Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/include/asm/book3s/64/pgtable.h
26519 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5
#include <asm-generic/pgtable-nop4d.h>
6
7
#ifndef __ASSEMBLY__
8
#include <linux/mmdebug.h>
9
#include <linux/bug.h>
10
#include <linux/sizes.h>
11
#endif
12
13
/*
14
* Common bits between hash and Radix page table
15
*/
16
17
#define _PAGE_EXEC 0x00001 /* execute permission */
18
#define _PAGE_WRITE 0x00002 /* write access allowed */
19
#define _PAGE_READ 0x00004 /* read access allowed */
20
#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
21
#define _PAGE_SAO 0x00010 /* Strong access order */
22
#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
23
#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
24
#define _PAGE_DIRTY 0x00080 /* C: page changed */
25
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
26
/*
27
* Software bits
28
*/
29
#define _RPAGE_SW0 0x2000000000000000UL
30
#define _RPAGE_SW1 0x00800
31
#define _RPAGE_SW2 0x00400
32
#define _RPAGE_SW3 0x00200
33
#define _RPAGE_RSV1 0x00040UL
34
35
#define _RPAGE_PKEY_BIT4 0x1000000000000000UL
36
#define _RPAGE_PKEY_BIT3 0x0800000000000000UL
37
#define _RPAGE_PKEY_BIT2 0x0400000000000000UL
38
#define _RPAGE_PKEY_BIT1 0x0200000000000000UL
39
#define _RPAGE_PKEY_BIT0 0x0100000000000000UL
40
41
#define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42
#define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43
/*
44
* We need to mark a pmd pte invalid while splitting. We can do that by clearing
45
* the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46
* differentiate between two use a SW field when invalidating.
47
*
48
* We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49
*
50
* This is used only when _PAGE_PRESENT is cleared.
51
*/
52
#define _PAGE_INVALID _RPAGE_SW0
53
54
/*
55
* Top and bottom bits of RPN which can be used by hash
56
* translation mode, because we expect them to be zero
57
* otherwise.
58
*/
59
#define _RPAGE_RPN0 0x01000
60
#define _RPAGE_RPN1 0x02000
61
#define _RPAGE_RPN43 0x0080000000000000UL
62
#define _RPAGE_RPN42 0x0040000000000000UL
63
#define _RPAGE_RPN41 0x0020000000000000UL
64
65
/* Max physical address bit as per radix table */
66
#define _RPAGE_PA_MAX 56
67
68
/*
69
* Max physical address bit we will use for now.
70
*
71
* This is mostly a hardware limitation and for now Power9 has
72
* a 51 bit limit.
73
*
74
* This is different from the number of physical bit required to address
75
* the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76
* MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77
* number of sections we can support (SECTIONS_SHIFT).
78
*
79
* This is different from Radix page table limitation above and
80
* should always be less than that. The limit is done such that
81
* we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82
* for hash linux page table specific bits.
83
*
84
* In order to be compatible with future hardware generations we keep
85
* some offsets and limit this for now to 53
86
*/
87
#define _PAGE_PA_MAX 53
88
89
#define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
90
#define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
91
92
/*
93
* Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
94
* Instead of fixing all of them, add an alternate define which
95
* maps CI pte mapping.
96
*/
97
#define _PAGE_NO_CACHE _PAGE_TOLERANT
98
/*
99
* We support _RPAGE_PA_MAX bit real address in pte. On the linux side
100
* we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
101
* and every thing below PAGE_SHIFT;
102
*/
103
#define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
104
#define PTE_RPN_SHIFT PAGE_SHIFT
105
/*
106
* set of bits not changed in pmd_modify. Even though we have hash specific bits
107
* in here, on radix we expect them to be zero.
108
*/
109
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
110
_PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
111
_PAGE_SOFT_DIRTY)
112
/*
113
* user access blocked by key
114
*/
115
#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
116
#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
117
#define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
118
#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
119
/*
120
* _PAGE_CHG_MASK masks of bits that are to be preserved across
121
* pgprot changes
122
*/
123
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124
_PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
125
_PAGE_SOFT_DIRTY)
126
127
/*
128
* We define 2 sets of base prot bits, one for basic pages (ie,
129
* cacheable kernel and user pages) and one for non cacheable
130
* pages. We always set _PAGE_COHERENT when SMP is enabled or
131
* the processor might need it for DMA coherency.
