Path: blob/master/arch/powerpc/include/asm/book3s/64/mmu-hash.h
53567 views
/* SPDX-License-Identifier: GPL-2.0-or-later */1#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_2#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_3/*4* PowerPC64 memory management structures5*6* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>7* PPC64 rework.8*/910#include <asm/page.h>11#include <asm/bug.h>12#include <asm/asm-const.h>1314/*15* This is necessary to get the definition of PGTABLE_RANGE which we16* need for various slices related matters. Note that this isn't the17* complete pgtable.h but only a portion of it.18*/19#include <asm/book3s/64/pgtable.h>20#include <asm/book3s/64/slice.h>21#include <asm/task_size_64.h>22#include <asm/cpu_has_feature.h>2324/*25* SLB26*/2728#define SLB_NUM_BOLTED 229#define SLB_CACHE_ENTRIES 830#define SLB_MIN_SIZE 323132/* Bits in the SLB ESID word */33#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */3435/* Bits in the SLB VSID word */36#define SLB_VSID_SHIFT 1237#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT38#define SLB_VSID_SHIFT_1T 2439#define SLB_VSID_SSIZE_SHIFT 6240#define SLB_VSID_B ASM_CONST(0xc000000000000000)41#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)42#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)43#define SLB_VSID_KS ASM_CONST(0x0000000000000800)44#define SLB_VSID_KP ASM_CONST(0x0000000000000400)45#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */46#define SLB_VSID_L ASM_CONST(0x0000000000000100)47#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */48#define SLB_VSID_LP ASM_CONST(0x0000000000000030)49#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)50#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)51#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)52#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)53#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)5455#define SLB_VSID_KERNEL (SLB_VSID_KP)56#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)5758#define SLBIE_C (0x08000000)59#define SLBIE_SSIZE_SHIFT 256061/*62* Hash table63*/6465#define HPTES_PER_GROUP 86667#define HPTE_V_SSIZE_SHIFT 6268#define HPTE_V_AVPN_SHIFT 769#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)70#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)71#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)72#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)73#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))74#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)75#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)76#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)77#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)78#define HPTE_V_VALID ASM_CONST(0x0000000000000001)7980/*81* ISA 3.0 has a different HPTE format.82*/83#define HPTE_R_3_0_SSIZE_SHIFT 5884#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)85#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)86#define HPTE_R_TS ASM_CONST(0x4000000000000000)87#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)88#define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000)89#define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000)90#define HPTE_R_RPN_SHIFT 1291#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)92#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)93#define HPTE_R_PP ASM_CONST(0x0000000000000003)94#define HPTE_R_PPP ASM_CONST(0x8000000000000003)95#define HPTE_R_N ASM_CONST(0x0000000000000004)96#define HPTE_R_G ASM_CONST(0x0000000000000008)97#define HPTE_R_M ASM_CONST(0x0000000000000010)98#define HPTE_R_I ASM_CONST(0x0000000000000020)99#define HPTE_R_W ASM_CONST(0x0000000000000040)100#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)101#define HPTE_R_C ASM_CONST(0x0000000000000080)102#define HPTE_R_R ASM_CONST(0x0000000000000100)103#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)104#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)105#define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400)106#define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200)107#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)108109#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)110#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)111112/* Values for PP (assumes Ks=0, Kp=1) */113#define PP_RWXX 0 /* Supervisor read/write, User none */114#define PP_RWRX 1 /* Supervisor read/write, User read */115#define PP_RWRW 2 /* Supervisor read/write, User read/write */116#define PP_RXRX 3 /* Supervisor read, User read */117#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */118119/* Fields for tlbiel instruction in architecture 2.06 */120#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */121#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */122#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */123#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */124#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */125#define