Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/include/asm/book3s/64/hash-64k.h
26519 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3
#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4
5
#define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB
6
#define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7
#define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8
#define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB
9
10
/*
11
* If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
12
* if we increase SECTIONS_WIDTH we will not store node details in page->flags and
13
* page_to_nid does a page->section->node lookup
14
* Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
15
* memory requirements with large number of sections.
16
* 51 bits is the max physical real address on POWER9
17
*/
18
#if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
19
#define H_MAX_PHYSMEM_BITS 51
20
#else
21
#define H_MAX_PHYSMEM_BITS 46
22
#endif
23
24
/*
25
* Each context is 512TB size. SLB miss for first context/default context
26
* is handled in the hotpath.
27
*/
28
#define MAX_EA_BITS_PER_CONTEXT 49
29
#define REGION_SHIFT MAX_EA_BITS_PER_CONTEXT
30
31
/*
32
* We use one context for each MAP area.
33
*/
34
#define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT)
35
36
/*
37
* Define the address range of the kernel non-linear virtual area
38
* 2PB
39
*/
40
#define H_KERN_VIRT_START ASM_CONST(0xc008000000000000)
41
42
/*
43
* 64k aligned address free up few of the lower bits of RPN for us
44
* We steal that here. For more deatils look at pte_pfn/pfn_pte()
45
*/
46
#define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
47
#define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
48
#define H_PAGE_BUSY _RPAGE_RSV1 /* software: PTE & hash are busy */
49
#define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */
50
51
/* memory key bits. */
52
#define H_PTE_PKEY_BIT4 _RPAGE_PKEY_BIT4
53
#define H_PTE_PKEY_BIT3 _RPAGE_PKEY_BIT3
54
#define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT2
55
#define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT1
56
#define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT0
57
58
/*
59
* We need to differentiate between explicit huge page and THP huge
60
* page, since THP huge page also need to track real subpage details
61
*/
62
#define H_PAGE_THP_HUGE H_PAGE_4K_PFN
63
64
/* PTE flags to conserve for HPTE identification */
65
#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
66
/*
67
* We use a 2K PTE page fragment and another 2K for storing
68
* real_pte_t hash index
69
* 8 bytes per each pte entry and another 8 bytes for storing
70
* slot details.
71
*/
72
#define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1)
73
#define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
74
75
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
76
#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1)
77
#else
78
#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
79
#endif
80
#define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
81
82
#ifndef __ASSEMBLY__
83
#include <asm/errno.h>
84
85
/*
86
* With 64K pages on hash table, we have a special PTE format that
87
* uses a second "half" of the page table to encode sub-page information
88
* in order to deal with 64K made of 4K HW pages. Thus we override the
89
* generic accessors and iterators here
90
*/
91
#define __real_pte __real_pte
92
static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
93
{
94
real_pte_t rpte;
95
unsigned long *hidxp;
96
97
rpte.pte = pte;
98
99
/*
100
* Ensure that we do not read the hidx before we read the PTE. Because
101
* the writer side is expected to finish writing the hidx first followed
102
* by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
103
*/
104
smp_rmb();
105
106
hidxp = (unsigned long *)(ptep + offset);
107
rpte.hidx = *hidxp;
108
return rpte;
109
}
110
111
/*
112
* shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
113
* as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a
114
* invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
115
* allocated. We dont have to zero them gain; thus save on the initialization.
116
*/
117
#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
118
#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */
119
#define HIDX_BITS(x, index) (x << (index << 2))
120
#define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL)
121
#define INVALID_RPTE_HIDX 0x0UL
122
123
static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
124
{
125
return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
126
}
127
128
/*
129
* Commit the hidx and return PTE bits that needs to be modified. The caller is
130
* expected to modify the PTE bits accordingly and commit the PTE to memory.
131
*/
132
static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
133
unsigned int subpg_index,
134
unsigned long hidx, int offset)
135
{
136
unsigned long *hidxp = (unsigned long *)(ptep + offset);
137
138
rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
139
*hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
140
141
/*
142
* Anyone reading PTE must ensure hidx bits are read after reading the
143
* PTE by using the read-side barrier smp_rmb(). __real_pte() can be
144
* used for that.