132
*/
133
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
134
#define _PAGE_BASE (_PAGE_BASE_NC)
135
136
#include <asm/pgtable-masks.h>
137
138
/* Permission masks used for kernel mappings */
139
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
140
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
141
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
142
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
143
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
144
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
145
146
#ifndef __ASSEMBLY__
147
/*
148
* page table defines
149
*/
150
extern unsigned long __pte_index_size;
151
extern unsigned long __pmd_index_size;
152
extern unsigned long __pud_index_size;
153
extern unsigned long __pgd_index_size;
154
extern unsigned long __pud_cache_index;
155
#define PTE_INDEX_SIZE __pte_index_size
156
#define PMD_INDEX_SIZE __pmd_index_size
157
#define PUD_INDEX_SIZE __pud_index_size
158
#define PGD_INDEX_SIZE __pgd_index_size
159
/* pmd table use page table fragments */
160
#define PMD_CACHE_INDEX 0
161
#define PUD_CACHE_INDEX __pud_cache_index
162
/*
163
* Because of use of pte fragments and THP, size of page table
164
* are not always derived out of index size above.
165
*/
166
extern unsigned long __pte_table_size;
167
extern unsigned long __pmd_table_size;
168
extern unsigned long __pud_table_size;
169
extern unsigned long __pgd_table_size;
170
#define PTE_TABLE_SIZE __pte_table_size
171
#define PMD_TABLE_SIZE __pmd_table_size
172
#define PUD_TABLE_SIZE __pud_table_size
173
#define PGD_TABLE_SIZE __pgd_table_size
174
175
extern unsigned long __pmd_val_bits;
176
extern unsigned long __pud_val_bits;
177
extern unsigned long __pgd_val_bits;
178
#define PMD_VAL_BITS __pmd_val_bits
179
#define PUD_VAL_BITS __pud_val_bits
180
#define PGD_VAL_BITS __pgd_val_bits
181
182
extern unsigned long __pte_frag_nr;
183
#define PTE_FRAG_NR __pte_frag_nr
184
extern unsigned long __pte_frag_size_shift;
185
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
186
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
187
188
extern unsigned long __pmd_frag_nr;
189
#define PMD_FRAG_NR __pmd_frag_nr
190
extern unsigned long __pmd_frag_size_shift;
191
#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
192
#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
193
194
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
195
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
196
#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
197
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
198
199
#define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
200
#define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
201
#define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
202
#define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
203
H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
204
205
/* PMD_SHIFT determines what a second-level page table entry can map */
206
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
207
#define PMD_SIZE (1UL << PMD_SHIFT)
208
#define PMD_MASK (~(PMD_SIZE-1))
209
210
/* PUD_SHIFT determines what a third-level page table entry can map */
211
#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
212
#define PUD_SIZE (1UL << PUD_SHIFT)
213
#define PUD_MASK (~(PUD_SIZE-1))
214
215
/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
216
#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
217
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
218
#define PGDIR_MASK (~(PGDIR_SIZE-1))
219
220
/* Bits to mask out from a PMD to get to the PTE page */
221
#define PMD_MASKED_BITS 0xc0000000000000ffUL
222
/* Bits to mask out from a PUD to get to the PMD page */
223
#define PUD_MASKED_BITS 0xc0000000000000ffUL
224
/* Bits to mask out from a PGD to get to the PUD page */
225
#define P4D_MASKED_BITS 0xc0000000000000ffUL
226
227
/*
228
* Used as an indicator for rcu callback functions
229
*/
230
enum pgtable_index {
231
PTE_INDEX = 0,
232
PMD_INDEX,
233
PUD_INDEX,
234
PGD_INDEX,
235
/*
236
* Below are used with 4k page size and hugetlb
237
*/
238
HTLB_16M_INDEX,
239
HTLB_16G_INDEX,
240
};
241
242
extern unsigned long __vmalloc_start;
243
extern unsigned long __vmalloc_end;
244
#define VMALLOC_START __vmalloc_start
245
#define VMALLOC_END __vmalloc_end
246
247
static inline unsigned int ioremap_max_order(void)
248
{
249
if (radix_enabled())
250
return PUD_SHIFT;
251
return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
252
}
253
#define IOREMAP_MAX_ORDER ioremap_max_order()
254
255
extern unsigned long __kernel_virt_start;
256
extern unsigned long __kernel_io_start;
257
extern unsigned long __kernel_io_end;
258
#define KERN_VIRT_START __kernel_virt_start
259
#define KERN_IO_START __kernel_io_start
260
#define KERN_IO_END __kernel_io_end
261
262
extern struct page *vmemmap;
263
extern unsigned long pci_io_base;
264
265
#define pmd_leaf pmd_leaf
266
static inline bool pmd_leaf(pmd_t pmd)
267
{
268
return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
269
}
270
271
#define pud_leaf pud_leaf
272
static inline bool pud_leaf(pud_t pud)
273
{
274
return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
275
}
276
277