TLBIEL_INVAL_SET_SHIFT 12126127#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */128#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */129#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */130#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */131132#ifndef __ASSEMBLER__133134struct mmu_hash_ops {135void (*hpte_invalidate)(unsigned long slot,136unsigned long vpn,137int bpsize, int apsize,138int ssize, int local);139long (*hpte_updatepp)(unsigned long slot,140unsigned long newpp,141unsigned long vpn,142int bpsize, int apsize,143int ssize, unsigned long flags);144void (*hpte_updateboltedpp)(unsigned long newpp,145unsigned long ea,146int psize, int ssize);147long (*hpte_insert)(unsigned long hpte_group,148unsigned long vpn,149unsigned long prpn,150unsigned long rflags,151unsigned long vflags,152int psize, int apsize,153int ssize);154long (*hpte_remove)(unsigned long hpte_group);155int (*hpte_removebolted)(unsigned long ea,156int psize, int ssize);157void (*flush_hash_range)(unsigned long number, int local);158void (*hugepage_invalidate)(unsigned long vsid,159unsigned long addr,160unsigned char *hpte_slot_array,161int psize, int ssize, int local);162int (*resize_hpt)(unsigned long shift);163/*164* Special for kexec.165* To be called in real mode with interrupts disabled. No locks are166* taken as such, concurrent access on pre POWER5 hardware could result167* in a deadlock.168* The linear mapping is destroyed as well.169*/170void (*hpte_clear_all)(void);171};172extern struct mmu_hash_ops mmu_hash_ops;173174struct hash_pte {175__be64 v;176__be64 r;177};178179extern struct hash_pte *htab_address;180extern unsigned long htab_size_bytes;181extern unsigned long htab_hash_mask;182183184static inline int shift_to_mmu_psize(unsigned int shift)185{186int psize;187188for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)189if (mmu_psize_defs[psize].shift == shift)190return psize;191return -1;192}193194static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)195{196if (mmu_psize_defs[mmu_psize].shift)197return mmu_psize_defs[mmu_psize].shift;198BUG();199}200201static inline unsigned int ap_to_shift(unsigned long ap)202{203int psize;204205for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {206if (mmu_psize_defs[psize].ap == ap)207return mmu_psize_defs[psize].shift;208}209210return -1;211}212213static inline unsigned long get_sllp_encoding(int psize)214{215unsigned long sllp;216217sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |218((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);219return sllp;220}221222#endif /* __ASSEMBLER__ */223224/*225* Segment sizes.226* These are the values used by hardware in the B field of227* SLB entries and the first dword of MMU hashtable entries.228* The B field is 2 bits; the values 2 and 3 are unused and reserved.229*/230#define MMU_SEGSIZE_256M 0231#define MMU_SEGSIZE_1T 1232233/*234* encode page number shift.235* in order to fit the 78 bit va in a 64 bit variable we shift the va by236* 12 bits. This enable us to address upto 76 bit va.237* For hpt hash from a va we can ignore the page size bits of va and for238* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure239* we work in all cases including 4k page size.240*/241#define VPN_SHIFT 12242243/*244* HPTE Large Page (LP) details245*/246#define LP_SHIFT 12247#define LP_BITS 8248#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)249250#ifndef __ASSEMBLER__251252static inline int slb_vsid_shift(int ssize)253{254if (ssize == MMU_SEGSIZE_256M)255return SLB_VSID_SHIFT;256return SLB_VSID_SHIFT_1T;257}258259static inline int segment_shift(int ssize)260{261if (ssize == MMU_SEGSIZE_256M)262return SID_SHIFT;263return SID_SHIFT_1T;264}265266/*267* This array is indexed by the LP field of the HPTE second dword.268* Since this field may contain some RPN bits, some entries are269* replicated so that we get the same value irrespective of RPN.270* The top 4 bits are the page size index (MMU_PAGE_*) for the271* actual page size, the bottom 4 bits are the base page size.272*/273extern u8 hpte_page_sizes[1 << LP_BITS];274275static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,276bool is_base_size)277{278unsigned int i, lp;279280if (!