Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/include/asm/book3s/64/pgtable.h
51344 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5
#include <asm-generic/pgtable-nop4d.h>
6
7
#ifndef __ASSEMBLER__
8
#include <linux/mmdebug.h>
9
#include <linux/bug.h>
10
#include <linux/sizes.h>
11
#endif
12
13
/*
14
* Common bits between hash and Radix page table
15
*/
16
17
#define _PAGE_EXEC 0x00001 /* execute permission */
18
#define _PAGE_WRITE 0x00002 /* write access allowed */
19
#define _PAGE_READ 0x00004 /* read access allowed */
20
#define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
21
#define _PAGE_SAO 0x00010 /* Strong access order */
22
#define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
23
#define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
24
#define _PAGE_DIRTY 0x00080 /* C: page changed */
25
#define _PAGE_ACCESSED 0x00100 /* R: page referenced */
26
/*
27
* Software bits
28
*/
29
#define _RPAGE_SW0 0x2000000000000000UL
30
#define _RPAGE_SW1 0x00800
31
#define _RPAGE_SW2 0x00400
32
#define _RPAGE_SW3 0x00200
33
#define _RPAGE_RSV1 0x00040UL
34
35
#define _RPAGE_PKEY_BIT4 0x1000000000000000UL
36
#define _RPAGE_PKEY_BIT3 0x0800000000000000UL
37
#define _RPAGE_PKEY_BIT2 0x0400000000000000UL
38
#define _RPAGE_PKEY_BIT1 0x0200000000000000UL
39
#define _RPAGE_PKEY_BIT0 0x0100000000000000UL
40
41
#define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42
#define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43
/*
44
* We need to mark a pmd pte invalid while splitting. We can do that by clearing
45
* the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46
* differentiate between two use a SW field when invalidating.
47
*
48
* We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49
*
50
* This is used only when _PAGE_PRESENT is cleared.
51
*/
52
#define _PAGE_INVALID _RPAGE_SW0
53
54
/*
55
* Top and bottom bits of RPN which can be used by hash
56
* translation mode, because we expect them to be zero
57
* otherwise.
58
*/
59
#define _RPAGE_RPN0 0x01000
60
#define _RPAGE_RPN1 0x02000
61
#define _RPAGE_RPN43 0x0080000000000000UL
62
#define _RPAGE_RPN42 0x0040000000000000UL
63
#define _RPAGE_RPN41 0x0020000000000000UL
64
65
/* Max physical address bit as per radix table */
66
#define _RPAGE_PA_MAX 56
67
68
/*
69
* Max physical address bit we will use for now.
70
*
71
* This is mostly a hardware limitation and for now Power9 has
72
* a 51 bit limit.
73
*
74
* This is different from the number of physical bit required to address
75
* the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76
* MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77
* number of sections we can support (SECTIONS_SHIFT).
78
*
79
* This is different from Radix page table limitation above and
80
* should always be less than that. The limit is done such that
81
* we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82
* for hash linux page table specific bits.
83
*
84
* In order to be compatible with future hardware generations we keep
85
* some offsets and limit this for now to 53
86
*/
87
#define _PAGE_PA_MAX 53
88
89
#define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
90
#define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
91
92
/*
93
* Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
94
* Instead of fixing all of them, add an alternate define which
95
* maps CI pte mapping.
96
*/
97
#define _PAGE_NO_CACHE _PAGE_TOLERANT
98
/*
99
* We support _RPAGE_PA_MAX bit real address in pte. On the linux side
100
* we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
101
* and every thing below PAGE_SHIFT;
102
*/
103
#define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
104
#define PTE_RPN_SHIFT PAGE_SHIFT
105
/*
106
* set of bits not changed in pmd_modify. Even though we have hash specific bits
107
* in here, on radix we expect them to be zero.
108
*/
109
#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
110
_PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
111
_PAGE_SOFT_DIRTY)
112
/*
113
* user access blocked by key
114
*/
115
#define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
116
#define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
117
#define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
118
#define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
119
/*
120
* _PAGE_CHG_MASK masks of bits that are to be preserved across
121
* pgprot changes
122
*/
123
#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
124
_PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
125
_PAGE_SOFT_DIRTY)
126
127
/*
128
* We define 2 sets of base prot bits, one for basic pages (ie,
129
* cacheable kernel and user pages) and one for non cacheable
130
* pages. We always set _PAGE_COHERENT when SMP is enabled or
131
* the processor might need it for DMA coherency.
