Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/crypto/aes-spe-glue.c
51947 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Glue code for AES implementation for SPE instructions (PPC)
4
*
5
* Based on generic implementation. The assembler module takes care
6
* about the SPE registers so it can run from interrupt context.
7
*
8
* Copyright (c) 2015 Markus Stockhausen <[email protected]>
9
*/
10
11
#include <crypto/aes.h>
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/types.h>
15
#include <linux/errno.h>
16
#include <linux/crypto.h>
17
#include <asm/byteorder.h>
18
#include <asm/switch_to.h>
19
#include <crypto/algapi.h>
20
#include <crypto/internal/skcipher.h>
21
#include <crypto/xts.h>
22
#include <crypto/gf128mul.h>
23
#include <crypto/scatterwalk.h>
24
25
/*
26
* MAX_BYTES defines the number of bytes that are allowed to be processed
27
* between preempt_disable() and preempt_enable(). e500 cores can issue two
28
* instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
29
* bit unit (SU2). One of these can be a memory access that is executed via
30
* a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
31
* 16 byte block or 25 cycles per byte. Thus 768 bytes of input data
32
* will need an estimated maximum of 20,000 cycles. Headroom for cache misses
33
* included. Even with the low end model clocked at 667 MHz this equals to a
34
* critical time window of less than 30us. The value has been chosen to
35
* process a 512 byte disk block in one or a large 1400 bytes IPsec network
36
* packet in two runs.
37
*
38
*/
39
#define MAX_BYTES 768
40
41
struct ppc_aes_ctx {
42
u32 key_enc[AES_MAX_KEYLENGTH_U32];
43
u32 key_dec[AES_MAX_KEYLENGTH_U32];
44
u32 rounds;
45
};
46
47
struct ppc_xts_ctx {
48
u32 key_enc[AES_MAX_KEYLENGTH_U32];
49
u32 key_dec[AES_MAX_KEYLENGTH_U32];
50
u32 key_twk[AES_MAX_KEYLENGTH_U32];
51
u32 rounds;
52
};
53
54
static void spe_begin(void)
55
{
56
/* disable preemption and save users SPE registers if required */
57
preempt_disable();
58
enable_kernel_spe();
59
}
60
61
static void spe_end(void)
62
{
63
disable_kernel_spe();
64
/* reenable preemption */
65
preempt_enable();
66
}
67
68
static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm,
69
const u8 *in_key, unsigned int key_len)
70
{
71
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
72
73
switch (key_len) {
74
case AES_KEYSIZE_128:
75
ctx->rounds = 4;
76
ppc_expand_key_128(ctx->key_enc, in_key);
77
break;
78
case AES_KEYSIZE_192:
79
ctx->rounds = 5;
80
ppc_expand_key_192(ctx->key_enc, in_key);
81
break;
82
case AES_KEYSIZE_256:
83
ctx->rounds = 6;
84
ppc_expand_key_256(ctx->key_enc, in_key);
85
break;
86
default:
87
return -EINVAL;
88
}
89
90
ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
91
92
return 0;
93
}
94
95
static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
96
unsigned int key_len)
97
{
98
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
99
int err;
100
101
err = xts_verify_key(tfm, in_key, key_len);
102
if (err)
103
return err;
104
105
key_len >>= 1;
106
107
switch (key_len) {
108
case AES_KEYSIZE_128:
109
ctx->rounds = 4;
110
ppc_expand_key_128(ctx->key_enc, in_key);
111
ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
112
break;
113
case AES_KEYSIZE_192:
114
ctx->rounds = 5;
115
ppc_expand_key_192(ctx->key_enc, in_key);
116
ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
117
break;
118
case AES_KEYSIZE_256:
119
ctx->rounds = 6;
120
ppc_expand_key_256(ctx->key_enc, in_key);
121
ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
122
break;
123
default:
124
return -EINVAL;
125
}
126
127
ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
128
129
return 0;
130
}
131
132
static int ppc_ecb_crypt(struct skcipher_request *req, bool enc)
133
{
134
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
135
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
136
struct skcipher_walk walk;
137
unsigned int nbytes;
138
int err;
139
140
err = skcipher_walk_virt(&walk, req, false);
141
142
while ((nbytes = walk.nbytes) != 0) {
143
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
144
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
145
146
spe_begin();
147
if (enc)
148
ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
149
ctx->key_enc, ctx->rounds, nbytes);
150
else
151
ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
152
ctx->key_dec, ctx->rounds, nbytes);
153
spe_end();
154
155
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
156
}
157
158
return err;
159
}
160
161
static int ppc_ecb_encrypt(struct skcipher_request *req)
162
{
163
return ppc_ecb_crypt(req, true);
164
}
165
166
static int ppc_ecb_decrypt(struct skcipher_request *req)
167
{
168
return ppc_ecb_crypt(req, false);
169
}
170
171
static int ppc_cbc_crypt(struct skcipher_request *req, bool enc)
172
{
173
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
174
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
175
struct skcipher_walk walk;
176