(h & HPTE_V_LARGE))281return 1ul << 12;282283/* Look at the 8 bit LP value */284lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);285i = hpte_page_sizes[lp];286if (!i)287return 0;288if (!is_base_size)289i >>= 4;290return 1ul << mmu_psize_defs[i & 0xf].shift;291}292293static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)294{295return __hpte_page_size(h, l, 0);296}297298static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)299{300return __hpte_page_size(h, l, 1);301}302303/*304* The current system page and segment sizes305*/306extern int mmu_kernel_ssize;307extern int mmu_highuser_ssize;308extern u16 mmu_slb_size;309extern unsigned long tce_alloc_start, tce_alloc_end;310311/*312* If the processor supports 64k normal pages but not 64k cache313* inhibited pages, we have to be prepared to switch processes314* to use 4k pages when they create cache-inhibited mappings.315* If this is the case, mmu_ci_restrictions will be set to 1.316*/317extern int mmu_ci_restrictions;318319/*320* This computes the AVPN and B fields of the first dword of a HPTE,321* for use when we want to match an existing PTE. The bottom 7 bits322* of the returned value are zero.323*/324static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,325int ssize)326{327unsigned long v;328/*329* The AVA field omits the low-order 23 bits of the 78 bits VA.330* These bits are not needed in the PTE, because the331* low-order b of these bits are part of the byte offset332* into the virtual page and, if b < 23, the high-order333* 23-b of these bits are always used in selecting the334* PTEGs to be searched335*/336v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);337v <<= HPTE_V_AVPN_SHIFT;338v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;339return v;340}341342/*343* ISA v3.0 defines a new HPTE format, which differs from the old344* format in having smaller AVPN and ARPN fields, and the B field345* in the second dword instead of the first.346*/347static inline unsigned long hpte_old_to_new_v(unsigned long v)348{349/* trim AVPN, drop B */350return v & HPTE_V_COMMON_BITS;351}352353static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)354{355/* move B field from 1st to 2nd dword, trim ARPN */356return (r & ~HPTE_R_3_0_SSIZE_MASK) |357(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);358}359360static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)361{362/* insert B field */363return (v & HPTE_V_COMMON_BITS) |364((r & HPTE_R_3_0_SSIZE_MASK) <<365(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));366}367368static inline unsigned long hpte_new_to_old_r(unsigned long r)369{370/* clear out B field */371return r & ~HPTE_R_3_0_SSIZE_MASK;372}373374static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)375{376unsigned long hpte_v;377378hpte_v = be64_to_cpu(hptep->v);379if (cpu_has_feature(CPU_FTR_ARCH_300))380hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));381return hpte_v;382}383384/*385* This function sets the AVPN and L fields of the HPTE appropriately386* using the base page size and actual page size.387*/388static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,389int actual_psize, int ssize)390{391unsigned long v;392v = hpte_encode_avpn(vpn, base_psize, ssize);393if (actual_psize != MMU_PAGE_4K)394v |= HPTE_V_LARGE;395return v;396}397398/*399* This function sets the ARPN, and LP fields of the HPTE appropriately400* for the page size. We assume the pa is already "clean" that is properly401* aligned for the requested page size402*/403static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,404int actual_psize)405{406/* A 4K page needs no special encoding */407if (actual_psize == MMU_PAGE_4K)408return pa & HPTE_R_RPN;409else {410unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];411unsigned int shift = mmu_psize_defs[actual_psize].shift;412return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);413}414}415416/*417* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.418*/419static inline unsigned long hpt_vpn(unsigned long ea,420unsigned long vsid, int ssize)421{422unsigned long mask;423int s_shift = segment_shift(ssize);424425mask = (1ul << (s_shift - VPN_SHIFT)) - 1;426return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);427}428429/*430* This hashes a virtual address431*/432static inline unsigned long hpt_hash(unsigned long vpn,433unsigned int shift, int ssize)434{435unsigned long mask;436unsigned long hash, vsid;437438/* VPN_SHIFT can be atmost 12 */439if (ssize == MMU_SEGSIZE_256M) {440mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;441hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^442((vpn & mask) >> (shift - VPN_SHIFT));443} else {444mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;445vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);446hash = vsid ^ (vsid << 25) ^447((vpn & mask) >> (shift - VPN_SHIFT)) ;448}449return hash & 0x7fffffffffUL;450}451452#define HPTE_LOCAL_UPDATE 0x1453#define HPTE_NOHPTE_UPDATE 0x2454#define HPTE_USE_KERNEL_KEY 0x4455456long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,457unsigned long rlags, unsigned long vflags, int psize, int ssize);458extern int __hash_page_4K(unsigned long ea, unsigned long access,459unsigned long vsid, pte_t *ptep, unsigned long trap,460unsigned long flags, int ssize, int