Path: blob/master/arch/powerpc/include/asm/book3s/32/pgtable.h
26519 views
/* SPDX-License-Identifier: GPL-2.0 */1#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H2#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H34#include <asm-generic/pgtable-nopmd.h>56/*7* The "classic" 32-bit implementation of the PowerPC MMU uses a hash8* table containing PTEs, together with a set of 16 segment registers,9* to define the virtual to physical address mapping.10*11* We use the hash table as an extended TLB, i.e. a cache of currently12* active mappings. We maintain a two-level page table tree, much13* like that used by the i386, for the sake of the Linux memory14* management code. Low-level assembler code in hash_low_32.S15* (procedure hash_page) is responsible for extracting ptes from the16* tree and putting them into the hash table when necessary, and17* updating the accessed and modified bits in the page table tree.18*/1920#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */21#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */22#define _PAGE_READ 0x004 /* software: read access allowed */23#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */24#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */25#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */26#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */27#define _PAGE_DIRTY 0x080 /* C: page changed */28#define _PAGE_ACCESSED 0x100 /* R: page referenced */29#define _PAGE_EXEC 0x200 /* software: exec allowed */30#define _PAGE_WRITE 0x400 /* software: user write access allowed */31#define _PAGE_SPECIAL 0x800 /* software: Special page */3233#ifdef CONFIG_PTE_64BIT34/* We never clear the high word of the pte */35#define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE)36#else37#define _PTE_NONE_MASK _PAGE_HASHPTE38#endif3940#define _PMD_PRESENT 041#define _PMD_PRESENT_MASK (PAGE_MASK)42#define _PMD_BAD (~PAGE_MASK)4344/* We borrow the _PAGE_READ bit to store the exclusive marker in swap PTEs. */45#define _PAGE_SWP_EXCLUSIVE _PAGE_READ4647/* And here we include common definitions */4849#define _PAGE_HPTEFLAGS _PAGE_HASHPTE5051/*52* Location of the PFN in the PTE. Most 32-bit platforms use the same53* as _PAGE_SHIFT here (ie, naturally aligned).54* Platform who don't just pre-define the value so we don't override it here.55*/56#define PTE_RPN_SHIFT (PAGE_SHIFT)5758/*59* The mask covered by the RPN must be a ULL on 32-bit platforms with60* 64-bit PTEs.61*/62#ifdef CONFIG_PTE_64BIT63#define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))64#define MAX_POSSIBLE_PHYSMEM_BITS 3665#else66#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))67#define MAX_POSSIBLE_PHYSMEM_BITS 3268#endif6970/*71* _PAGE_CHG_MASK masks of bits that are to be preserved across72* pgprot changes.73*/74#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \75_PAGE_ACCESSED | _PAGE_SPECIAL)7677/*78* We define 2 sets of base prot bits, one for basic pages (ie,79* cacheable kernel and user pages) and one for non cacheable80* pages. We always set _PAGE_COHERENT when SMP is enabled or81* the processor might need it for DMA coherency.82*/83#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)84#define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)8586#include <asm/pgtable-masks.h>8788/* Permission masks used for kernel mappings */89#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)90#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)91#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)92#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)93#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)94#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)9596#define PTE_INDEX_SIZE PTE_SHIFT97#define PMD_INDEX_SIZE 098#define PUD_INDEX_SIZE 099#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)100101#define PMD_CACHE_INDEX PMD_INDEX_SIZE102#define PUD_CACHE_INDEX PUD_INDEX_SIZE103104#ifndef __ASSEMBLY__105#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)106#define PMD_TABLE_SIZE 0107#define PUD_TABLE_SIZE 0108#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)109110/* Bits to mask out from a PMD to get to the PTE page */111#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)112#endif /* __ASSEMBLY__ */113114#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)115#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)116117/*118* The normal case is that PTEs are 32-bits and we have a 1-page119* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus120*121* For any >32-bit physical address platform, we can use the following122* two level page table layout where the pgdir is 8KB and the MS 13 bits123* are an index to the second level table. The combined pgdir/pmd first124* level has 2048 entries and the second level has 512 64-bit PTE entries.125* -Matt126*/127/* PGDIR_SHIFT determines what a top-level page table entry can map */128#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)129#define PGDIR_SIZE (1UL << PGDIR_SHIFT)130#define PGDIR_MASK (~(PGDIR_SIZE-1))131132#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)133134#ifndef __ASSEMBLY__135136int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);137void unmap_kernel_page(unsigned long va);138139#endif /* !