Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/include/asm/book3s/64/mmu-hash.h
26519 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3
#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
4
/*
5
* PowerPC64 memory management structures
6
*
7
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
8
* PPC64 rework.
9
*/
10
11
#include <asm/page.h>
12
#include <asm/bug.h>
13
#include <asm/asm-const.h>
14
15
/*
16
* This is necessary to get the definition of PGTABLE_RANGE which we
17
* need for various slices related matters. Note that this isn't the
18
* complete pgtable.h but only a portion of it.
19
*/
20
#include <asm/book3s/64/pgtable.h>
21
#include <asm/book3s/64/slice.h>
22
#include <asm/task_size_64.h>
23
#include <asm/cpu_has_feature.h>
24
25
/*
26
* SLB
27
*/
28
29
#define SLB_NUM_BOLTED 2
30
#define SLB_CACHE_ENTRIES 8
31
#define SLB_MIN_SIZE 32
32
33
/* Bits in the SLB ESID word */
34
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
35
36
/* Bits in the SLB VSID word */
37
#define SLB_VSID_SHIFT 12
38
#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
39
#define SLB_VSID_SHIFT_1T 24
40
#define SLB_VSID_SSIZE_SHIFT 62
41
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
42
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
43
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
44
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
45
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
46
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
47
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
48
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
49
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
50
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
51
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
52
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
53
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
54
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
55
56
#define SLB_VSID_KERNEL (SLB_VSID_KP)
57
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
58
59
#define SLBIE_C (0x08000000)
60
#define SLBIE_SSIZE_SHIFT 25
61
62
/*
63
* Hash table
64
*/
65
66
#define HPTES_PER_GROUP 8
67
68
#define HPTE_V_SSIZE_SHIFT 62
69
#define HPTE_V_AVPN_SHIFT 7
70
#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
71
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
72
#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
73
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
74
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
75
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
81
/*
82
* ISA 3.0 has a different HPTE format.
83
*/
84
#define HPTE_R_3_0_SSIZE_SHIFT 58
85
#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
86
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
87
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
88
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
89
#define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000)
90
#define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000)
91
#define HPTE_R_RPN_SHIFT 12
92
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
93
#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
94
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
95
#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
96
#define HPTE_R_N ASM_CONST(0x0000000000000004)
97
#define HPTE_R_G ASM_CONST(0x0000000000000008)
98
#define HPTE_R_M ASM_CONST(0x0000000000000010)
99
#define HPTE_R_I ASM_CONST(0x0000000000000020)
100
#define HPTE_R_W ASM_CONST(0x0000000000000040)
101
#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
102
#define HPTE_R_C ASM_CONST(0x0000000000000080)
103
#define HPTE_R_R ASM_CONST(0x0000000000000100)
104
#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
105
#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
106
#define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400)
107
#define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200)
108
#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
109
110
#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
111
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
112
113
/* Values for PP (assumes Ks=0, Kp=1) */
114
#define PP_RWXX 0 /* Supervisor read/write, User none */
115
#define PP_RWRX 1 /* Supervisor read/write, User read */
116
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
117
#define PP_RXRX 3 /* Supervisor read, User read */
118
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
119
120
/* Fields for tlbiel instruction in architecture 2.06 */
121
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
122
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
123
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
124
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
125
#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
126
#define TLBIEL_INVAL_SET_SHIFT 12
127
128
#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
129
#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
130
#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
131
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
132
133
#ifndef __ASSEMBLY__
134
135
struct mmu_hash_ops {
136
void (*hpte_invalidate)(unsigned long slot,
137
unsigned long vpn,
138
int bpsize, int apsize,
139
int ssize, int local);
140
long (*hpte_updatepp)(unsigned long slot,
141
unsigned long newpp,
142
unsigned long vpn,
143
int bpsize, int apsize,
144
int ssize, unsigned long flags);
145
void (*hpte_updateboltedpp)(unsigned long newpp,
146
unsigned long ea,
147
int psize, int ssize);
148
long (*hpte_insert)(unsigned long hpte_group,
149
unsigned long vpn,
150
unsigned long prpn,
151
unsigned long rflags,
152
unsigned long vflags,
153
int psize, int apsize,
154
int ssize);
155
long (*hpte_remove)(unsigned long hpte_group);
156
int (*hpte_removebolted)(unsigned long ea,
157
int psize, int ssize);
158
void (*flush_hash_range)(unsigned long number, int local);
159
void (*hugepage_invalidate)(unsigned long vsid,
160
unsigned long addr,
161
unsigned char *hpte_slot_array,
162
int psize, int ssize, int local);
163
int (*resize_hpt)(unsigned long shift);
164
/*
165
* Special for kexec.
