Path: blob/master/arch/powerpc/include/asm/book3s/64/mmu-hash.h
26519 views
/* SPDX-License-Identifier: GPL-2.0-or-later */1#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_2#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_3/*4* PowerPC64 memory management structures5*6* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>7* PPC64 rework.8*/910#include <asm/page.h>11#include <asm/bug.h>12#include <asm/asm-const.h>1314/*15* This is necessary to get the definition of PGTABLE_RANGE which we16* need for various slices related matters. Note that this isn't the17* complete pgtable.h but only a portion of it.18*/19#include <asm/book3s/64/pgtable.h>20#include <asm/book3s/64/slice.h>21#include <asm/task_size_64.h>22#include <asm/cpu_has_feature.h>2324/*25* SLB26*/2728#define SLB_NUM_BOLTED 229#define SLB_CACHE_ENTRIES 830#define SLB_MIN_SIZE 323132/* Bits in the SLB ESID word */33#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */3435/* Bits in the SLB VSID word */36#define SLB_VSID_SHIFT 1237#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT38#define SLB_VSID_SHIFT_1T 2439#define SLB_VSID_SSIZE_SHIFT 6240#define SLB_VSID_B ASM_CONST(0xc000000000000000)41#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)42#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)43#define SLB_VSID_KS ASM_CONST(0x0000000000000800)44#define SLB_VSID_KP ASM_CONST(0x0000000000000400)45#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */46#define SLB_VSID_L ASM_CONST(0x0000000000000100)47#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */48#define SLB_VSID_LP ASM_CONST(0x0000000000000030)49#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)50#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)51#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)52#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)53#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)5455#define SLB_VSID_KERNEL (SLB_VSID_KP)56#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)5758#define SLBIE_C (0x08000000)59#define SLBIE_SSIZE_SHIFT 256061/*62* Hash table63*/6465#define HPTES_PER_GROUP 86667#define HPTE_V_SSIZE_SHIFT 6268#define HPTE_V_AVPN_SHIFT 769#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)70#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)71#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)72#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)73#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))74#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)75#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)76#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)77#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)78#define HPTE_V_VALID ASM_CONST(0x0000000000000001)7980/*81* ISA 3.0 has a different HPTE format.82*/83#define HPTE_R_3_0_SSIZE_SHIFT 5884#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)85#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)86#define HPTE_R_TS ASM_CONST(0x4000000000000000)87#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)88#define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000)89#define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000)90#define HPTE_R_RPN_SHIFT 1291#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)92#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)93#define HPTE_R_PP ASM_CONST(0x0000000000000003)94#define HPTE_R_PPP ASM_CONST(0x8000000000000003)95#define HPTE_R_N ASM_CONST(0x0000000000000004)96#define HPTE_R_G ASM_CONST(0x0000000000000008)97#define HPTE_R_M ASM_CONST(0x0000000000000010)98#define HPTE_R_I ASM_CONST(0x0000000000000020)99#define HPTE_R_W ASM_CONST(0x0000000000000040)100#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)101#define HPTE_R_C ASM_CONST(0x0000000000000080)102#define HPTE_R_R ASM_CONST(0x0000000000000100)103#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)104#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)105#define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400)106#define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200)107#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)108109#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)110#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)111112/* Values for PP (assumes Ks=0, Kp=1) */113#define PP_RWXX 0 /* Supervisor read/write, User none */114#define PP_RWRX 1 /* Supervisor read/write, User read */115#define PP_RWRW 2 /* Supervisor read/write, User read/write */116#define PP_RXRX 3 /* Supervisor read, User read */117#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */118119/* Fields for tlbiel instruction in architecture 2.06 */120#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */121#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */122#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */123#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */124#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */125#define