unsigned int nbytes;
177
int err;
178
179
err = skcipher_walk_virt(&walk, req, false);
180
181
while ((nbytes = walk.nbytes) != 0) {
182
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
183
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
184
185
spe_begin();
186
if (enc)
187
ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
188
ctx->key_enc, ctx->rounds, nbytes,
189
walk.iv);
190
else
191
ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
192
ctx->key_dec, ctx->rounds, nbytes,
193
walk.iv);
194
spe_end();
195
196
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
197
}
198
199
return err;
200
}
201
202
static int ppc_cbc_encrypt(struct skcipher_request *req)
203
{
204
return ppc_cbc_crypt(req, true);
205
}
206
207
static int ppc_cbc_decrypt(struct skcipher_request *req)
208
{
209
return ppc_cbc_crypt(req, false);
210
}
211
212
static int ppc_ctr_crypt(struct skcipher_request *req)
213
{
214
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
215
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
216
struct skcipher_walk walk;
217
unsigned int nbytes;
218
int err;
219
220
err = skcipher_walk_virt(&walk, req, false);
221
222
while ((nbytes = walk.nbytes) != 0) {
223
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
224
if (nbytes < walk.total)
225
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
226
227
spe_begin();
228
ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
229
ctx->key_enc, ctx->rounds, nbytes, walk.iv);
230
spe_end();
231
232
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
233
}
234
235
return err;
236
}
237
238
static int ppc_xts_crypt(struct skcipher_request *req, bool enc)
239
{
240
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
241
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
242
struct skcipher_walk walk;
243
unsigned int nbytes;
244
int err;
245
u32 *twk;
246
247
err = skcipher_walk_virt(&walk, req, false);
248
twk = ctx->key_twk;
249
250
while ((nbytes = walk.nbytes) != 0) {
251
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
252
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
253
254
spe_begin();
255
if (enc)
256
ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
257
ctx->key_enc, ctx->rounds, nbytes,
258
walk.iv, twk);
259
else
260
ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
261
ctx->key_dec, ctx->rounds, nbytes,
262
walk.iv, twk);
263
spe_end();
264
265
twk = NULL;
266
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
267
}
268
269
return err;
270
}
271
272
static int ppc_xts_encrypt(struct skcipher_request *req)
273
{
274
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
275
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
276
int tail = req->cryptlen % AES_BLOCK_SIZE;
277
int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
278
struct skcipher_request subreq;
279
u8 b[2][AES_BLOCK_SIZE];
280
int err;
281
282
if (req->cryptlen < AES_BLOCK_SIZE)
283
return -EINVAL;
284
285
if (tail) {
286
subreq = *req;
287
skcipher_request_set_crypt(&subreq, req->src, req->dst,
288
req->cryptlen - tail, req->iv);
289
req = &subreq;
290
}
291
292
err = ppc_xts_crypt(req, true);
293
if (err || !tail)
294
return err;
295
296
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0);
297
memcpy(b[1], b[0], tail);
298
scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0);
299
300
spe_begin();
301
ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE,
302
req->iv, NULL);
303
spe_end();
304
305
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
306
307
return 0;
308
}
309
310
static int ppc_xts_decrypt(struct skcipher_request *req)
311
{
312
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
313
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
314
int tail = req->cryptlen % AES_BLOCK_SIZE;
315
int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
316
struct skcipher_request subreq;
317
u8 b[3][AES_BLOCK_SIZE];
318
le128 twk;
319
int err;
320
321
if (req->cryptlen < AES_BLOCK_SIZE)
322
return -EINVAL;
323
324
if (tail) {
325
subreq = *req;
326
skcipher_request_set_crypt(&subreq, req->src, req->dst,
327
offset, req->iv);
328
req = &subreq;
329
}
330
331
err = ppc_xts_crypt(req, false);
332
if (err || !tail)
333
return err;
334
335
scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0);
336
337
spe_begin();
338
if (!offset)
339
ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds,
340
AES_BLOCK_SIZE);
341
342
gf128mul_x_ble(&twk, (le128 *)req->iv);
343
344
ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
345
(u8 *)&twk, NULL);
346
memcpy(b[0], b[2], tail);
347
memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail);
348
ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
349
req->iv, NULL);
350
spe_end();
351
352
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
353
354
return 0;
355
}
356
357
/*
358
* Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
359
* because the e500 platform can handle unaligned reads/writes very efficiently.