132
*/
133
#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
134
#define _PAGE_BASE (_PAGE_BASE_NC)
135
136
#include <asm/pgtable-masks.h>
137
138
/* Permission masks used for kernel mappings */
139
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
140
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
141
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
142
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
143
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
144
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
145
146
#ifndef __ASSEMBLER__
147
#include <linux/page_table_check.h>
148
149
/*
150
* page table defines
151
*/
152
extern unsigned long __pte_index_size;
153
extern unsigned long __pmd_index_size;
154
extern unsigned long __pud_index_size;
155
extern unsigned long __pgd_index_size;
156
extern unsigned long __pud_cache_index;
157
#define PTE_INDEX_SIZE __pte_index_size
158
#define PMD_INDEX_SIZE __pmd_index_size
159
#define PUD_INDEX_SIZE __pud_index_size
160
#define PGD_INDEX_SIZE __pgd_index_size
161
/* pmd table use page table fragments */
162
#define PMD_CACHE_INDEX 0
163
#define PUD_CACHE_INDEX __pud_cache_index
164
/*
165
* Because of use of pte fragments and THP, size of page table
166
* are not always derived out of index size above.
167
*/
168
extern unsigned long __pte_table_size;
169
extern unsigned long __pmd_table_size;
170
extern unsigned long __pud_table_size;
171
extern unsigned long __pgd_table_size;
172
#define PTE_TABLE_SIZE __pte_table_size
173
#define PMD_TABLE_SIZE __pmd_table_size
174
#define PUD_TABLE_SIZE __pud_table_size
175
#define PGD_TABLE_SIZE __pgd_table_size
176
177
extern unsigned long __pmd_val_bits;
178
extern unsigned long __pud_val_bits;
179
extern unsigned long __pgd_val_bits;
180
#define PMD_VAL_BITS __pmd_val_bits
181
#define PUD_VAL_BITS __pud_val_bits
182
#define PGD_VAL_BITS __pgd_val_bits
183
184
extern unsigned long __pte_frag_nr;
185
#define PTE_FRAG_NR __pte_frag_nr
186
extern unsigned long __pte_frag_size_shift;
187
#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
188
#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
189
190
extern unsigned long __pmd_frag_nr;
191
#define PMD_FRAG_NR __pmd_frag_nr
192
extern unsigned long __pmd_frag_size_shift;
193
#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
194
#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
195
196
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
197
#define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
198
#define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
199
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
200
201
#define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
202
#define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
203
#define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
204
#define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
205
H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
206
207
/* PMD_SHIFT determines what a second-level page table entry can map */
208
#define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
209
#define PMD_SIZE (1UL << PMD_SHIFT)
210
#define PMD_MASK (~(PMD_SIZE-1))
211
212
/* PUD_SHIFT determines what a third-level page table entry can map */
213
#define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
214
#define PUD_SIZE (1UL << PUD_SHIFT)
215
#define PUD_MASK (~(PUD_SIZE-1))
216
217
/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
218
#define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
219
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
220
#define PGDIR_MASK (~(PGDIR_SIZE-1))
221
222
/* Bits to mask out from a PMD to get to the PTE page */
223
#define PMD_MASKED_BITS 0xc0000000000000ffUL
224
/* Bits to mask out from a PUD to get to the PMD page */
225
#define PUD_MASKED_BITS 0xc0000000000000ffUL
226
/* Bits to mask out from a PGD to get to the PUD page */
227
#define P4D_MASKED_BITS 0xc0000000000000ffUL
228
229
/*
230
* Used as an indicator for rcu callback functions
231
*/
232
enum pgtable_index {
233
PTE_INDEX = 0,
234
PMD_INDEX,
235
PUD_INDEX,
236
PGD_INDEX,
237
/*
238
* Below are used with 4k page size and hugetlb
239
*/
240
HTLB_16M_INDEX,
241
HTLB_16G_INDEX,
242
};
243
244
extern unsigned long __vmalloc_start;
245
extern unsigned long __vmalloc_end;
246
#define VMALLOC_START __vmalloc_start
247
#define VMALLOC_END __vmalloc_end
248
249
static inline unsigned int ioremap_max_order(void)
250
{
251
if (radix_enabled())
252