#define pmd_leaf_size pmd_leaf_size
278
static inline unsigned long pmd_leaf_size(pmd_t pmd)
279
{
280
if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
281
return SZ_16M;
282
else
283
return PMD_SIZE;
284
}
285
286
#define pud_leaf_size pud_leaf_size
287
static inline unsigned long pud_leaf_size(pud_t pud)
288
{
289
if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
290
return SZ_16G;
291
else
292
return PUD_SIZE;
293
}
294
#endif /* __ASSEMBLY__ */
295
296
#include <asm/book3s/64/hash.h>
297
#include <asm/book3s/64/radix.h>
298
299
#if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
300
#define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
301
#else
302
#define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
303
#endif
304
305
/* hash 4k can't share hugetlb and also doesn't support THP */
306
#ifdef CONFIG_PPC_64K_PAGES
307
#include <asm/book3s/64/pgtable-64k.h>
308
#endif
309
310
#include <asm/barrier.h>
311
/*
312
* IO space itself carved into the PIO region (ISA and PHB IO space) and
313
* the ioremap space
314
*
315
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
316
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
317
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
318
*/
319
#define FULL_IO_SIZE 0x80000000ul
320
#define ISA_IO_BASE (KERN_IO_START)
321
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
322
#define PHB_IO_BASE (ISA_IO_END)
323
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
324
#define IOREMAP_BASE (PHB_IO_END)
325
#define IOREMAP_START (ioremap_bot)
326
#define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
327
#define FIXADDR_SIZE SZ_32M
328
#define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE)
329
330
#ifndef __ASSEMBLY__
331
332
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
333
pte_t *ptep, unsigned long clr,
334
unsigned long set, int huge)
335
{
336
if (radix_enabled())
337
return radix__pte_update(mm, addr, ptep, clr, set, huge);
338
return hash__pte_update(mm, addr, ptep, clr, set, huge);
339
}
340
/*
341
* For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
342
* We currently remove entries from the hashtable regardless of whether
343
* the entry was young or dirty.
344
*
345
* We should be more intelligent about this but for the moment we override
346
* these functions and force a tlb flush unconditionally
347
* For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
348
* function for both hash and radix.
349
*/
350
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
351
unsigned long addr, pte_t *ptep)
352
{
353
unsigned long old;
354
355
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
356
return 0;
357
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
358
return (old & _PAGE_ACCESSED) != 0;
359
}
360
361
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
362
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
363
({ \
364
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
365
})
366
367
/*
368
* On Book3S CPUs, clearing the accessed bit without a TLB flush
369
* doesn't cause data corruption. [ It could cause incorrect
370
* page aging and the (mistaken) reclaim of hot pages, but the
371
* chance of that should be relatively low. ]
372
*
373
* So as a performance optimization don't flush the TLB when
374
* clearing the accessed bit, it will eventually be flushed by
375
* a context switch or a VM operation anyway. [ In the rare
376
* event of it not getting flushed for a long time the delay
377
* shouldn't really matter because there's no real memory
378
* pressure for swapout to react to. ]
379
*
380
* Note: this optimisation also exists in pte_needs_flush() and
381
* huge_pmd_needs_flush().
382
*/
383
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
384
#define ptep_clear_flush_young ptep_test_and_clear_young
385
386
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
387
#define pmdp_clear_flush_young pmdp_test_and_clear_young
388
389
static inline int pte_write(pte_t pte)
390
{
391
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
392
}
393
394
static inline int pte_read(pte_t pte)
395
{
396
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
397
}
398
399
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
400
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
401
pte_t *ptep)
402
{
403
if (pte_write(*ptep))
404
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
405
}
406
407
#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
408
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
409
unsigned long addr, pte_t *ptep)
410
{
411
if (pte_write(*ptep))
412
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
413
}
414
415
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
416
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
417
unsigned long addr, pte_t *ptep)
418
{
419
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
420
return __pte(old);
421
}
422
423
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
424
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
425
unsigned long addr,
426
pte_t *ptep, int full)
427
{
428
if (full && radix_enabled()) {
429
/*
430
* We know that this is a full mm pte clear and
431
* hence can be sure there is no parallel set_pte.