166
* To be called in real mode with interrupts disabled. No locks are
167
* taken as such, concurrent access on pre POWER5 hardware could result
168
* in a deadlock.
169
* The linear mapping is destroyed as well.
170
*/
171
void (*hpte_clear_all)(void);
172
};
173
extern struct mmu_hash_ops mmu_hash_ops;
174
175
struct hash_pte {
176
__be64 v;
177
__be64 r;
178
};
179
180
extern struct hash_pte *htab_address;
181
extern unsigned long htab_size_bytes;
182
extern unsigned long htab_hash_mask;
183
184
185
static inline int shift_to_mmu_psize(unsigned int shift)
186
{
187
int psize;
188
189
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
190
if (mmu_psize_defs[psize].shift == shift)
191
return psize;
192
return -1;
193
}
194
195
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
196
{
197
if (mmu_psize_defs[mmu_psize].shift)
198
return mmu_psize_defs[mmu_psize].shift;
199
BUG();
200
}
201
202
static inline unsigned int ap_to_shift(unsigned long ap)
203
{
204
int psize;
205
206
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
207
if (mmu_psize_defs[psize].ap == ap)
208
return mmu_psize_defs[psize].shift;
209
}
210
211
return -1;
212
}
213
214
static inline unsigned long get_sllp_encoding(int psize)
215
{
216
unsigned long sllp;
217
218
sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
219
((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
220
return sllp;
221
}
222
223
#endif /* __ASSEMBLY__ */
224
225
/*
226
* Segment sizes.
227
* These are the values used by hardware in the B field of
228
* SLB entries and the first dword of MMU hashtable entries.
229
* The B field is 2 bits; the values 2 and 3 are unused and reserved.
230
*/
231
#define MMU_SEGSIZE_256M 0
232
#define MMU_SEGSIZE_1T 1
233
234
/*
235
* encode page number shift.
236
* in order to fit the 78 bit va in a 64 bit variable we shift the va by
237
* 12 bits. This enable us to address upto 76 bit va.
238
* For hpt hash from a va we can ignore the page size bits of va and for
239
* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
240
* we work in all cases including 4k page size.
241
*/
242
#define VPN_SHIFT 12
243
244
/*
245
* HPTE Large Page (LP) details
246
*/
247
#define LP_SHIFT 12
248
#define LP_BITS 8
249
#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
250
251
#ifndef __ASSEMBLY__
252
253
static inline int slb_vsid_shift(int ssize)
254
{
255
if (ssize == MMU_SEGSIZE_256M)
256
return SLB_VSID_SHIFT;
257
return SLB_VSID_SHIFT_1T;
258
}
259
260
static inline int segment_shift(int ssize)
261
{
262
if (ssize == MMU_SEGSIZE_256M)
263
return SID_SHIFT;
264
return SID_SHIFT_1T;
265
}
266
267
/*
268
* This array is indexed by the LP field of the HPTE second dword.
269
* Since this field may contain some RPN bits, some entries are
270
* replicated so that we get the same value irrespective of RPN.
271
* The top 4 bits are the page size index (MMU_PAGE_*) for the
272
* actual page size, the bottom 4 bits are the base page size.
273
*/
274
extern u8 hpte_page_sizes[1 << LP_BITS];
275
276
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
277
bool is_base_size)
278
{
279
unsigned int i, lp;
280
281
if (!(h & HPTE_V_LARGE))
282
return 1ul << 12;
283
284
/* Look at the 8 bit LP value */
285
lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
286
i = hpte_page_sizes[lp];
287
if (!i)
288
return 0;
289
if (!is_base_size)
290
i >>= 4;
291
return 1ul << mmu_psize_defs[i & 0xf].shift;
292
}
293
294
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
295
{
296
return __hpte_page_size(h, l, 0);
297
}
298
299
static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
300
{
301
return __hpte_page_size(h, l, 1);
302
}
303
304
/*
305
* The current system page and segment sizes
306
*/
307
extern int mmu_kernel_ssize;
308
extern int mmu_highuser_ssize;
309
extern u16 mmu_slb_size;
310
extern unsigned long tce_alloc_start, tce_alloc_end;
311
312
/*
313
* If the processor supports 64k normal pages but not 64k cache
314
* inhibited pages, we have to be prepared to switch processes
315
* to use 4k pages when they create cache-inhibited mappings.