subpage_prot);461extern int __hash_page_64K(unsigned long ea, unsigned long access,462unsigned long vsid, pte_t *ptep, unsigned long trap,463unsigned long flags, int ssize);464struct mm_struct;465unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);466extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,467unsigned long access, unsigned long trap,468unsigned long flags);469extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,470unsigned long dsisr);471void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);472int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);473int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,474pte_t *ptep, unsigned long trap, unsigned long flags,475int ssize, unsigned int shift, unsigned int mmu_psize);476#ifdef CONFIG_TRANSPARENT_HUGEPAGE477extern int __hash_page_thp(unsigned long ea, unsigned long access,478unsigned long vsid, pmd_t *pmdp, unsigned long trap,479unsigned long flags, int ssize, unsigned int psize);480#else481static inline int __hash_page_thp(unsigned long ea, unsigned long access,482unsigned long vsid, pmd_t *pmdp,483unsigned long trap, unsigned long flags,484int ssize, unsigned int psize)485{486BUG();487return -1;488}489#endif490extern void hash_failure_debug(unsigned long ea, unsigned long access,491unsigned long vsid, unsigned long trap,492int ssize, int psize, int lpsize,493unsigned long pte);494extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,495unsigned long pstart, unsigned long prot,496int psize, int ssize);497int htab_remove_mapping(unsigned long vstart, unsigned long vend,498int psize, int ssize);499extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);500extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);501502extern void hash__setup_new_exec(void);503504#ifdef CONFIG_PPC_PSERIES505void hpte_init_pseries(void);506#else507static inline void hpte_init_pseries(void) { }508#endif509510extern void hpte_init_native(void);511512struct slb_entry {513u64 esid;514u64 vsid;515};516517extern void slb_initialize(void);518void slb_flush_and_restore_bolted(void);519void slb_flush_all_realmode(void);520void __slb_restore_bolted_realmode(void);521void slb_restore_bolted_realmode(void);522void slb_save_contents(struct slb_entry *slb_ptr);523void slb_dump_contents(struct slb_entry *slb_ptr);524525extern void slb_vmalloc_update(void);526527#ifdef CONFIG_PPC_64S_HASH_MMU528void slb_set_size(u16 size);529#else530static inline void slb_set_size(u16 size) { }531#endif532533#endif /* __ASSEMBLER__ */534535/*536* VSID allocation (256MB segment)537*538* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated539* from mmu context id and effective segment id of the address.540*541* For user processes max context id is limited to MAX_USER_CONTEXT.542* more details in get_user_context543*544* For kernel space get_kernel_context545*546* The proto-VSIDs are then scrambled into real VSIDs with the547* multiplicative hash:548*549* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS550*551* VSID_MULTIPLIER is prime, so in particular it is552* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.553* Because the modulus is 2^n-1 we can compute it efficiently without554* a divide or extra multiply (see below). The scramble function gives555* robust scattering in the hash table (at least based on some initial556* results).557*558* We use VSID 0 to indicate an invalid VSID. The means we can't use context id559* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which560* will produce a VSID of 0.561*562* We also need to avoid the last segment of the last context, because that563* would give a protovsid of 0x1fffffffff. That will result in a VSID 0564* because of the modulo operation in vsid scramble.565*/566567/*568* Max Va bits we support as of now is 68 bits. We want 19 bit569* context ID.570* Restrictions:571* GPU has restrictions of not able to access beyond 128TB572* (47 bit effective address). We also cannot do more than 20bit PID.573* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS574* to 16 bits (ie, we can only have 2^16 pids at the same time).575*/576#define VA_BITS 68577#define CONTEXT_BITS 19578#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))579#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))580581#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)582#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)583584/*585* Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need586* to use more than one context for linear mapping the kernel.587* For vmalloc and memmap, we use just one context with 512TB. With 64 byte588* struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).589*/590#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)591#define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))592#else593#define MAX_KERNEL_CTX_CNT 