360
* This improves IPsec thoughput by another few percent. Additionally we assume
361
* that AES context is always aligned to at least 8 bytes because it is created
362
* with kmalloc() in the crypto infrastructure
363
*/
364
365
static struct skcipher_alg aes_skcipher_algs[] = {
366
{
367
.base.cra_name = "ecb(aes)",
368
.base.cra_driver_name = "ecb-ppc-spe",
369
.base.cra_priority = 300,
370
.base.cra_blocksize = AES_BLOCK_SIZE,
371
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
372
.base.cra_module = THIS_MODULE,
373
.min_keysize = AES_MIN_KEY_SIZE,
374
.max_keysize = AES_MAX_KEY_SIZE,
375
.setkey = ppc_aes_setkey_skcipher,
376
.encrypt = ppc_ecb_encrypt,
377
.decrypt = ppc_ecb_decrypt,
378
}, {
379
.base.cra_name = "cbc(aes)",
380
.base.cra_driver_name = "cbc-ppc-spe",
381
.base.cra_priority = 300,
382
.base.cra_blocksize = AES_BLOCK_SIZE,
383
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
384
.base.cra_module = THIS_MODULE,
385
.min_keysize = AES_MIN_KEY_SIZE,
386
.max_keysize = AES_MAX_KEY_SIZE,
387
.ivsize = AES_BLOCK_SIZE,
388
.setkey = ppc_aes_setkey_skcipher,
389
.encrypt = ppc_cbc_encrypt,
390
.decrypt = ppc_cbc_decrypt,
391
}, {
392
.base.cra_name = "ctr(aes)",
393
.base.cra_driver_name = "ctr-ppc-spe",
394
.base.cra_priority = 300,
395
.base.cra_blocksize = 1,
396
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
397
.base.cra_module = THIS_MODULE,
398
.min_keysize = AES_MIN_KEY_SIZE,
399
.max_keysize = AES_MAX_KEY_SIZE,
400
.ivsize = AES_BLOCK_SIZE,
401
.setkey = ppc_aes_setkey_skcipher,
402
.encrypt = ppc_ctr_crypt,
403
.decrypt = ppc_ctr_crypt,
404
.chunksize = AES_BLOCK_SIZE,
405
}, {
406
.base.cra_name = "xts(aes)",
407
.base.cra_driver_name = "xts-ppc-spe",
408
.base.cra_priority = 300,
409
.base.cra_blocksize = AES_BLOCK_SIZE,
410
.base.cra_ctxsize = sizeof(struct ppc_xts_ctx),
411
.base.cra_module = THIS_MODULE,
412
.min_keysize = AES_MIN_KEY_SIZE * 2,
413
.max_keysize = AES_MAX_KEY_SIZE * 2,
414
.ivsize = AES_BLOCK_SIZE,
415
.setkey = ppc_xts_setkey,
416
.encrypt = ppc_xts_encrypt,
417
.decrypt = ppc_xts_decrypt,
418
}
419
};
420
421
static int __init ppc_aes_mod_init(void)
422
{
423
return crypto_register_skciphers(aes_skcipher_algs,
424
ARRAY_SIZE(aes_skcipher_algs));
425
}
426
427
static void __exit ppc_aes_mod_fini(void)
428
{
429
crypto_unregister_skciphers(aes_skcipher_algs,
430
ARRAY_SIZE(aes_skcipher_algs));
431
}
432
433
module_init(ppc_aes_mod_init);
434
module_exit(ppc_aes_mod_fini);
435
436
MODULE_LICENSE("GPL");
437
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");
438
439
MODULE_ALIAS_CRYPTO("aes");
440
MODULE_ALIAS_CRYPTO("ecb(aes)");
441
MODULE_ALIAS_CRYPTO("cbc(aes)");
442
MODULE_ALIAS_CRYPTO("ctr(aes)");
443
MODULE_ALIAS_CRYPTO("xts(aes)");
444
MODULE_ALIAS_CRYPTO("aes-ppc-spe");
445
446