432
*/
433
return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
434
}
435
return ptep_get_and_clear(mm, addr, ptep);
436
}
437
438
439
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
440
pte_t * ptep)
441
{
442
pte_update(mm, addr, ptep, ~0UL, 0, 0);
443
}
444
445
static inline int pte_dirty(pte_t pte)
446
{
447
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
448
}
449
450
static inline int pte_young(pte_t pte)
451
{
452
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
453
}
454
455
static inline int pte_special(pte_t pte)
456
{
457
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
458
}
459
460
static inline bool pte_exec(pte_t pte)
461
{
462
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
463
}
464
465
466
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
467
static inline bool pte_soft_dirty(pte_t pte)
468
{
469
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
470
}
471
472
static inline pte_t pte_mksoft_dirty(pte_t pte)
473
{
474
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
475
}
476
477
static inline pte_t pte_clear_soft_dirty(pte_t pte)
478
{
479
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
480
}
481
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
482
483
#ifdef CONFIG_NUMA_BALANCING
484
static inline int pte_protnone(pte_t pte)
485
{
486
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
487
cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
488
}
489
#endif /* CONFIG_NUMA_BALANCING */
490
491
static inline bool pte_hw_valid(pte_t pte)
492
{
493
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
494
cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
495
}
496
497
static inline int pte_present(pte_t pte)
498
{
499
/*
500
* A pte is considerent present if _PAGE_PRESENT is set.
501
* We also need to consider the pte present which is marked
502
* invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
503
* if we find _PAGE_PRESENT cleared.
504
*/
505
506
if (pte_hw_valid(pte))
507
return true;
508
return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
509
cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
510
}
511
512
#ifdef CONFIG_PPC_MEM_KEYS
513
extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
514
#else
515
static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
516
{
517
return true;
518
}
519
#endif /* CONFIG_PPC_MEM_KEYS */
520
521
static inline bool pte_user(pte_t pte)
522
{
523
return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
524
}
525
526
#define pte_access_permitted pte_access_permitted
527
static inline bool pte_access_permitted(pte_t pte, bool write)
528
{
529
/*
530
* _PAGE_READ is needed for any access and will be cleared for
531
* PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
532
*/
533
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
534
return false;
535
536
if (write && !pte_write(pte))
537
return false;
538
539
return arch_pte_access_permitted(pte_val(pte), write, 0);
540
}
541
542
/*
543
* Conversion functions: convert a page and protection to a page entry,
544
* and a page entry and page directory to the page they refer to.
545
*
546
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
547
* long for now.
548
*/
549
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
550
{
551
VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
552
VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
553
554
return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
555
}
556
557
/* Generic modifiers for PTE bits */
558
static inline pte_t pte_wrprotect(pte_t pte)
559
{
560
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
561
}
562
563
static inline pte_t pte_exprotect(pte_t pte)
564
{
565
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
566
}
567
568
static inline pte_t pte_mkclean(pte_t pte)
569
{
570
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
571
}
572
573
static inline pte_t pte_mkold(pte_t pte)
574
{
575
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
576
}
577
578
static inline pte_t pte_mkexec(pte_t pte)
579
{
580
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
581
}
582
583
static inline pte_t pte_mkwrite_novma(pte_t pte)
584
{
585
/*
586
* write implies read, hence set both
587
*/
588
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
589
}
590
591
static inline pte_t pte_mkdirty(pte_t pte)
592
{
593
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
594
}
595
596
static inline pte_t pte_mkyoung(pte_t pte)
597
{
598
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
599
}
600
601
static inline pte_t pte_mkspecial(pte_t pte)
602
{
603
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
604
}
605
606
static inline pte_t pte_mkhuge(pte_t pte)
607
{
608
return pte;
609
}
610
611
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
612
{
613
/* FIXME!! check whether this need to be a conditional */
614
return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
615
cpu_to_be64(pgprot_val(newprot)));
616
}
617
618
/* Encode and de-code a swap entry */
619
#define MAX_SWAPFILES_CHECK() do { \
620
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
621
/* \
622
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
623
* We filter HPTEFLAGS on set_pte. \
624
*/ \
625
BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
626
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
627
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \
628
} while (0)
629
630
#define SWP_TYPE_BITS 5
631
#define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1)
632
#define __swp_type(x) ((x).val & SWP_TYPE_MASK)
633
#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
634
#define __swp_entry(type, offset) ((swp_entry_t) { \
635
(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
636
/*
637
* swp_entry_t must be independent of pte bits. We build a swp_entry_t from
638
* swap type and offset we get from swap and convert that to pte to find a
639
* matching pte in linux page table.
640
* Clear bits not found in swap entries here.