TLBIEL_INVAL_SET_SHIFT 12126127#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */128#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */129#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */130#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */131132#ifndef __ASSEMBLY__133134struct mmu_hash_ops {135void (*hpte_invalidate)(unsigned long slot,136unsigned long vpn,137int bpsize, int apsize,138int ssize, int local);139long (*hpte_updatepp)(unsigned long slot,140unsigned long newpp,141unsigned long vpn,142int bpsize, int apsize,143int ssize, unsigned long flags);144void (*hpte_updateboltedpp)(unsigned long newpp,145unsigned long ea,146int psize, int ssize);147long (*hpte_insert)(unsigned long hpte_group,148unsigned long vpn,149unsigned long prpn,150unsigned long rflags,151unsigned long vflags,152int psize, int apsize,153int ssize);154long (*hpte_remove)(unsigned long hpte_group);155int (*hpte_removebolted)(unsigned long ea,156int psize, int ssize);157void (*flush_hash_range)(unsigned long number, int local);158void (*hugepage_invalidate)(unsigned long vsid,159unsigned long addr,160unsigned char *hpte_slot_array,161int psize, int ssize, int local);162int (*resize_hpt)(unsigned long shift);163/*164* Special for kexec.165* To be called in real mode with interrupts disabled. No locks are166* taken as such, concurrent access on pre POWER5 hardware could result167* in a deadlock.168* The linear mapping is destroyed as well.169*/170void (*hpte_clear_all)(void);171};172extern struct mmu_hash_ops mmu_hash_ops;173174struct hash_pte {175__be64 v;176__be64 r;177};178179extern struct hash_pte *htab_address;180extern unsigned long htab_size_bytes;181extern unsigned long htab_hash_mask;182183184static inline int shift_to_mmu_psize(unsigned int shift)185{186int psize;187188for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)189if (mmu_psize_defs[psize].shift == shift)190return psize;191return -1;192}193194static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)195{196if (mmu_psize_defs[mmu_psize].shift)197return mmu_psize_defs[mmu_psize].shift;198BUG();199}200201static inline unsigned int ap_to_shift(unsigned long ap)202{203int psize;204205for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {206if (mmu_psize_defs[psize].ap == ap)207return mmu_psize_defs[psize].shift;208}209210return -1;211}212213static inline unsigned long get_sllp_encoding(int psize)214{215unsigned long sllp;216217sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |218((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);219return sllp;220}221222#endif /* __ASSEMBLY__ */223224/*225* Segment sizes.226* These are the values used by hardware in the B field of227* SLB entries and the first dword of MMU hashtable entries.228* The B field is 2 bits; the values 2 and 3 are unused and reserved.229*/230#define MMU_SEGSIZE_256M 0231#define MMU_SEGSIZE_1T 1232233/*234* encode page number shift.235* in order to fit the 78 bit va in a 64 bit variable we shift the va by236* 12 bits. This enable us to address upto 76 bit va.237* For hpt hash from a va we can ignore the page size bits of va and for238* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure239* we work in all cases including 4k page size.240*/241#define VPN_SHIFT 12242243/*244* HPTE Large Page (LP) details245*/246#define LP_SHIFT 12247#define LP_BITS 8248#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)249250#ifndef __ASSEMBLY__251252static inline int slb_vsid_shift(int ssize)253{254if (ssize == MMU_SEGSIZE_256M)255return SLB_VSID_SHIFT;256return SLB_VSID_SHIFT_1T;257}258259static inline int segment_shift(int ssize)260{261if (ssize == MMU_SEGSIZE_256M)262return SID_SHIFT;263return SID_SHIFT_1T;264}265266/*267* This array is indexed by the LP field of the HPTE second dword.268* Since this field may contain some RPN bits, some entries are269* replicated so that we get the same value irrespective of RPN.270* The top 4 bits are the page size index (MMU_PAGE_*) for the271* actual page size, the bottom 4 bits are the base page size.272*/273extern u8 hpte_page_sizes[1 << LP_BITS];274275static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,276bool is_base_size)277{278unsigned int i, lp;279280if (!