return PUD_SHIFT;
253
return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
254
}
255
#define IOREMAP_MAX_ORDER ioremap_max_order()
256
257
extern unsigned long __kernel_virt_start;
258
extern unsigned long __kernel_io_start;
259
extern unsigned long __kernel_io_end;
260
#define KERN_VIRT_START __kernel_virt_start
261
#define KERN_IO_START __kernel_io_start
262
#define KERN_IO_END __kernel_io_end
263
264
extern struct page *vmemmap;
265
extern unsigned long pci_io_base;
266
267
#define pmd_leaf pmd_leaf
268
static inline bool pmd_leaf(pmd_t pmd)
269
{
270
return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
271
}
272
273
#define pud_leaf pud_leaf
274
static inline bool pud_leaf(pud_t pud)
275
{
276
return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
277
}
278
279
#define pmd_leaf_size pmd_leaf_size
280
static inline unsigned long pmd_leaf_size(pmd_t pmd)
281
{
282
if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
283
return SZ_16M;
284
else
285
return PMD_SIZE;
286
}
287
288
#define pud_leaf_size pud_leaf_size
289
static inline unsigned long pud_leaf_size(pud_t pud)
290
{
291
if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled())
292
return SZ_16G;
293
else
294
return PUD_SIZE;
295
}
296
#endif /* __ASSEMBLER__ */
297
298
#include <asm/book3s/64/hash.h>
299
#include <asm/book3s/64/radix.h>
300
301
#if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
302
#define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
303
#else
304
#define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
305
#endif
306
307
/* hash 4k can't share hugetlb and also doesn't support THP */
308
#ifdef CONFIG_PPC_64K_PAGES
309
#include <asm/book3s/64/pgtable-64k.h>
310
#endif
311
312
#include <asm/barrier.h>
313
/*
314
* IO space itself carved into the PIO region (ISA and PHB IO space) and
315
* the ioremap space
316
*
317
* ISA_IO_BASE = KERN_IO_START, 64K reserved area
318
* PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
319
* IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
320
*/
321
#define FULL_IO_SIZE 0x80000000ul
322
#define ISA_IO_BASE (KERN_IO_START)
323
#define ISA_IO_END (KERN_IO_START + 0x10000ul)
324
#define PHB_IO_BASE (ISA_IO_END)
325
#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
326
#define IOREMAP_BASE (PHB_IO_END)
327
#define IOREMAP_START (ioremap_bot)
328
#define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
329
#define FIXADDR_SIZE SZ_32M
330
#define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE)
331
332
#ifndef __ASSEMBLER__
333
334
static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
335
pte_t *ptep, unsigned long clr,
336
unsigned long set, int huge)
337
{
338
if (radix_enabled())
339
return radix__pte_update(mm, addr, ptep, clr, set, huge);
340
return hash__pte_update(mm, addr, ptep, clr, set, huge);
341
}
342
/*
343
* For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
344
* We currently remove entries from the hashtable regardless of whether
345
* the entry was young or dirty.
346
*
347
* We should be more intelligent about this but for the moment we override
348
* these functions and force a tlb flush unconditionally
349
* For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
350
* function for both hash and radix.
351
*/
352
static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
353
unsigned long addr, pte_t *ptep)
354
{
355
unsigned long old;
356
357
if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
358
return 0;
359
old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
360
return (old & _PAGE_ACCESSED) != 0;
361
}
362
363
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
364
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
365
({ \
366
__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
367
})
368
369
/*
370
* On Book3S CPUs, clearing the accessed bit without a TLB flush
371
* doesn't cause data corruption. [ It could cause incorrect
372
* page aging and the (mistaken) reclaim of hot pages, but the
373
* chance of that should be relatively low. ]
374
*
375
* So as a performance optimization don't flush the TLB when
376
* clearing the accessed bit, it will eventually be flushed by
377
* a context switch or a VM operation anyway. [ In the rare
378
* event of it not getting flushed for a long time the delay
379
* shouldn't really matter because there's no real memory
380
* pressure for swapout to react to. ]
381
*
382
* Note: this optimisation also exists in pte_needs_flush() and
383
* huge_pmd_needs_flush().