641
*/
642
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
643
#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
644
#define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
645
#define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
646
647
#ifdef CONFIG_MEM_SOFT_DIRTY
648
#define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY
649
#else
650
#define _PAGE_SWP_SOFT_DIRTY 0UL
651
#endif /* CONFIG_MEM_SOFT_DIRTY */
652
653
#define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT
654
655
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
656
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
657
{
658
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
659
}
660
661
static inline bool pte_swp_soft_dirty(pte_t pte)
662
{
663
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
664
}
665
666
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
667
{
668
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
669
}
670
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
671
672
static inline pte_t pte_swp_mkexclusive(pte_t pte)
673
{
674
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
675
}
676
677
static inline bool pte_swp_exclusive(pte_t pte)
678
{
679
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
680
}
681
682
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
683
{
684
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
685
}
686
687
static inline bool check_pte_access(unsigned long access, unsigned long ptev)
688
{
689
/*
690
* This check for _PAGE_RWX and _PAGE_PRESENT bits
691
*/
692
if (access & ~ptev)
693
return false;
694
/*
695
* This check for access to privilege space
696
*/
697
if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
698
return false;
699
700
return true;
701
}
702
/*
703
* Generic functions with hash/radix callbacks
704
*/
705
706
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
707
pte_t *ptep, pte_t entry,
708
unsigned long address,
709
int psize)
710
{
711
if (radix_enabled())
712
return radix__ptep_set_access_flags(vma, ptep, entry,
713
address, psize);
714
return hash__ptep_set_access_flags(ptep, entry);
715
}
716
717
#define __HAVE_ARCH_PTE_SAME
718
static inline int pte_same(pte_t pte_a, pte_t pte_b)
719
{
720
if (radix_enabled())
721
return radix__pte_same(pte_a, pte_b);
722
return hash__pte_same(pte_a, pte_b);
723
}
724
725
static inline int pte_none(pte_t pte)
726
{
727
if (radix_enabled())
728
return radix__pte_none(pte);
729
return hash__pte_none(pte);
730
}
731
732
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
733
pte_t *ptep, pte_t pte, int percpu)
734
{
735
736
VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
737
/*
738
* Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
739
* in all the callers.
740
*/
741
pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
742
743
if (radix_enabled())
744
return radix__set_pte_at(mm, addr, ptep, pte, percpu);
745
return hash__set_pte_at(mm, addr, ptep, pte, percpu);
746
}
747
748
#define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
749
750
#define pgprot_noncached pgprot_noncached
751
static inline pgprot_t pgprot_noncached(pgprot_t prot)
752
{
753
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
754
_PAGE_NON_IDEMPOTENT);
755
}
756
757
#define pgprot_noncached_wc pgprot_noncached_wc
758
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
759
{
760
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
761
_PAGE_TOLERANT);
762
}
763
764
#define pgprot_cached pgprot_cached
765
static inline pgprot_t pgprot_cached(pgprot_t prot)
766
{
767
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
768
}
769
770
#define pgprot_writecombine pgprot_writecombine
771
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
772
{
773
return pgprot_noncached_wc(prot);
774
}
775
/*
776
* check a pte mapping have cache inhibited property
777
*/
778
static inline bool pte_ci(pte_t pte)
779
{
780
__be64 pte_v = pte_raw(pte);
781
782
if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
783
((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
784
return true;
785
return false;
786
}
787
788
static inline void pmd_clear(pmd_t *pmdp)
789
{
790
if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
791
/*
792
* Don't use this if we can possibly have a hash page table
793
* entry mapping this.
794
*/
795
WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
796
}
797
*pmdp = __pmd(0);
798
}
799
800
static inline int pmd_none(pmd_t pmd)
801
{
802
return !pmd_raw(pmd);
803
}
804
805
static inline int pmd_present(pmd_t pmd)
806
{
807
/*
808
* A pmd is considerent present if _PAGE_PRESENT is set.
809
* We also need to consider the pmd present which is marked
810
* invalid during a split. Hence we look for _PAGE_INVALID
811
* if we find _PAGE_PRESENT cleared.
812
*/
813
if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
814
return true;
815
816
return false;
817
}
818
819
static inline int pmd_is_serializing(pmd_t pmd)
820
{
821
/*
822
* If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
823
* and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
824
*
825
* This condition may also occur when flushing a pmd while flushing
826
* it (see ptep_modify_prot_start), so callers must ensure this
827
* case is fine as well.
828
*/
829
if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
830
cpu_to_be64(_PAGE_INVALID))
831
return true;
832
833
return false;
834
}
835
836
static inline int pmd_bad(pmd_t pmd)
837
{
838
if (radix_enabled())
839
return radix__pmd_bad(pmd);
840
return hash__pmd_bad(pmd);
841
}
842
843
static inline void pud_clear(pud_t *pudp)
844
{
845
if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
846
/*
847
* Don't use this if we can possibly have a hash page table
848
* entry mapping this.