(h & HPTE_V_LARGE))281return 1ul << 12;282283/* Look at the 8 bit LP value */284lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);285i = hpte_page_sizes[lp];286if (!i)287return 0;288if (!is_base_size)289i >>= 4;290return 1ul << mmu_psize_defs[i & 0xf].shift;291}292293static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)294{295return __hpte_page_size(h, l, 0);296}297298static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)299{300return __hpte_page_size(h, l, 1);301}302303/*304* The current system page and segment sizes305*/306extern int mmu_kernel_ssize;307extern int mmu_highuser_ssize;308extern u16 mmu_slb_size;309extern unsigned long tce_alloc_start, tce_alloc_end;310311/*312* If the processor supports 64k normal pages but not 64k cache313* inhibited pages, we have to be prepared to switch processes314* to use 4k pages when they create cache-inhibited mappings.315* If this is the case, mmu_ci_restrictions will be set to 1.316*/317extern int mmu_ci_restrictions;318319/*320* This computes the AVPN and B fields of the first dword of a HPTE,321* for use when we want to match an existing PTE. The bottom 7 bits322* of the returned value are zero.323*/324static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,325int ssize)326{327unsigned long v;328/*329* The AVA field omits the low-order 23 bits of the 78 bits VA.330* These bits are not needed in the PTE, because the331* low-order b of these bits are part of the byte offset332* into the virtual page and, if b < 23, the high-order333* 23-b of these bits are always used in selecting the334* PTEGs to be searched335*/336v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);337v <<= HPTE_V_AVPN_SHIFT;338v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;339return v;340}341342/*343* ISA v3.0 defines a new HPTE format, which differs from the old344* format in having smaller AVPN and ARPN fields, and the B field345* in the second dword instead of the first.346*/347static inline unsigned long hpte_old_to_new_v(unsigned long v)348{349/* trim AVPN, drop B */350return v & HPTE_V_COMMON_BITS;351}352353static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)354{355/* move B field from 1st to 2nd dword, trim ARPN */356return (r & ~HPTE_R_3_0_SSIZE_MASK) |357(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);358}359360static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)361{362/* insert B field */363return (v & HPTE_V_COMMON_BITS) |364((r & HPTE_R_3_0_SSIZE_MASK) <<365(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));366}367368static inline unsigned long hpte_new_to_old_r(unsigned long r)369{370/* clear out B field */371return r & ~HPTE_R_3_0_SSIZE_MASK;372}373374static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)375{376unsigned long hpte_v;377378hpte_v = be64_to_cpu(hptep->v);379if (cpu_has_feature(CPU_FTR_ARCH_300))380hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));381return hpte_v;382}383384/*385* This function sets the AVPN and L fields of the HPTE appropriately386* using the base page size and actual page size.387*/388static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,389int actual_psize, int ssize)390{391unsigned long v;392v = hpte_encode_avpn(vpn, base_psize, ssize);393if (actual_psize != MMU_PAGE_4K)394v |= HPTE_V_LARGE;395return v;396}397398/*399* This function sets the ARPN, and LP fields of the HPTE appropriately400* for the page size. We assume the pa is already "clean" that is properly401* aligned for the requested page size402*/403static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,404int actual_psize)405{406/* A 4K page needs no special encoding */407if (actual_psize == MMU_PAGE_4K)408return pa & HPTE_R_RPN;409else {410unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];411unsigned int shift = mmu_psize_defs[actual_psize].shift;412return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);413}414}415416/*417* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.418*/419static inline unsigned long hpt_vpn(unsigned long ea,420unsigned long vsid, int ssize)421{422unsigned long mask;423int s_shift = segment_shift(ssize);424425mask = (1ul << (s_shift - VPN_SHIFT)) - 1;426return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);427}428429/*430* This hashes a virtual address431*/432static inline unsigned long hpt_hash(unsigned long vpn,433unsigned int shift, int ssize)434{435unsigned long mask;436unsigned long hash, vsid;437438/* VPN_SHIFT can be atmost 12 */439if (ssize == MMU_SEGSIZE_256M) {440mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;441hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^442((vpn & mask) >> (shift - VPN_SHIFT));443} else {444mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;445vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);446hash = vsid ^ (vsid << 25) ^447((vpn & mask) >> (shift - VPN_SHIFT)) ;448}449return hash & 0x7fffffffffUL;450}451452#define HPTE_LOCAL_UPDATE 0x1453#define HPTE_NOHPTE_UPDATE 0x2454#define HPTE_USE_KERNEL_KEY 0x4455456long hpte_insert_repeating(unsigned long hash, unsigned long vpn, unsigned long pa,457unsigned long rlags, unsigned long vflags, int psize, int ssize);458extern int __hash_page_4K(unsigned long ea, unsigned long access,459unsigned long vsid, pte_t *ptep, unsigned long trap,460unsigned long flags, int ssize, int subpage_prot);461extern int __hash_page_64K(unsigned