316
* If this is the case, mmu_ci_restrictions will be set to 1.
317
*/
318
extern int mmu_ci_restrictions;
319
320
/*
321
* This computes the AVPN and B fields of the first dword of a HPTE,
322
* for use when we want to match an existing PTE. The bottom 7 bits
323
* of the returned value are zero.
324
*/
325
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
326
int ssize)
327
{
328
unsigned long v;
329
/*
330
* The AVA field omits the low-order 23 bits of the 78 bits VA.
331
* These bits are not needed in the PTE, because the
332
* low-order b of these bits are part of the byte offset
333
* into the virtual page and, if b < 23, the high-order
334
* 23-b of these bits are always used in selecting the
335
* PTEGs to be searched
336
*/
337
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
338
v <<= HPTE_V_AVPN_SHIFT;
339
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
340
return v;
341
}
342
343
/*
344
* ISA v3.0 defines a new HPTE format, which differs from the old
345
* format in having smaller AVPN and ARPN fields, and the B field
346
* in the second dword instead of the first.
347
*/
348
static inline unsigned long hpte_old_to_new_v(unsigned long v)
349
{
350
/* trim AVPN, drop B */
351
return v & HPTE_V_COMMON_BITS;
352
}
353
354
static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
355
{
356
/* move B field from 1st to 2nd dword, trim ARPN */
357
return (r & ~HPTE_R_3_0_SSIZE_MASK) |
358
(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
359
}
360
361
static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
362
{
363
/* insert B field */
364
return (v & HPTE_V_COMMON_BITS) |
365
((r & HPTE_R_3_0_SSIZE_MASK) <<
366
(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
367
}
368
369
static inline unsigned long hpte_new_to_old_r(unsigned long r)
370
{
371
/* clear out B field */
372
return r & ~HPTE_R_3_0_SSIZE_MASK;
373
}
374
375
static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
376
{
377
unsigned long hpte_v;
378
379
hpte_v = be64_to_cpu(hptep->v);
380
if (cpu_has_feature(CPU_FTR_ARCH_300))
381
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
382
return hpte_v;
383
}
384
385
/*
386
* This function sets the AVPN and L fields of the HPTE appropriately
387
* using the base page size and actual page size.
388
*/
389
static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
390
int actual_psize, int ssize)
391
{
392
unsigned long v;
393
v = hpte_encode_avpn(vpn, base_psize, ssize);
394
if (actual_psize != MMU_PAGE_4K)
395
v |= HPTE_V_LARGE;
396
return v;
397
}
398
399
/*
400
* This function sets the ARPN, and LP fields of the HPTE appropriately
401
* for the page size. We assume the pa is already "clean" that is properly
402
* aligned for the requested page size
403
*/
404
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
405
int actual_psize)
406
{
407
/* A 4K page needs no special encoding */
408
if (actual_psize == MMU_PAGE_4K)
409
return pa & HPTE_R_RPN;
410
else {
411
unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
412
unsigned int shift = mmu_psize_defs[actual_psize].shift;
413
return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
414
}
415
}
416
417
/*
418
* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
419
*/
420
static inline unsigned long hpt_vpn(unsigned long ea,
421
unsigned long vsid, int ssize)
422
{
423
unsigned long mask;
424
int s_shift = segment_shift(ssize);
425
426
mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
427
return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
428
}
429
430
/*
431
* This hashes a virtual address
432
*/
433
static inline unsigned long hpt_hash(unsigned long vpn,
434
unsigned int shift, int ssize)
435
{
436
unsigned long mask;
437
unsigned long hash, vsid;
438
439
/* VPN_SHIFT can be atmost 12 */
440
if (ssize == MMU_SEGSIZE_256M) {
441
mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
442
hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
443
((vpn & mask) >> (shift - VPN_SHIFT));
444
} else {
445
mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
446
vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
447
hash = vsid ^ (vsid << 25) ^
448
((vpn & mask) >> (shift - VPN_SHIFT)) ;
449
}
450
return hash & 0x7fffffffffUL;
451
}
452
453
#define HPTE_LOCAL_UPDATE 0x1
454
#define HPTE_NOHPTE_UPDATE 0x2
455
#define HPTE_USE_KERNEL_KEY 0x4
456
457
long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,
458
unsigned long rlags, unsigned long vflags, int psize, int ssize);
459
extern int __hash_page_4K(unsigned long ea, unsigned long access,
460
unsigned long vsid, pte_t *ptep, unsigned long trap,
461
unsigned long flags, int ssize, int subpage_prot);
462
extern int __hash_page_64K(unsigned long ea, unsigned long access,