849
*/
850
WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
851
}
852
*pudp = __pud(0);
853
}
854
855
static inline int pud_none(pud_t pud)
856
{
857
return !pud_raw(pud);
858
}
859
860
static inline int pud_present(pud_t pud)
861
{
862
return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
863
}
864
865
extern struct page *pud_page(pud_t pud);
866
extern struct page *pmd_page(pmd_t pmd);
867
static inline pte_t pud_pte(pud_t pud)
868
{
869
return __pte_raw(pud_raw(pud));
870
}
871
872
static inline pud_t pte_pud(pte_t pte)
873
{
874
return __pud_raw(pte_raw(pte));
875
}
876
877
static inline pte_t *pudp_ptep(pud_t *pud)
878
{
879
return (pte_t *)pud;
880
}
881
882
#define pud_pfn(pud) pte_pfn(pud_pte(pud))
883
#define pud_dirty(pud) pte_dirty(pud_pte(pud))
884
#define pud_young(pud) pte_young(pud_pte(pud))
885
#define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud)))
886
#define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud)))
887
#define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud)))
888
#define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud)))
889
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
890
#define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud)))
891
#define pud_write(pud) pte_write(pud_pte(pud))
892
893
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
894
#define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud))
895
#define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud)))
896
#define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
897
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
898
899
static inline int pud_bad(pud_t pud)
900
{
901
if (radix_enabled())
902
return radix__pud_bad(pud);
903
return hash__pud_bad(pud);
904
}
905
906
#define pud_access_permitted pud_access_permitted
907
static inline bool pud_access_permitted(pud_t pud, bool write)
908
{
909
return pte_access_permitted(pud_pte(pud), write);
910
}
911
912
#define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
913
static inline __be64 p4d_raw(p4d_t x)
914
{
915
return pgd_raw(x.pgd);
916
}
917
918
#define p4d_write(p4d) pte_write(p4d_pte(p4d))
919
920
static inline void p4d_clear(p4d_t *p4dp)
921
{
922
*p4dp = __p4d(0);
923
}
924
925
static inline int p4d_none(p4d_t p4d)
926
{
927
return !p4d_raw(p4d);
928
}
929
930
static inline int p4d_present(p4d_t p4d)
931
{
932
return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
933
}
934
935
static inline pte_t p4d_pte(p4d_t p4d)
936
{
937
return __pte_raw(p4d_raw(p4d));
938
}
939
940
static inline p4d_t pte_p4d(pte_t pte)
941
{
942
return __p4d_raw(pte_raw(pte));
943
}
944
945
static inline int p4d_bad(p4d_t p4d)
946
{
947
if (radix_enabled())
948
return radix__p4d_bad(p4d);
949
return hash__p4d_bad(p4d);
950
}
951
952
#define p4d_access_permitted p4d_access_permitted
953
static inline bool p4d_access_permitted(p4d_t p4d, bool write)
954
{
955
return pte_access_permitted(p4d_pte(p4d), write);
956
}
957
958
extern struct page *p4d_page(p4d_t p4d);
959
960
/* Pointers in the page table tree are physical addresses */
961
#define __pgtable_ptr_val(ptr) __pa(ptr)
962
963
static inline pud_t *p4d_pgtable(p4d_t p4d)
964
{
965
return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
966
}
967
968
static inline pmd_t *pud_pgtable(pud_t pud)
969
{
970
return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
971
}
972
973
#define pmd_ERROR(e) \
974
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
975
#define pud_ERROR(e) \
976
pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
977
#define pgd_ERROR(e) \
978
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
979
980
static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
981
{
982
if (radix_enabled()) {
983
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
984
unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
985
WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
986
#endif
987
return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
988
}
989
return hash__map_kernel_page(ea, pa, prot);
990
}
991
992
void unmap_kernel_page(unsigned long va);
993
994
static inline int __meminit vmemmap_create_mapping(unsigned long start,
995
unsigned long page_size,
996
unsigned long phys)
997
{
998
if (radix_enabled())
999
return radix__vmemmap_create_mapping(start, page_size, phys);
1000
return hash__vmemmap_create_mapping(start, page_size, phys);
1001
}
1002
1003
#ifdef CONFIG_MEMORY_HOTPLUG
1004
static inline void vmemmap_remove_mapping(unsigned long start,
1005
unsigned long page_size)
1006
{
1007
if (radix_enabled())
1008
return radix__vmemmap_remove_mapping(start, page_size);
1009
return hash__vmemmap_remove_mapping(start, page_size);
1010
}
1011
#endif
1012
1013
static inline pte_t pmd_pte(pmd_t pmd)
1014
{
1015
return __pte_raw(pmd_raw(pmd));
1016
}
1017
1018
static inline pmd_t pte_pmd(pte_t pte)
1019
{
1020
return __pmd_raw(pte_raw(pte));
1021
}
1022
1023
static inline pte_t *pmdp_ptep(pmd_t *pmd)
1024
{
1025
return (pte_t *)pmd;
1026
}
1027
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1028
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1029
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
1030
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1031
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1032
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1033
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1034
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1035
#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1036
1037
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1038
#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1039
#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1040
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1041
1042
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1043
#define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1044
#define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1045
#define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1046
#endif
1047
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1048
1049
#ifdef CONFIG_NUMA_BALANCING
1050
static inline int pmd_protnone(pmd_t pmd)
1051
{
1052
return pte_protnone(pmd_pte(pmd));
1053
}
1054
#endif /* CONFIG_NUMA_BALANCING */
1055
1056
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
1057
1058
#define pmd_access_permitted pmd_access_permitted
1059
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1060
{
1061
/*
1062
* pmdp_invalidate sets this combination (which is not caught by
1063
* !pte_present() check in pte_access_permitted), to prevent
1064
* lock-free lookups, as part of the serialize_against_pte_lookup()
1065
* synchronisation.