145
*/
146
smp_wmb();
147
148
/* No PTE bits to be modified, return 0x0UL */
149
return 0x0UL;
150
}
151
152
#define __rpte_to_pte(r) ((r).pte)
153
extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
154
/*
155
* Trick: we set __end to va + 64k, which happens works for
156
* a 16M page as well as we want only one iteration
157
*/
158
#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
159
do { \
160
unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
161
unsigned __split = (psize == MMU_PAGE_4K || \
162
psize == MMU_PAGE_64K_AP); \
163
shift = mmu_psize_defs[psize].shift; \
164
for (index = 0; vpn < __end; index++, \
165
vpn += (1L << (shift - VPN_SHIFT))) { \
166
if (!__split || __rpte_sub_valid(rpte, index))
167
168
#define pte_iterate_hashed_end() } } while(0)
169
170
#define pte_pagesize_index(mm, addr, pte) \
171
(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
172
173
extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
174
unsigned long pfn, unsigned long size, pgprot_t);
175
static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
176
unsigned long pfn, pgprot_t prot)
177
{
178
if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
179
WARN(1, "remap_4k_pfn called with wrong pfn value\n");
180
return -EINVAL;
181
}
182
return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
183
__pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
184
}
185
186
#define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
187
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
188
#define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
189
(sizeof(unsigned long) << PMD_INDEX_SIZE))
190
#else
191
#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
192
#endif
193
#ifdef CONFIG_HUGETLB_PAGE
194
#define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \
195
(sizeof(unsigned long) << PUD_INDEX_SIZE))
196
#else
197
#define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
198
#endif
199
#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
200
201
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
202
static inline char *get_hpte_slot_array(pmd_t *pmdp)
203
{
204
/*
205
* The hpte hindex is stored in the pgtable whose address is in the
206
* second half of the PMD
207
*
208
* Order this load with the test for pmd_trans_huge in the caller
209
*/
210
smp_rmb();
211
return *(char **)(pmdp + PTRS_PER_PMD);
212
213
214
}
215
/*
216
* The linux hugepage PMD now include the pmd entries followed by the address
217
* to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
218
* [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
219
* each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
220
* with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
221
*
222
* The top three bits are intentionally left as zero. This memory location
223
* are also used as normal page PTE pointers. So if we have any pointers
224
* left around while we collapse a hugepage, we need to make sure
225
* _PAGE_PRESENT bit of that is zero when we look at them
226
*/
227
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
228
{
229
return hpte_slot_array[index] & 0x1;
230
}
231
232
static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
233
int index)
234
{
235
return hpte_slot_array[index] >> 1;
236
}
237
238
static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
239
unsigned int index, unsigned int hidx)
240
{
241
hpte_slot_array[index] = (hidx << 1) | 0x1;
242
}
243
244
/*
245
*
246
* For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
247
* page. The hugetlbfs page table walking and mangling paths are totally
248
* separated form the core VM paths and they're differentiated by
249
* VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
250
*
251
* pmd_trans_huge() is defined as false at build time if
252
* CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
253
* time in such case.
254
*
255
* For ppc64 we need to differntiate from explicit hugepages from THP, because
256
* for THP we also track the subpage details at the pmd level. We don't do
257
* that for explicit huge pages.
258
*
259
*/
260
static inline int hash__pmd_trans_huge(pmd_t pmd)
261
{
262
return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
263
(_PAGE_PTE | H_PAGE_THP_HUGE));
264
}
265
266
static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
267
{
268
return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
269
}
270
271
extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
272
unsigned long addr, pmd_t *pmdp,
273
unsigned long clr, unsigned long set);
274
extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
275
unsigned long address, pmd_t *pmdp);
276
extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
277
pgtable_t pgtable);
278
extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
279
extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
280
unsigned long addr, pmd_t *pmdp);
281
extern int hash__has_transparent_hugepage(void);
282
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283
284
#endif /* __ASSEMBLY__ */
285
286
#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
287
288