463
unsigned long vsid, pte_t *ptep, unsigned long trap,
464
unsigned long flags, int ssize);
465
struct mm_struct;
466
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
467
extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
468
unsigned long access, unsigned long trap,
469
unsigned long flags);
470
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
471
unsigned long dsisr);
472
void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);
473
int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);
474
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
475
pte_t *ptep, unsigned long trap, unsigned long flags,
476
int ssize, unsigned int shift, unsigned int mmu_psize);
477
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
478
extern int __hash_page_thp(unsigned long ea, unsigned long access,
479
unsigned long vsid, pmd_t *pmdp, unsigned long trap,
480
unsigned long flags, int ssize, unsigned int psize);
481
#else
482
static inline int __hash_page_thp(unsigned long ea, unsigned long access,
483
unsigned long vsid, pmd_t *pmdp,
484
unsigned long trap, unsigned long flags,
485
int ssize, unsigned int psize)
486
{
487
BUG();
488
return -1;
489
}
490
#endif
491
extern void hash_failure_debug(unsigned long ea, unsigned long access,
492
unsigned long vsid, unsigned long trap,
493
int ssize, int psize, int lpsize,
494
unsigned long pte);
495
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
496
unsigned long pstart, unsigned long prot,
497
int psize, int ssize);
498
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
499
int psize, int ssize);
500
extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
501
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
502
503
extern void hash__setup_new_exec(void);
504
505
#ifdef CONFIG_PPC_PSERIES
506
void hpte_init_pseries(void);
507
#else
508
static inline void hpte_init_pseries(void) { }
509
#endif
510
511
extern void hpte_init_native(void);
512
513
struct slb_entry {
514
u64 esid;
515
u64 vsid;
516
};
517
518
extern void slb_initialize(void);
519
void slb_flush_and_restore_bolted(void);
520
void slb_flush_all_realmode(void);
521
void __slb_restore_bolted_realmode(void);
522
void slb_restore_bolted_realmode(void);
523
void slb_save_contents(struct slb_entry *slb_ptr);
524
void slb_dump_contents(struct slb_entry *slb_ptr);
525
526
extern void slb_vmalloc_update(void);
527
void preload_new_slb_context(unsigned long start, unsigned long sp);
528
529
#ifdef CONFIG_PPC_64S_HASH_MMU
530
void slb_set_size(u16 size);
531
#else
532
static inline void slb_set_size(u16 size) { }
533
#endif
534
535
#endif /* __ASSEMBLY__ */
536
537
/*
538
* VSID allocation (256MB segment)
539
*
540
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
541
* from mmu context id and effective segment id of the address.
542
*
543
* For user processes max context id is limited to MAX_USER_CONTEXT.
544
* more details in get_user_context
545
*
546
* For kernel space get_kernel_context
547
*
548
* The proto-VSIDs are then scrambled into real VSIDs with the
549
* multiplicative hash:
550
*
551
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
552
*
553
* VSID_MULTIPLIER is prime, so in particular it is
554
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
555
* Because the modulus is 2^n-1 we can compute it efficiently without
556
* a divide or extra multiply (see below). The scramble function gives
557
* robust scattering in the hash table (at least based on some initial
558
* results).
559
*
560
* We use VSID 0 to indicate an invalid VSID. The means we can't use context id
561
* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
562
* will produce a VSID of 0.
563
*
564
* We also need to avoid the last segment of the last context, because that
565
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
566
* because of the modulo operation in vsid scramble.
567
*/
568
569
/*
570
* Max Va bits we support as of now is 68 bits. We want 19 bit
571
* context ID.
572
* Restrictions:
573
* GPU has restrictions of not able to access beyond 128TB
574
* (47 bit effective address). We also cannot do more than 20bit PID.
575
* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
576
* to 16 bits (ie, we can only have 2^16 pids at the same time).
577
*/
578
#define VA_BITS 68
579
#define CONTEXT_BITS 19
580
#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
581
#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
582
583
#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
584
#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
585
586
/*
587
* Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need
588
* to use more than one context for linear mapping the kernel.