1066
*
1067
* This also catches the case where the PTE's hardware PRESENT bit is
1068
* cleared while TLB is flushed, which is suboptimal but should not
1069
* be frequent.
1070
*/
1071
if (pmd_is_serializing(pmd))
1072
return false;
1073
1074
return pte_access_permitted(pmd_pte(pmd), write);
1075
}
1076
1077
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1078
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1079
extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1080
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1081
extern pud_t pud_modify(pud_t pud, pgprot_t newprot);
1082
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1083
pmd_t *pmdp, pmd_t pmd);
1084
extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1085
pud_t *pudp, pud_t pud);
1086
1087
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1088
unsigned long addr, pmd_t *pmd)
1089
{
1090
}
1091
1092
static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1093
unsigned long addr, pud_t *pud)
1094
{
1095
}
1096
1097
extern int hash__has_transparent_hugepage(void);
1098
static inline int has_transparent_hugepage(void)
1099
{
1100
if (radix_enabled())
1101
return radix__has_transparent_hugepage();
1102
return hash__has_transparent_hugepage();
1103
}
1104
#define has_transparent_hugepage has_transparent_hugepage
1105
1106
static inline int has_transparent_pud_hugepage(void)
1107
{
1108
if (radix_enabled())
1109
return radix__has_transparent_pud_hugepage();
1110
return 0;
1111
}
1112
#define has_transparent_pud_hugepage has_transparent_pud_hugepage
1113
1114
static inline unsigned long
1115
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1116
unsigned long clr, unsigned long set)
1117
{
1118
if (radix_enabled())
1119
return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1120
return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1121
}
1122
1123
static inline unsigned long
1124
pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1125
unsigned long clr, unsigned long set)
1126
{
1127
if (radix_enabled())
1128
return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1129
BUG();
1130
return pud_val(*pudp);
1131
}
1132
1133
/*
1134
* For radix we should always find H_PAGE_HASHPTE zero. Hence
1135
* the below will work for radix too
1136
*/
1137
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1138
unsigned long addr, pmd_t *pmdp)
1139
{
1140
unsigned long old;
1141
1142
if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1143
return 0;
1144
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1145
return ((old & _PAGE_ACCESSED) != 0);
1146
}
1147
1148
static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1149
unsigned long addr, pud_t *pudp)
1150
{
1151
unsigned long old;
1152
1153
if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1154
return 0;
1155
old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1156
return ((old & _PAGE_ACCESSED) != 0);
1157
}
1158
1159
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1160
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1161
pmd_t *pmdp)
1162
{
1163
if (pmd_write(*pmdp))
1164
pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1165
}
1166
1167
#define __HAVE_ARCH_PUDP_SET_WRPROTECT
1168
static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1169
pud_t *pudp)
1170
{
1171
if (pud_write(*pudp))
1172
pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1173
}
1174
1175
/*
1176
* Only returns true for a THP. False for pmd migration entry.
1177
* We also need to return true when we come across a pte that
1178
* in between a thp split. While splitting THP, we mark the pmd
1179
* invalid (pmdp_invalidate()) before we set it with pte page
1180
* address. A pmd_trans_huge() check against a pmd entry during that time
1181
* should return true.