384
*/
385
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
386
#define ptep_clear_flush_young ptep_test_and_clear_young
387
388
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
389
#define pmdp_clear_flush_young pmdp_test_and_clear_young
390
391
static inline int pte_write(pte_t pte)
392
{
393
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
394
}
395
396
static inline int pte_read(pte_t pte)
397
{
398
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
399
}
400
401
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
402
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
403
pte_t *ptep)
404
{
405
if (pte_write(*ptep))
406
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
407
}
408
409
#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
410
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
411
unsigned long addr, pte_t *ptep)
412
{
413
if (pte_write(*ptep))
414
pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
415
}
416
417
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
418
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
419
unsigned long addr, pte_t *ptep)
420
{
421
pte_t old_pte = __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0));
422
423
page_table_check_pte_clear(mm, addr, old_pte);
424
425
return old_pte;
426
}
427
428
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
429
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
430
unsigned long addr,
431
pte_t *ptep, int full)
432
{
433
if (full && radix_enabled()) {
434
pte_t old_pte;
435
436
/*
437
* We know that this is a full mm pte clear and
438
* hence can be sure there is no parallel set_pte.
439
*/
440
old_pte = radix__ptep_get_and_clear_full(mm, addr, ptep, full);
441
page_table_check_pte_clear(mm, addr, old_pte);
442
443
return old_pte;
444
}
445
return ptep_get_and_clear(mm, addr, ptep);
446
}
447
448
449
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
450
pte_t * ptep)
451
{
452
pte_update(mm, addr, ptep, ~0UL, 0, 0);
453
}
454
455
static inline int pte_dirty(pte_t pte)
456
{
457
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
458
}
459
460
static inline int pte_young(pte_t pte)
461
{
462
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
463
}
464
465
static inline int pte_special(pte_t pte)
466
{
467
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
468
}
469
470
static inline bool pte_exec(pte_t pte)
471
{
472
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
473
}
474
475
476
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
477
static inline bool pte_soft_dirty(pte_t pte)
478
{
479
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
480
}
481
482
static inline pte_t pte_mksoft_dirty(pte_t pte)
483
{
484
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
485
}
486
487
static inline pte_t pte_clear_soft_dirty(pte_t pte)
488
{
489
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
490
}
491
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
492
493
#ifdef CONFIG_NUMA_BALANCING
494
static inline int pte_protnone(pte_t pte)
495
{
496
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
497
cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
498
}
499
#endif /* CONFIG_NUMA_BALANCING */
500
501
static inline bool pte_hw_valid(pte_t pte)
502
{
503
return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
504
cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
505
}
506
507
static inline int pte_present(pte_t pte)
508
{
509
/*
510
* A pte is considerent present if _PAGE_PRESENT is set.
511
* We also need to consider the pte present which is marked
512
* invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
513
* if we find _PAGE_PRESENT cleared.
514
*/
515
516
if (pte_hw_valid(pte))
517
return true;
518
return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
519
cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
520
}
521
522
#ifdef CONFIG_PPC_MEM_KEYS
523
extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
524
#else
525
static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
526
{
527
return true;
528
}
529
#endif /* CONFIG_PPC_MEM_KEYS */
530
531
static inline bool pte_user(pte_t pte)
532
{
533
return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
534
}
535
536
#define pte_access_permitted pte_access_permitted
537
static inline bool pte_access_permitted(pte_t pte, bool write)
538
{
539
/*
540
* _PAGE_READ is needed for any access and will be cleared for
541
* PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
542
*/
543
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
544
return false;
545
546
if (write && !pte_write(pte))
547
return false;
548
549
return arch_pte_access_permitted(pte_val(pte), write, 0);
550
}
551
552
static inline bool pte_user_accessible_page(pte_t pte, unsigned long addr)
553
{
554
return pte_present(pte) && pte_user(pte);
555
}
556
557
/*
558
* Conversion functions: convert a page and protection to a page entry,
559
* and a page entry and page directory to the page they refer to.
560
*
561
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
562
* long for now.