1594#endif595596#define MAX_VMALLOC_CTX_CNT 1597#define MAX_IO_CTX_CNT 1598#define MAX_VMEMMAP_CTX_CNT 1599600/*601* 256MB segment602* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments603* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts604* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each605* context maps 2^49 bytes (512TB).606*607* We also need to avoid the last segment of the last context, because that608* would give a protovsid of 0x1fffffffff. That will result in a VSID 0609* because of the modulo operation in vsid scramble.610*611*/612#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)613614// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel615#define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \616MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)617618/*619* For platforms that support on 65bit VA we limit the context bits620*/621#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)622623/*624* This should be computed such that protovosid * vsid_mulitplier625* doesn't overflow 64 bits. The vsid_mutliplier should also be626* co-prime to vsid_modulus. We also need to make sure that number627* of bits in multiplied result (dividend) is less than twice the number of628* protovsid bits for our modulus optmization to work.629*630* The below table shows the current values used.631* |-------+------------+----------------------+------------+-------------------|632* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |633* |-------+------------+----------------------+------------+-------------------|634* | 1T | 24 | 25 | 49 | 50 |635* |-------+------------+----------------------+------------+-------------------|636* | 256MB | 24 | 37 | 61 | 74 |637* |-------+------------+----------------------+------------+-------------------|638*639* |-------+------------+----------------------+------------+--------------------|640* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |641* |-------+------------+----------------------+------------+--------------------|642* | 1T | 24 | 28 | 52 | 56 |643* |-------+------------+----------------------+------------+--------------------|644* | 256MB | 24 | 40 | 64 | 80 |645* |-------+------------+----------------------+------------+--------------------|646*647*/648#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */649#define VSID_BITS_256M (VA_BITS - SID_SHIFT)650#define VSID_BITS_65_256M (65 - SID_SHIFT)651/*652* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS653*/654#define VSID_MULINV_256M ASM_CONST(665548017062)655656#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */657#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)658#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)659#define VSID_MULINV_1T ASM_CONST(209034062)660661/* 1TB VSID reserved for VRMA */662#define VRMA_VSID 0x1ffffffUL663#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))664665/* 4 bits per slice and we have one slice per 1TB */666#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)667#define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE)668#define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41)669#ifndef __ASSEMBLER__670671#ifdef CONFIG_PPC_SUBPAGE_PROT672/*673* For the sub-page protection option, we extend the PGD with one of674* these. Basically we have a 3-level tree, with the top level being675* the protptrs array. To optimize speed and memory consumption when676* only addresses < 4GB are being protected, pointers to the first677* four pages of sub-page protection words are stored in the low_prot678* array.679* Each page of sub-page protection words protects 1GB (4 bytes680* protects 64k). For the 3-level tree, each page of pointers then681* protects 8TB.682*/683struct subpage_prot_table {684unsigned long maxaddr; /* only addresses < this are protected */685unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];686unsigned int *low_prot[4];687};688689#define SBP_L1_BITS (PAGE_SHIFT - 2)690#define SBP_L2_BITS (PAGE_SHIFT - 3)691#define SBP_L1_COUNT (1 << SBP_L1_BITS)692#define SBP_L2_COUNT (1 << SBP_L2_BITS)693#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)694#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)695696extern void subpage_prot_free(struct mm_struct *mm);697#else698static inline void subpage_prot_free(struct mm_struct *mm) {}699#endif /* CONFIG_PPC_SUBPAGE_PROT */700701/*702* One bit per slice. We have lower slices which cover 256MB segments703* upto 4G range. That gets us 16 low slices. For the rest we track slices704* in 1TB size.705*/706struct slice_mask {707u64 low_slices;708DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);709};710711struct hash_mm_context {712u16 user_psize; /* page size index */713714/* SLB page size encodings*/715unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];716unsigned