589
* For vmalloc and memmap, we use just one context with 512TB. With 64 byte
590
* struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).
591
*/
592
#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)
593
#define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))
594
#else
595
#define MAX_KERNEL_CTX_CNT 1
596
#endif
597
598
#define MAX_VMALLOC_CTX_CNT 1
599
#define MAX_IO_CTX_CNT 1
600
#define MAX_VMEMMAP_CTX_CNT 1
601
602
/*
603
* 256MB segment
604
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
605
* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
606
* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
607
* context maps 2^49 bytes (512TB).
608
*
609
* We also need to avoid the last segment of the last context, because that
610
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
611
* because of the modulo operation in vsid scramble.
612
*
613
*/
614
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
615
616
// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel
617
#define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \
618
MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)
619
620
/*
621
* For platforms that support on 65bit VA we limit the context bits
622
*/
623
#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
624
625
/*
626
* This should be computed such that protovosid * vsid_mulitplier
627
* doesn't overflow 64 bits. The vsid_mutliplier should also be
628
* co-prime to vsid_modulus. We also need to make sure that number
629
* of bits in multiplied result (dividend) is less than twice the number of
630
* protovsid bits for our modulus optmization to work.
631
*
632
* The below table shows the current values used.
633
* |-------+------------+----------------------+------------+-------------------|
634
* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
635
* |-------+------------+----------------------+------------+-------------------|
636
* | 1T | 24 | 25 | 49 | 50 |
637
* |-------+------------+----------------------+------------+-------------------|
638
* | 256MB | 24 | 37 | 61 | 74 |
639
* |-------+------------+----------------------+------------+-------------------|
640
*
641
* |-------+------------+----------------------+------------+--------------------|
642
* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
643
* |-------+------------+----------------------+------------+--------------------|
644
* | 1T | 24 | 28 | 52 | 56 |
645
* |-------+------------+----------------------+------------+--------------------|
646
* | 256MB | 24 | 40 | 64 | 80 |
647
* |-------+------------+----------------------+------------+--------------------|
648
*
649
*/
650
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
651
#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
652
#define VSID_BITS_65_256M (65 - SID_SHIFT)
653
/*
654
* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
655
*/
656
#define VSID_MULINV_256M ASM_CONST(665548017062)
657
658
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
659
#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
660
#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
661
#define VSID_MULINV_1T ASM_CONST(209034062)
662
663
/* 1TB VSID reserved for VRMA */
664
#define VRMA_VSID 0x1ffffffUL
665
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
666
667
/* 4 bits per slice and we have one slice per 1TB */
668
#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
669
#define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE)
670
#define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41)
671
#ifndef __ASSEMBLY__
672
673
#ifdef CONFIG_PPC_SUBPAGE_PROT
674
/*
675
* For the sub-page protection option, we extend the PGD with one of
676
* these. Basically we have a 3-level tree, with the top level being
677
* the protptrs array. To optimize speed and memory consumption when
678
* only addresses < 4GB are being protected, pointers to the first
679
* four pages of sub-page protection words are stored in the low_prot
680
* array.
681
* Each page of sub-page protection words protects 1GB (4 bytes
682
* protects 64k). For the 3-level tree, each page of pointers then
683
* protects 8TB.
684
*/
685
struct subpage_prot_table {
686
unsigned long maxaddr; /* only addresses < this are protected */
687
unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
688
unsigned int *low_prot[4];
689
};
690
691
#define SBP_L1_BITS (PAGE_SHIFT - 2)
692
#define SBP_L2_BITS (PAGE_SHIFT - 3)
693
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
694
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
695
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
696
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
697
698
extern void subpage_prot_free(struct mm_struct *mm);
699
#else
700
static inline void subpage_prot_free(struct mm_struct *mm) {}
701
#endif /* CONFIG_PPC_SUBPAGE_PROT */
702
703
/*
704
* One bit per slice. We have lower slices which cover 256MB segments
705
* upto 4G range. That gets us 16 low slices. For the rest we track slices
706
* in 1TB size.