563
*/
564
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
565
{
566
VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
567
VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
568
569
return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
570
}
571
572
/* Generic modifiers for PTE bits */
573
static inline pte_t pte_wrprotect(pte_t pte)
574
{
575
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
576
}
577
578
static inline pte_t pte_exprotect(pte_t pte)
579
{
580
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
581
}
582
583
static inline pte_t pte_mkclean(pte_t pte)
584
{
585
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
586
}
587
588
static inline pte_t pte_mkold(pte_t pte)
589
{
590
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
591
}
592
593
static inline pte_t pte_mkexec(pte_t pte)
594
{
595
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
596
}
597
598
static inline pte_t pte_mkwrite_novma(pte_t pte)
599
{
600
/*
601
* write implies read, hence set both
602
*/
603
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
604
}
605
606
static inline pte_t pte_mkdirty(pte_t pte)
607
{
608
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
609
}
610
611
static inline pte_t pte_mkyoung(pte_t pte)
612
{
613
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
614
}
615
616
static inline pte_t pte_mkspecial(pte_t pte)
617
{
618
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
619
}
620
621
static inline pte_t pte_mkhuge(pte_t pte)
622
{
623
return pte;
624
}
625
626
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
627
{
628
/* FIXME!! check whether this need to be a conditional */
629
return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
630
cpu_to_be64(pgprot_val(newprot)));
631
}
632
633
/* Encode and de-code a swap entry */
634
#define MAX_SWAPFILES_CHECK() do { \
635
BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
636
/* \
637
* Don't have overlapping bits with _PAGE_HPTEFLAGS \
638
* We filter HPTEFLAGS on set_pte. \
639
*/ \
640
BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
641
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
642
BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \
643
} while (0)
644
645
#define SWP_TYPE_BITS 5
646
#define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1)
647
#define __swp_type(x) ((x).val & SWP_TYPE_MASK)
648
#define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
649
#define __swp_entry(type, offset) ((swp_entry_t) { \
650
(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
651
/*
652
* swp_entry_t must be independent of pte bits. We build a swp_entry_t from
653
* swap type and offset we get from swap and convert that to pte to find a
654
* matching pte in linux page table.
655
* Clear bits not found in swap entries here.
656
*/
657
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
658
#define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
659
#define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
660
#define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
661
662
#ifdef CONFIG_MEM_SOFT_DIRTY
663
#define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY
664
#else
665
#define _PAGE_SWP_SOFT_DIRTY 0UL
666
#endif /* CONFIG_MEM_SOFT_DIRTY */
667
668
#define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT
669
670
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
671
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
672
{
673
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
674
}
675
676
static inline bool pte_swp_soft_dirty(pte_t pte)
677
{
678
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
679
}
680
681
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
682
{
683
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
684
}
685
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
686
687
static inline pte_t pte_swp_mkexclusive(pte_t pte)
688
{
689
return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
690
}
691
692
static inline bool pte_swp_exclusive(pte_t pte)
693
{
694
return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
695
}
696
697
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
698
{
699
return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
700
}
701
702
static inline bool check_pte_access(unsigned long access, unsigned long ptev)
703
{
704
/*
705
* This check for _PAGE_RWX and _PAGE_PRESENT bits
706
*/
707
if (access & ~ptev)
708
return false;
709
/*
710
* This check for access to privilege space
711
*/
712
if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
713
return false;
714
715
return true;
716
}
717
/*
718
* Generic functions with hash/radix callbacks
719
*/
720
721
static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
722
pte_t *ptep, pte_t entry,
723
unsigned long address,
724
int psize)
725
{
726
if (radix_enabled())
727
return radix__ptep_set_access_flags(vma, ptep, entry,
728
address, psize);
729
return hash__ptep_set_access_flags(ptep, entry);
730
}
731
732
#define __HAVE_ARCH_PTE_SAME
733
static inline int pte_same(pte_t pte_a, pte_t pte_b)
734
{
735
if (radix_enabled())
736
return radix__pte_same(pte_a, pte_b);
737
return hash__pte_same(pte_a, pte_b);
738
}
739
740
static inline int pte_none(pte_t pte)
741
{
742
if (radix_enabled())
743
return radix__pte_none(pte);
744
return hash__pte_none(pte);
745
}
746
747
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
748
pte_t *ptep, pte_t pte, int percpu)
749
{
750
751
VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
752
/*
753
* Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
754
* in all the callers.