1182
* We should not call this on a hugetlb entry. We should check for HugeTLB
1183
* entry using vma->vm_flags
1184
* The page table walk rule is explained in Documentation/mm/transhuge.rst
1185
*/
1186
static inline int pmd_trans_huge(pmd_t pmd)
1187
{
1188
if (!pmd_present(pmd))
1189
return false;
1190
1191
if (radix_enabled())
1192
return radix__pmd_trans_huge(pmd);
1193
return hash__pmd_trans_huge(pmd);
1194
}
1195
1196
static inline int pud_trans_huge(pud_t pud)
1197
{
1198
if (!pud_present(pud))
1199
return false;
1200
1201
if (radix_enabled())
1202
return radix__pud_trans_huge(pud);
1203
return 0;
1204
}
1205
1206
1207
#define __HAVE_ARCH_PMD_SAME
1208
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1209
{
1210
if (radix_enabled())
1211
return radix__pmd_same(pmd_a, pmd_b);
1212
return hash__pmd_same(pmd_a, pmd_b);
1213
}
1214
1215
#define pud_same pud_same
1216
static inline int pud_same(pud_t pud_a, pud_t pud_b)
1217
{
1218
if (radix_enabled())
1219
return radix__pud_same(pud_a, pud_b);
1220
return hash__pud_same(pud_a, pud_b);
1221
}
1222
1223
1224
static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1225
{
1226
if (radix_enabled())
1227
return radix__pmd_mkhuge(pmd);
1228
return hash__pmd_mkhuge(pmd);
1229
}
1230
1231
static inline pud_t __pud_mkhuge(pud_t pud)
1232
{
1233
if (radix_enabled())
1234
return radix__pud_mkhuge(pud);
1235
BUG();
1236
return pud;
1237
}
1238
1239
/*
1240
* pfn_pmd return a pmd_t that can be used as pmd pte entry.
1241
*/
1242
static inline pmd_t pmd_mkhuge(pmd_t pmd)
1243
{
1244
#ifdef CONFIG_DEBUG_VM
1245
if (radix_enabled())
1246
WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1247
else
1248
WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1249
cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1250
#endif
1251
return pmd;
1252
}
1253
1254
static inline pud_t pud_mkhuge(pud_t pud)
1255
{
1256
#ifdef CONFIG_DEBUG_VM
1257
if (radix_enabled())
1258
WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1259
else
1260
WARN_ON(1);
1261
#endif
1262
return pud;
1263
}
1264
1265
1266
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1267
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1268
unsigned long address, pmd_t *pmdp,
1269
pmd_t entry, int dirty);
1270
#define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1271
extern int pudp_set_access_flags(struct vm_area_struct *vma,
1272
unsigned long address, pud_t *pudp,
1273
pud_t entry, int dirty);
1274
1275
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1276
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1277
unsigned long address, pmd_t *pmdp);
1278
#define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1279
extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1280
unsigned long address, pud_t *pudp);
1281
1282
1283
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1284
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1285
unsigned long addr, pmd_t *pmdp)
1286
{
1287
if (radix_enabled())
1288
return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1289
return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1290
}
1291
1292
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1293
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1294
unsigned long addr, pud_t *pudp)
1295
{
1296
if (radix_enabled())
1297
return radix__pudp_huge_get_and_clear(mm, addr, pudp);
1298
BUG();
1299
return *pudp;
1300
}
1301
1302
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1303
unsigned long address, pmd_t *pmdp)
1304
{
1305
if (radix_enabled())
1306
return radix__pmdp_collapse_flush(vma, address, pmdp);
1307
return hash__pmdp_collapse_flush(vma, address, pmdp);
1308
}
1309
#define pmdp_collapse_flush pmdp_collapse_flush
1310
1311
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1312
pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1313
unsigned long addr,
1314
pmd_t *pmdp, int full);
1315
1316
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1317
pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1318
unsigned long addr,
1319
pud_t *pudp, int full);
1320
1321
#define __HAVE_ARCH_PGTABLE_DEPOSIT
1322
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1323
pmd_t *pmdp, pgtable_t pgtable)
1324
{
1325
if (radix_enabled())
1326
return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1327
return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1328
}
1329
1330
#define __HAVE_ARCH_PGTABLE_WITHDRAW
1331
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1332
pmd_t *pmdp)
1333
{
1334
if (radix_enabled())
1335
return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1336
return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1337
}
1338
1339
#define __HAVE_ARCH_PMDP_INVALIDATE
1340
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1341
pmd_t *pmdp);
1342
extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1343
pud_t *pudp);
1344
1345
#define pmd_move_must_withdraw pmd_move_must_withdraw
1346
struct spinlock;
1347
extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1348
struct spinlock *old_pmd_ptl,
1349
struct vm_area_struct *vma);
1350
/*
1351
* Hash translation mode use the deposited table to store hash pte
1352
* slot information.
1353
*/
1354
#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1355
static inline bool arch_needs_pgtable_deposit(void)
1356
{
1357
if (radix_enabled())
1358
return false;
1359
return true;
1360
}
1361
extern void serialize_against_pte_lookup(struct mm_struct *mm);
1362
1363
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1364
1365
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1366
pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1367
void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1368
pte_t *, pte_t, pte_t);
1369
1370
/*
1371
* Returns true for a R -> RW upgrade of pte
1372
*/
1373
static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1374
{
1375
if (!(old_val & _PAGE_READ))
1376
return false;
1377
1378
if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1379
return true;
1380
1381
return false;
1382
}
1383
1384
#endif /* __ASSEMBLY__ */
1385
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1386
1387