long ea, unsigned long access,462unsigned long vsid, pte_t *ptep, unsigned long trap,463unsigned long flags, int ssize);464struct mm_struct;465unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);466extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,467unsigned long access, unsigned long trap,468unsigned long flags);469extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,470unsigned long dsisr);471void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc);472int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr, unsigned long msr);473int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,474pte_t *ptep, unsigned long trap, unsigned long flags,475int ssize, unsigned int shift, unsigned int mmu_psize);476#ifdef CONFIG_TRANSPARENT_HUGEPAGE477extern int __hash_page_thp(unsigned long ea, unsigned long access,478unsigned long vsid, pmd_t *pmdp, unsigned long trap,479unsigned long flags, int ssize, unsigned int psize);480#else481static inline int __hash_page_thp(unsigned long ea, unsigned long access,482unsigned long vsid, pmd_t *pmdp,483unsigned long trap, unsigned long flags,484int ssize, unsigned int psize)485{486BUG();487return -1;488}489#endif490extern void hash_failure_debug(unsigned long ea, unsigned long access,491unsigned long vsid, unsigned long trap,492int ssize, int psize, int lpsize,493unsigned long pte);494extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,495unsigned long pstart, unsigned long prot,496int psize, int ssize);497int htab_remove_mapping(unsigned long vstart, unsigned long vend,498int psize, int ssize);499extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);500extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);501502extern void hash__setup_new_exec(void);503504#ifdef CONFIG_PPC_PSERIES505void hpte_init_pseries(void);506#else507static inline void hpte_init_pseries(void) { }508#endif509510extern void hpte_init_native(void);511512struct slb_entry {513u64 esid;514u64 vsid;515};516517extern void slb_initialize(void);518void slb_flush_and_restore_bolted(void);519void slb_flush_all_realmode(void);520void __slb_restore_bolted_realmode(void);521void slb_restore_bolted_realmode(void);522void slb_save_contents(struct slb_entry *slb_ptr);523void slb_dump_contents(struct slb_entry *slb_ptr);524525extern void slb_vmalloc_update(void);526void preload_new_slb_context(unsigned long start, unsigned long sp);527528#ifdef CONFIG_PPC_64S_HASH_MMU529void slb_set_size(u16 size);530#else531static inline void slb_set_size(u16 size) { }532#endif533534#endif /* __ASSEMBLY__ */535536/*537* VSID allocation (256MB segment)538*539* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated540* from mmu context id and effective segment id of the address.541*542* For user processes max context id is limited to MAX_USER_CONTEXT.543* more details in get_user_context544*545* For kernel space get_kernel_context546*547* The proto-VSIDs are then scrambled into real VSIDs with the548* multiplicative hash:549*550* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS551*552* VSID_MULTIPLIER is prime, so in particular it is553* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.554* Because the modulus is 2^n-1 we can compute it efficiently without555* a divide or extra multiply (see below). The scramble function gives556* robust scattering in the hash table (at least based on some initial557* results).558*559* We use VSID 0 to indicate an invalid VSID. The means we can't use context id560* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which561* will produce a VSID of 0.562*563* We also need to avoid the last segment of the last context, because that564* would give a protovsid of 0x1fffffffff. That will result in a VSID 0565* because of the modulo operation in vsid scramble.566*/567568/*569* Max Va bits we support as of now is 68 bits. We want 19 bit570* context ID.571* Restrictions:572* GPU has restrictions of not able to access beyond 128TB573* (47 bit effective address). We also cannot do more than 20bit PID.574* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS575* to 16 bits (ie, we can only have 2^16 pids at the same time).576*/577#define VA_BITS 68578#define CONTEXT_BITS 19579#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))580#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))581582#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)583#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)584585/*586* Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need587* to use more than one context for linear mapping the kernel.588* For vmalloc and memmap, we use just one context with 512TB. With 64 byte589* struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)).590*/591#if (H_MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT)592#define MAX_KERNEL_CTX_CNT (1UL << (H_MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT))593#else594#define