707
*/
708
struct slice_mask {
709
u64 low_slices;
710
DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
711
};
712
713
struct hash_mm_context {
714
u16 user_psize; /* page size index */
715
716
/* SLB page size encodings*/
717
unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];
718
unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
719
unsigned long slb_addr_limit;
720
#ifdef CONFIG_PPC_64K_PAGES
721
struct slice_mask mask_64k;
722
#endif
723
struct slice_mask mask_4k;
724
#ifdef CONFIG_HUGETLB_PAGE
725
struct slice_mask mask_16m;
726
struct slice_mask mask_16g;
727
#endif
728
729
#ifdef CONFIG_PPC_SUBPAGE_PROT
730
struct subpage_prot_table *spt;
731
#endif /* CONFIG_PPC_SUBPAGE_PROT */
732
};
733
734
#if 0
735
/*
736
* The code below is equivalent to this function for arguments
737
* < 2^VSID_BITS, which is all this should ever be called
738
* with. However gcc is not clever enough to compute the
739
* modulus (2^n-1) without a second multiply.
740
*/
741
#define vsid_scramble(protovsid, size) \
742
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
743
744
/* simplified form avoiding mod operation */
745
#define vsid_scramble(protovsid, size) \
746
({ \
747
unsigned long x; \
748
x = (protovsid) * VSID_MULTIPLIER_##size; \
749
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
750
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
751
})
752
753
#else /* 1 */
754
static inline unsigned long vsid_scramble(unsigned long protovsid,
755
unsigned long vsid_multiplier, int vsid_bits)
756
{
757
unsigned long vsid;
758
unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
759
/*
760
* We have same multipler for both 256 and 1T segements now
761
*/
762
vsid = protovsid * vsid_multiplier;
763
vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
764
return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
765
}
766
767
#endif /* 1 */
768
769
/* Returns the segment size indicator for a user address */
770
static inline int user_segment_size(unsigned long addr)
771
{
772
/* Use 1T segments if possible for addresses >= 1T */
773
if (addr >= (1UL << SID_SHIFT_1T))
774
return mmu_highuser_ssize;
775
return MMU_SEGSIZE_256M;
776
}
777
778
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
779
int ssize)
780
{
781
unsigned long va_bits = VA_BITS;
782
unsigned long vsid_bits;
783
unsigned long protovsid;
784
785
/*
786
* Bad address. We return VSID 0 for that
787
*/
788
if ((ea & EA_MASK) >= H_PGTABLE_RANGE)
789
return 0;
790
791
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
792
va_bits = 65;
793
794
if (ssize == MMU_SEGSIZE_256M) {
795
vsid_bits = va_bits - SID_SHIFT;
796
protovsid = (context << ESID_BITS) |
797
((ea >> SID_SHIFT) & ESID_BITS_MASK);
798
return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
799
}
800
/* 1T segment */
801
vsid_bits = va_bits - SID_SHIFT_1T;
802
protovsid = (context << ESID_BITS_1T) |
803
((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
804
return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
805
}
806
807
/*
808
* For kernel space, we use context ids as
809
* below. Range is 512TB per context.
810
*
811
* 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff]
812
* 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff]
813
* 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff]
814
* 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff]
815
*
816
* vmap, IO, vmemap
817
*
818
* 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff]
819
* 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff]
820
* 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff]
821
*
822
*/
823
static inline unsigned long get_kernel_context(unsigned long ea)
824
{
825
unsigned long region_id = get_region_id(ea);
826
unsigned long ctx;
827
/*
828
* Depending on Kernel config, kernel region can have one context
829
* or more.
830
*/
831
if (region_id == LINEAR_MAP_REGION_ID) {
832
/*
833
* We already verified ea to be not beyond the addr limit.
834
*/
835
ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);
836
} else
837
ctx = region_id + MAX_KERNEL_CTX_CNT - 1;
838
return ctx;
839
}
840
841
/*
842
* This is only valid for addresses >= PAGE_OFFSET
843
*/
844
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
845
{
846
unsigned long context;
847
848
if (!is_kernel_addr(ea))
849
return 0;
850
851
context = get_kernel_context(ea);
852
return get_vsid(context, ea, ssize);
853
}
854
855
unsigned htab_shift_for_mem_size(unsigned long mem_size);
856
857
enum slb_index {
858
LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
859
KSTACK_INDEX = 1, /* Kernel stack map */
860
};
861
862
#define slb_esid_mask(ssize) \
863
(((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)
864
865
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
866
enum slb_index index)
867
{
868
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
869
}
870
871
static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
872
unsigned long flags)
873
{
874
return (vsid << slb_vsid_shift(ssize)) | flags |
875
((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);
876
}
877
878
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
879
unsigned long flags)
880
{
881
return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
882
}
883
884
#endif /* __ASSEMBLY__ */
885
#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
886
887