__ASSEMBLY__ */140141/*142* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary143* value (for now) on others, from where we can start layout kernel144* virtual space that goes below PKMAP and FIXMAP145*/146147#define FIXADDR_SIZE 0148#ifdef CONFIG_KASAN149#include <asm/kasan.h>150#define FIXADDR_TOP (KASAN_SHADOW_START - PAGE_SIZE)151#else152#define FIXADDR_TOP ((unsigned long)(-PAGE_SIZE))153#endif154155/*156* ioremap_bot starts at that address. Early ioremaps move down from there,157* until mem_init() at which point this becomes the top of the vmalloc158* and ioremap space159*/160#ifdef CONFIG_HIGHMEM161#define IOREMAP_TOP PKMAP_BASE162#else163#define IOREMAP_TOP FIXADDR_START164#endif165166/* PPC32 shares vmalloc area with ioremap */167#define IOREMAP_START VMALLOC_START168#define IOREMAP_END VMALLOC_END169170/*171* Just any arbitrary offset to the start of the vmalloc VM area: the172* current 16MB value just means that there will be a 64MB "hole" after the173* physical memory until the kernel virtual memory starts. That means that174* any out-of-bounds memory accesses will hopefully be caught.175* The vmalloc() routines leaves a hole of 4kB between each vmalloced176* area for the same reason. ;)177*178* We no longer map larger than phys RAM with the BATs so we don't have179* to worry about the VMALLOC_OFFSET causing problems. We do have to worry180* about clashes between our early calls to ioremap() that start growing down181* from ioremap_base being run into the VM area allocations (growing upwards182* from VMALLOC_START). For this reason we have ioremap_bot to check when183* we actually run into our mappings setup in the early boot with the VM184* system. This really does become a problem for machines with good amounts185* of RAM. -- Cort186*/187#define VMALLOC_OFFSET (0x1000000) /* 16M */188189#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))190191#ifdef CONFIG_KASAN_VMALLOC192#define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)193#else194#define VMALLOC_END ioremap_bot195#endif196197#define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)198#define MODULES_SIZE (CONFIG_MODULES_SIZE * SZ_1M)199#define MODULES_VADDR (MODULES_END - MODULES_SIZE)200201#ifndef __ASSEMBLY__202#include <linux/sched.h>203#include <linux/threads.h>204205/* Bits to mask out from a PGD to get to the PUD page */206#define PGD_MASKED_BITS 0207208#define pgd_ERROR(e) \209pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))210/*211* Bits in a linux-style PTE. These match the bits in the212* (hardware-defined) PowerPC PTE as closely as possible.213*/214215#define pte_clear(mm, addr, ptep) \216do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)217218#define pmd_none(pmd) (!pmd_val(pmd))219#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)220#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)221static inline void pmd_clear(pmd_t *pmdp)222{223*pmdp = __pmd(0);224}225226227/*228* When flushing the tlb entry for a page, we also need to flush the hash229* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.230*/231extern int flush_hash_pages(unsigned context, unsigned long va,232unsigned long pmdval, int count);233234/* Add an HPTE to the hash table */235extern void add_hash_page(unsigned context, unsigned long va,236unsigned long pmdval);237238/* Flush an entry from the TLB/hash table */239static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)240{241if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {242unsigned long ptephys = __pa(ptep) & PAGE_MASK;243244flush_hash_pages(mm->context.id, addr, ptephys, 1);245}246}247248/*249* PTE updates. This function is called whenever an existing250* valid PTE is updated. This does -not- include set_pte_at()251* which nowadays only sets a new PTE.252*253* Depending on the type of MMU, we may need to use atomic updates254* and the PTE may be either 32 or 64 bit wide. In the later case,255* when using atomic updates, only the low part of the PTE is256* accessed atomically.257*/258static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,259unsigned long clr, unsigned long set, int huge)260{261pte_basic_t old;262263if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {264unsigned long tmp;265266asm volatile(267#ifndef