MAX_KERNEL_CTX_CNT 1595#endif596597#define MAX_VMALLOC_CTX_CNT 1598#define MAX_IO_CTX_CNT 1599#define MAX_VMEMMAP_CTX_CNT 1600601/*602* 256MB segment603* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments604* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts605* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each606* context maps 2^49 bytes (512TB).607*608* We also need to avoid the last segment of the last context, because that609* would give a protovsid of 0x1fffffffff. That will result in a VSID 0610* because of the modulo operation in vsid scramble.611*612*/613#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)614615// The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel616#define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \617MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2)618619/*620* For platforms that support on 65bit VA we limit the context bits621*/622#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)623624/*625* This should be computed such that protovosid * vsid_mulitplier626* doesn't overflow 64 bits. The vsid_mutliplier should also be627* co-prime to vsid_modulus. We also need to make sure that number628* of bits in multiplied result (dividend) is less than twice the number of629* protovsid bits for our modulus optmization to work.630*631* The below table shows the current values used.632* |-------+------------+----------------------+------------+-------------------|633* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |634* |-------+------------+----------------------+------------+-------------------|635* | 1T | 24 | 25 | 49 | 50 |636* |-------+------------+----------------------+------------+-------------------|637* | 256MB | 24 | 37 | 61 | 74 |638* |-------+------------+----------------------+------------+-------------------|639*640* |-------+------------+----------------------+------------+--------------------|641* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |642* |-------+------------+----------------------+------------+--------------------|643* | 1T | 24 | 28 | 52 | 56 |644* |-------+------------+----------------------+------------+--------------------|645* | 256MB | 24 | 40 | 64 | 80 |646* |-------+------------+----------------------+------------+--------------------|647*648*/649#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */650#define VSID_BITS_256M (VA_BITS - SID_SHIFT)651#define VSID_BITS_65_256M (65 - SID_SHIFT)652/*653* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS654*/655#define VSID_MULINV_256M ASM_CONST(665548017062)656657#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */658#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)659#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)660#define VSID_MULINV_1T ASM_CONST(209034062)661662/* 1TB VSID reserved for VRMA */663#define VRMA_VSID 0x1ffffffUL664#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))665666/* 4 bits per slice and we have one slice per 1TB */667#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)668#define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE)669#define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41)670#ifndef __ASSEMBLY__671672#ifdef CONFIG_PPC_SUBPAGE_PROT673/*674* For the sub-page protection option, we extend the PGD with one of675* these. Basically we have a 3-level tree, with the top level being676* the protptrs array. To optimize speed and memory consumption when677* only addresses < 4GB are being protected, pointers to the first678* four pages of sub-page protection words are stored in the low_prot679* array.680* Each page of sub-page protection words protects 1GB (4 bytes681* protects 64k). For the 3-level tree, each page of pointers then682* protects 8TB.683*/684struct subpage_prot_table {685unsigned long maxaddr; /* only addresses < this are protected */686unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];687unsigned int *low_prot[4];688};689690#define SBP_L1_BITS (PAGE_SHIFT - 2)691#define SBP_L2_BITS (PAGE_SHIFT - 3)692#define SBP_L1_COUNT (1 << SBP_L1_BITS)693#define SBP_L2_COUNT (1 << SBP_L2_BITS)694#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)695#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)696697extern void subpage_prot_free(struct mm_struct *mm);698#else699static inline void subpage_prot_free(struct mm_struct *mm) {}700#endif /* CONFIG_PPC_SUBPAGE_PROT */701702/*703* One bit per slice. We have lower slices which cover 256MB segments704* upto 4G range. That gets us 16 low slices. For the rest we track slices705* in 1TB size.706*/707struct slice_mask {708u64 low_slices;709DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);710};711712struct hash_mm_context {713u16 user_psize; /* page size index */714715/* SLB page size encodings*/716unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ];717unsigned