD,
983
[VM_SHARED | VM_EXEC | VM_READ] = PAGE_EXECREAD,
984
[VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_RWX,
985
[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_RWX
986
};
987
DECLARE_VM_GET_PAGE_PROT
988
989
#ifdef CONFIG_EXECMEM
990
static struct execmem_info execmem_info __ro_after_init;
991
992
struct execmem_info __init *execmem_arch_setup(void)
993
{
994
execmem_info = (struct execmem_info){
995
.ranges = {
996
[EXECMEM_DEFAULT] = {
997
.start = VMALLOC_START,
998
.end = VMALLOC_END,
999
.pgprot = PAGE_KERNEL_RWX,
1000
.alignment = 1,
1001
},
1002
},
1003
};
1004
1005
return &execmem_info;
1006
}
1007
#endif /* CONFIG_EXECMEM */
1008
1009