CONFIG_PTE_64BIT268"1: lwarx %0, 0, %3\n"269" andc %1, %0, %4\n"270#else271"1: lwarx %L0, 0, %3\n"272" lwz %0, -4(%3)\n"273" andc %1, %L0, %4\n"274#endif275" or %1, %1, %5\n"276" stwcx. %1, 0, %3\n"277" bne- 1b"278: "=&r" (old), "=&r" (tmp), "=m" (*p)279#ifndef CONFIG_PTE_64BIT280: "r" (p),281#else282: "b" ((unsigned long)(p) + 4),283#endif284"r" (clr), "r" (set), "m" (*p)285: "cc" );286} else {287old = pte_val(*p);288289*p = __pte((old & ~(pte_basic_t)clr) | set);290}291292return old;293}294295/*296* 2.6 calls this without flushing the TLB entry; this is wrong297* for our hash-based implementation, we fix that up here.298*/299#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG300static inline int __ptep_test_and_clear_young(struct mm_struct *mm,301unsigned long addr, pte_t *ptep)302{303unsigned long old;304old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);305if (old & _PAGE_HASHPTE)306flush_hash_entry(mm, ptep, addr);307308return (old & _PAGE_ACCESSED) != 0;309}310#define ptep_test_and_clear_young(__vma, __addr, __ptep) \311__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)312313#define __HAVE_ARCH_PTEP_GET_AND_CLEAR314static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,315pte_t *ptep)316{317return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));318}319320#define __HAVE_ARCH_PTEP_SET_WRPROTECT321static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,322pte_t *ptep)323{324pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);325}326327static inline void __ptep_set_access_flags(struct vm_area_struct *vma,328pte_t *ptep, pte_t entry,329unsigned long address,330int psize)331{332unsigned long set = pte_val(entry) &333(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);334335pte_update(vma->vm_mm, address, ptep, 0, set, 0);336337flush_tlb_page(vma, address);338}339340#define __HAVE_ARCH_PTE_SAME341#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)342343#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)344#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))345346/*347* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that348* are !pte_none() && !pte_present().349*350* Format of swap PTEs (32bit PTEs):351*352* 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3353* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1354* <----------------- offset --------------------> < type -> E H P355*356* E is the exclusive marker that is not stored in swap entries.357* _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0.358*359* For 64bit PTEs, the offset is extended by 32bit.360*/361#define __swp_type(entry) ((entry).val & 0x1f)362#define __swp_offset(entry) ((entry).val >> 5)363#define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })364#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })365#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })366367static inline bool pte_swp_exclusive(pte_t pte)368{369return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;370}371372static inline pte_t pte_swp_mkexclusive(pte_t pte)373{374return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);375}376377static inline pte_t pte_swp_clear_exclusive(pte_t pte)378{379return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);380}381382/* Generic accessors to PTE bits */383static inline bool pte_read(pte_t pte)384{385return !!(pte_val(pte) & _PAGE_READ);386}387388static inline bool pte_write(pte_t pte)389{390return !!(pte_val(pte) & _PAGE_WRITE);391}392393static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }394static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }395static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }396static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }397static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }398399static inline int pte_present(pte_t pte)400{401return pte_val(pte) & _PAGE_PRESENT;402}403404static inline bool pte_hw_valid(pte_t pte)405{406return pte_val(pte) & _PAGE_PRESENT;407}408409static inline bool pte_hashpte(pte_t pte)410{411return !!(pte_val(pte) & _PAGE_HASHPTE);412}413414static inline bool pte_ci(pte_t pte)415{416return !!