char high_slices_psize[SLICE_ARRAY_SIZE];718unsigned long slb_addr_limit;719#ifdef CONFIG_PPC_64K_PAGES720struct slice_mask mask_64k;721#endif722struct slice_mask mask_4k;723#ifdef CONFIG_HUGETLB_PAGE724struct slice_mask mask_16m;725struct slice_mask mask_16g;726#endif727728#ifdef CONFIG_PPC_SUBPAGE_PROT729struct subpage_prot_table *spt;730#endif /* CONFIG_PPC_SUBPAGE_PROT */731};732733#if 0734/*735* The code below is equivalent to this function for arguments736* < 2^VSID_BITS, which is all this should ever be called737* with. However gcc is not clever enough to compute the738* modulus (2^n-1) without a second multiply.739*/740#define vsid_scramble(protovsid, size) \741((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))742743/* simplified form avoiding mod operation */744#define vsid_scramble(protovsid, size) \745({ \746unsigned long x; \747x = (protovsid) * VSID_MULTIPLIER_##size; \748x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \749(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \750})751752#else /* 1 */753static inline unsigned long vsid_scramble(unsigned long protovsid,754unsigned long vsid_multiplier, int vsid_bits)755{756unsigned long vsid;757unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);758/*759* We have same multipler for both 256 and 1T segements now760*/761vsid = protovsid * vsid_multiplier;762vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);763return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;764}765766#endif /* 1 */767768/* Returns the segment size indicator for a user address */769static inline int user_segment_size(unsigned long addr)770{771/* Use 1T segments if possible for addresses >= 1T */772if (addr >= (1UL << SID_SHIFT_1T))773return mmu_highuser_ssize;774return MMU_SEGSIZE_256M;775}776777static inline unsigned long get_vsid(unsigned long context, unsigned long ea,778int ssize)779{780unsigned long va_bits = VA_BITS;781unsigned long vsid_bits;782unsigned long protovsid;783784/*785* Bad address. We return VSID 0 for that786*/787if ((ea & EA_MASK) >= H_PGTABLE_RANGE)788return 0;789790if (!mmu_has_feature(MMU_FTR_68_BIT_VA))791va_bits = 65;792793if (ssize == MMU_SEGSIZE_256M) {794vsid_bits = va_bits - SID_SHIFT;795protovsid = (context << ESID_BITS) |796((ea >> SID_SHIFT) & ESID_BITS_MASK);797return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);798}799/* 1T segment */800vsid_bits = va_bits - SID_SHIFT_1T;801protovsid = (context << ESID_BITS_1T) |802((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);803return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);804}805806/*807* For kernel space, we use context ids as808* below. Range is 512TB per context.809*810* 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff]811* 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff]812* 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff]813* 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff]814*815* vmap, IO, vmemap816*817* 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff]818* 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff]819* 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff]820*821*/822static inline unsigned long get_kernel_context(unsigned long ea)823{824unsigned long region_id = get_region_id(ea);825unsigned long ctx;826/*827* Depending on Kernel config, kernel region can have one context828* or more.829*/830if (region_id == LINEAR_MAP_REGION_ID) {831/*832* We already verified ea to be not beyond the addr limit.833*/834ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT);835} else836ctx = region_id + MAX_KERNEL_CTX_CNT - 1;837return ctx;838}839840/*841* This is only valid for addresses >= PAGE_OFFSET842*/843static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)844{845unsigned long context;846847if (!is_kernel_addr(ea))848return 0;849850context = get_kernel_context(ea);851return get_vsid(context, ea, ssize);852}853854unsigned htab_shift_for_mem_size(unsigned long mem_size);855856enum slb_index {857LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */858KSTACK_INDEX = 1, /* Kernel stack map */859};860861#define slb_esid_mask(ssize) \862(((ssize) == MMU_SEGSIZE_256M) ? ESID_MASK : ESID_MASK_1T)863864static inline unsigned long mk_esid_data(unsigned long ea, int ssize,865enum slb_index index)866{867return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;868}869870static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,871unsigned long flags)872{873return (vsid << slb_vsid_shift(ssize)) | flags |874((unsigned long)ssize << SLB_VSID_SSIZE_SHIFT);875}876877static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,878unsigned long flags)879{880return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);881}882883#endif /* __ASSEMBLY__ */884#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */885886887