char high_slices_psize[SLICE_ARRAY_SIZE];717unsigned long slb_addr_limit;718#ifdef CONFIG_PPC_64K_PAGES719struct slice_mask mask_64k;720#endif721struct slice_mask mask_4k;722#ifdef CONFIG_HUGETLB_PAGE723struct slice_mask mask_16m;724struct slice_mask mask_16g;725#endif726727#ifdef CONFIG_PPC_SUBPAGE_PROT728struct subpage_prot_table *spt;729#endif /* CONFIG_PPC_SUBPAGE_PROT */730};731732#if 0733/*734* The code below is equivalent to this function for arguments735* < 2^VSID_BITS, which is all this should ever be called736* with. However gcc is not clever enough to compute the737* modulus (2^n-1) without a second multiply.738*/739#define vsid_scramble(protovsid, size) \740((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))741742/* simplified form avoiding mod operation */743#define vsid_scramble(protovsid, size) \744({ \745unsigned long x; \746x = (protovsid) * VSID_MULTIPLIER_##size; \747x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \748(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \749})750751#else /* 1 */752static inline unsigned long vsid_scramble(unsigned long protovsid,753unsigned long vsid_multiplier, int vsid_bits)754{755unsigned long vsid;756unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);757/*758* We have same multipler for both 256 and 1T segements now759*/760vsid = protovsid * vsid_multiplier;761vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);762return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;763}764765#endif /* 1 */766767/* Returns the segment size indicator for a user address */768static inline int user_segment_size(unsigned long addr)769{770/* Use 1T segments if possible for addresses >= 1T */771if (addr >= (1UL << SID_SHIFT_1T))772return mmu_highuser_ssize;773return MMU_SEGSIZE_256M;774}775776static inline unsigned long get_vsid(unsigned long context, unsigned long ea,777int ssize)778{779unsigned long va_bits = VA_BITS;780unsigned long vsid_bits;781unsigned long protovsid;782783/*784* Bad address. We return VSID 0 for that785*/786if ((ea & EA_MASK) >= H_PGTABLE_RANGE)787return 0;788789if (!mmu_has_feature(MMU_FTR_68_BIT_VA))790va_bits = 65;791792if (ssize == MMU_SEGSIZE_256M) {793vsid_bits = va_bits - SID_SHIFT;794protovsid = (context << ESID_BITS) |795((ea >> SID_SHIFT) & ESID_BITS_MASK);796return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);797}798/* 1T segment */799vsid_bits = va_bits - SID_SHIFT_1T;800protovsid = (context << ESID_BITS_1T) |801((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);802return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);803}804805/*806* For kernel space, we use context ids as807* below. Range is 512TB per context.808*809* 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff]810* 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff]811* 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff]812* 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff]813*814* vmap, IO, vmemap815*816* 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff]817* 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff]818* 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff]819*820*/821static inline unsigned long get_kernel_context(unsigned long ea)822{823unsigned long region_id = get_region_id(ea);824unsigned long ctx;825/*826* Depending on Kernel config, kernel region can have one context827* or more.828*/829if (region_id == LINEAR_MAP_REGION_ID) {830/*831* We already verified ea to be not beyond the addr limit.832*/833ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);834} else835ctx = region_id + MAX_KERNEL_CTX_CNT - 1;836return ctx;837}838839/*840* This is only valid for addresses >= PAGE_OFFSET841*/842static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)843{844unsigned long context;845846if (!is_kernel_addr(ea))847return 0;848849context = get_kernel_context(ea);850return get_vsid(context, ea, ssize);851}852853unsigned htab_shift_for_mem_size(unsigned long mem_size);854855enum slb_index {856LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */857KSTACK_INDEX = 1, /* Kernel stack map */858};859860#define slb_esid_mask(ssize) \861(((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)862863static inline unsigned long mk_esid_data(unsigned long ea, int ssize,864enum slb_index index)865{866return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;867}868869static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,870unsigned long flags)871{872return (vsid << slb_vsid_shift(ssize)) | flags |873((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);874}875876static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,877unsigned long flags)878{879return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);880}881882#endif /* __ASSEMBLER__ */883#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */884885886