(pte_val(pte) & _PAGE_NO_CACHE);417}418419/*420* We only find page table entry in the last level421* Hence no need for other accessors422*/423#define pte_access_permitted pte_access_permitted424static inline bool pte_access_permitted(pte_t pte, bool write)425{426/*427* A read-only access is controlled by _PAGE_READ bit.428* We have _PAGE_READ set for WRITE429*/430if (!pte_present(pte) || !pte_read(pte))431return false;432433if (write && !pte_write(pte))434return false;435436return true;437}438439/* Conversion functions: convert a page and protection to a page entry,440* and a page entry and page directory to the page they refer to.441*442* Even if PTEs can be unsigned long long, a PFN is always an unsigned443* long for now.444*/445static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)446{447return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |448pgprot_val(pgprot));449}450451/* Generic modifiers for PTE bits */452static inline pte_t pte_wrprotect(pte_t pte)453{454return __pte(pte_val(pte) & ~_PAGE_WRITE);455}456457static inline pte_t pte_exprotect(pte_t pte)458{459return __pte(pte_val(pte) & ~_PAGE_EXEC);460}461462static inline pte_t pte_mkclean(pte_t pte)463{464return __pte(pte_val(pte) & ~_PAGE_DIRTY);465}466467static inline pte_t pte_mkold(pte_t pte)468{469return __pte(pte_val(pte) & ~_PAGE_ACCESSED);470}471472static inline pte_t pte_mkexec(pte_t pte)473{474return __pte(pte_val(pte) | _PAGE_EXEC);475}476477static inline pte_t pte_mkpte(pte_t pte)478{479return pte;480}481482static inline pte_t pte_mkwrite_novma(pte_t pte)483{484/*485* write implies read, hence set both486*/487return __pte(pte_val(pte) | _PAGE_RW);488}489490static inline pte_t pte_mkdirty(pte_t pte)491{492return __pte(pte_val(pte) | _PAGE_DIRTY);493}494495static inline pte_t pte_mkyoung(pte_t pte)496{497return __pte(pte_val(pte) | _PAGE_ACCESSED);498}499500static inline pte_t pte_mkspecial(pte_t pte)501{502return __pte(pte_val(pte) | _PAGE_SPECIAL);503}504505static inline pte_t pte_mkhuge(pte_t pte)506{507return pte;508}509510static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)511{512return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));513}514515516517/* This low level function performs the actual PTE insertion518* Setting the PTE depends on the MMU type and other factors.519*520* First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve521* the _PAGE_HASHPTE bit since we may not have invalidated the previous522* translation in the hash yet (done in a subsequent flush_tlb_xxx())523* and see we need to keep track that this PTE needs invalidating.524*525* Second case is 32-bit with 64-bit PTE. In this case, we526* can just store as long as we do the two halves in the right order527* with a barrier in between. This is possible because we take care,528* in the hash code, to pre-invalidate if the PTE was already hashed,529* which synchronizes us with any concurrent invalidation.530* In the percpu case, we fallback to the simple update preserving531* the hash bits (ie, same as the non-SMP case).532*533* Third case is 32-bit in SMP mode with 32-bit PTEs. We use the534* helper pte_update() which does an atomic update. We need to do that535* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a536* per-CPU PTE such as a kmap_atomic, we also do a simple update preserving537* the hash bits instead.538*/539static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,540pte_t *ptep, pte_t pte, int percpu)541{542if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) {543*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |544(pte_val(pte) & ~_PAGE_HASHPTE));545} else if (IS_ENABLED(CONFIG_PTE_64BIT)) {546if (pte_val(*ptep) & _PAGE_HASHPTE)547flush_hash_entry(mm, ptep, addr);548549asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" :550"=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) :551"r" (pte) : "memory");552} else {553pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);554}555}556557/*558* Macro to mark a page protection value as "uncacheable".559*/560561#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \562_PAGE_WRITETHRU)563564#define pgprot_noncached pgprot_noncached565static inline pgprot_t pgprot_noncached(pgprot_t prot)566{567return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |568_PAGE_NO_CACHE | _PAGE_GUARDED);569}570571#define pgprot_noncached_wc pgprot_noncached_wc572static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)573{574return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |575_PAGE_NO_CACHE);576}577578#define pgprot_cached pgprot_cached579static inline pgprot_t pgprot_cached(pgprot_t prot)580{581return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |582_PAGE_COHERENT);583}584585#define pgprot_cached_wthru pgprot_cached_wthru586static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)587{588return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |589_PAGE_COHERENT | _PAGE_WRITETHRU);590}591592#define pgprot_cached_noncoherent pgprot_cached_noncoherent593static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)594{595return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);596}597598#define pgprot_writecombine pgprot_writecombine599static inline pgprot_t pgprot_writecombine(pgprot_t prot)600{601return pgprot_noncached_wc(prot);602}603604#endif /* !__ASSEMBLY__ */605606#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */607608609