Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/include/asm/book3s/64/hash-4k.h
26519 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_POWERPC_BOOK3S_64_HASH_4K_H
3
#define _ASM_POWERPC_BOOK3S_64_HASH_4K_H
4
5
#define H_PTE_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 4KB = 2MB
6
#define H_PMD_INDEX_SIZE 7 // size: 8B << 7 = 1KB, maps: 2^7 x 2MB = 256MB
7
#define H_PUD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 256MB = 128GB
8
#define H_PGD_INDEX_SIZE 9 // size: 8B << 9 = 4KB, maps: 2^9 x 128GB = 64TB
9
10
/*
11
* Each context is 512TB. But on 4k we restrict our max TASK size to 64TB
12
* Hence also limit max EA bits to 64TB.
13
*/
14
#define MAX_EA_BITS_PER_CONTEXT 46
15
16
17
/*
18
* Our page table limit us to 64TB. For 64TB physical memory, we only need 64GB
19
* of vmemmap space. To better support sparse memory layout, we use 61TB
20
* linear map range, 1TB of vmalloc, 1TB of I/O and 1TB of vmememmap.
21
*/
22
#define REGION_SHIFT (40)
23
#define H_KERN_MAP_SIZE (ASM_CONST(1) << REGION_SHIFT)
24
25
/*
26
* Limits the linear mapping range
27
*/
28
#define H_MAX_PHYSMEM_BITS 46
29
30
/*
31
* Define the address range of the kernel non-linear virtual area (61TB)
32
*/
33
#define H_KERN_VIRT_START ASM_CONST(0xc0003d0000000000)
34
35
#ifndef __ASSEMBLY__
36
#define H_PTE_TABLE_SIZE (sizeof(pte_t) << H_PTE_INDEX_SIZE)
37
#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << H_PMD_INDEX_SIZE)
38
#define H_PUD_TABLE_SIZE (sizeof(pud_t) << H_PUD_INDEX_SIZE)
39
#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << H_PGD_INDEX_SIZE)
40
41
#define H_PAGE_F_GIX_SHIFT _PAGE_PA_MAX
42
#define H_PAGE_F_SECOND _RPAGE_PKEY_BIT0 /* HPTE is in 2ndary HPTEG */
43
#define H_PAGE_F_GIX (_RPAGE_RPN43 | _RPAGE_RPN42 | _RPAGE_RPN41)
44
#define H_PAGE_BUSY _RPAGE_RSV1
45
#define H_PAGE_HASHPTE _RPAGE_PKEY_BIT4
46
47
/* PTE flags to conserve for HPTE identification */
48
#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | \
49
H_PAGE_F_SECOND | H_PAGE_F_GIX)
50
/*
51
* Not supported by 4k linux page size
52
*/
53
#define H_PAGE_4K_PFN 0x0
54
#define H_PAGE_THP_HUGE 0x0
55
#define H_PAGE_COMBO 0x0
56
57
/* 8 bytes per each pte entry */
58
#define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3)
59
#define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
60
#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
61
#define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
62
63
/* memory key bits, only 8 keys supported */
64
#define H_PTE_PKEY_BIT4 0
65
#define H_PTE_PKEY_BIT3 0
66
#define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT3
67
#define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT2
68
#define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT1
69
70
71
/*
72
* On all 4K setups, remap_4k_pfn() equates to remap_pfn_range()
73
*/
74
#define remap_4k_pfn(vma, addr, pfn, prot) \
75
remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, (prot))
76
77
/*
78
* With 4K page size the real_pte machinery is all nops.
79
*/
80
static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
81
{
82
return (real_pte_t){pte};
83
}
84
85
#define __rpte_to_pte(r) ((r).pte)
86
87
static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
88
{
89
return pte_val(__rpte_to_pte(rpte)) >> H_PAGE_F_GIX_SHIFT;
90
}
91
92
#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
93
do { \
94
index = 0; \
95
shift = mmu_psize_defs[psize].shift; \
96
97
#define pte_iterate_hashed_end() } while(0)
98
99
/*
100
* We expect this to be called only for user addresses or kernel virtual
101
* addresses other than the linear mapping.
102
*/
103
#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
104
105
/*
106
* 4K PTE format is different from 64K PTE format. Saving the hash_slot is just
107
* a matter of returning the PTE bits that need to be modified. On 64K PTE,
108
* things are a little more involved and hence needs many more parameters to
109
* accomplish the same. However we want to abstract this out from the caller by
110
* keeping the prototype consistent across the two formats.
111
*/
112
static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
113
unsigned int subpg_index, unsigned long hidx,
114
int offset)
115
{
116
return (hidx << H_PAGE_F_GIX_SHIFT) &
117
(H_PAGE_F_SECOND | H_PAGE_F_GIX);
118
}
119
120
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
121
122
static inline char *get_hpte_slot_array(pmd_t *pmdp)
123
{
124
BUG();
125
return NULL;
126
}
127
128
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
129
{
130
BUG();
131
return 0;
132
}
133
134
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
135
int index)
136
{
137
BUG();
138
return 0;
139
}
140
141
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
142
unsigned int index, unsigned int hidx)
143
{
144
BUG();
145
}
146
147
static inline int hash__pmd_trans_huge(pmd_t pmd)
148
{
149
return 0;
150
}
151
152
static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
153
{
154
BUG();
155
return pmd;
156
}
157
158
extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
159
unsigned long addr, pmd_t *pmdp,
160
unsigned long clr, unsigned long set);
161
extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
162
unsigned long address, pmd_t *pmdp);
163
extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
164
pgtable_t pgtable);
165
extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
166
extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
167
unsigned long addr, pmd_t *pmdp);
168
extern int hash__has_transparent_hugepage(void);
169
#endif
170
171
#endif /* !__ASSEMBLY__ */
172
173
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_4K_H */
174
175