755
*/
756
pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
757
758
if (radix_enabled())
759
return radix__set_pte_at(mm, addr, ptep, pte, percpu);
760
return hash__set_pte_at(mm, addr, ptep, pte, percpu);
761
}
762
763
#define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
764
765
#define pgprot_noncached pgprot_noncached
766
static inline pgprot_t pgprot_noncached(pgprot_t prot)
767
{
768
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
769
_PAGE_NON_IDEMPOTENT);
770
}
771
772
#define pgprot_noncached_wc pgprot_noncached_wc
773
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
774
{
775
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
776
_PAGE_TOLERANT);
777
}
778
779
#define pgprot_cached pgprot_cached
780
static inline pgprot_t pgprot_cached(pgprot_t prot)
781
{
782
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
783
}
784
785
#define pgprot_writecombine pgprot_writecombine
786
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
787
{
788
return pgprot_noncached_wc(prot);
789
}
790
/*
791
* check a pte mapping have cache inhibited property
792
*/
793
static inline bool pte_ci(pte_t pte)
794
{
795
__be64 pte_v = pte_raw(pte);
796
797
if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
798
((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
799
return true;
800
return false;
801
}
802
803
static inline void pmd_clear(pmd_t *pmdp)
804
{
805
if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
806
/*
807
* Don't use this if we can possibly have a hash page table
808
* entry mapping this.
809
*/
810
WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
811
}
812
*pmdp = __pmd(0);
813
}
814
815
static inline int pmd_none(pmd_t pmd)
816
{
817
return !pmd_raw(pmd);
818
}
819
820
static inline int pmd_present(pmd_t pmd)
821
{
822
/*
823
* A pmd is considerent present if _PAGE_PRESENT is set.
824
* We also need to consider the pmd present which is marked
825
* invalid during a split. Hence we look for _PAGE_INVALID
826
* if we find _PAGE_PRESENT cleared.
827
*/
828
if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
829
return true;
830
831
return false;
832
}
833
834
static inline int pmd_is_serializing(pmd_t pmd)
835
{
836
/*
837
* If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
838
* and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
839
*
840
* This condition may also occur when flushing a pmd while flushing
841
* it (see ptep_modify_prot_start), so callers must ensure this
842
* case is fine as well.
843
*/
844
if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
845
cpu_to_be64(_PAGE_INVALID))
846
return true;
847
848
return false;
849
}
850
851
static inline int pmd_bad(pmd_t pmd)
852
{
853
if (radix_enabled())
854
return radix__pmd_bad(pmd);
855
return hash__pmd_bad(pmd);
856
}
857
858
static inline void pud_clear(pud_t *pudp)
859
{
860
if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
861
/*
862
* Don't use this if we can possibly have a hash page table
863
* entry mapping this.
864
*/
865
WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
866
}
867
*pudp = __pud(0);
868
}
869
870
static inline int pud_none(pud_t pud)
871
{
872
return !pud_raw(pud);
873
}
874
875
static inline int pud_present(pud_t pud)
876
{
877
return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
878
}
879
880
extern struct page *pud_page(pud_t pud);
881
extern struct page *pmd_page(pmd_t pmd);
882
static inline pte_t pud_pte(pud_t pud)
883
{
884
return __pte_raw(pud_raw(pud));
885
}
886
887
static inline pud_t pte_pud(pte_t pte)
888
{
889
return __pud_raw(pte_raw(pte));
890
}
891
892
static inline pte_t *pudp_ptep(pud_t *pud)
893
{
894
return (pte_t *)pud;
895
}
896
897
#define pud_pfn(pud) pte_pfn(pud_pte(pud))
898
#define pud_dirty(pud) pte_dirty(pud_pte(pud))
899
#define pud_young(pud) pte_young(pud_pte(pud))
900
#define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud)))
901
#define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud)))
902
#define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud)))
903
#define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud)))
904
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
905
#define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud)))
906
#define pud_write(pud) pte_write(pud_pte(pud))
907
908
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
909
#define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud))
910
#define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud)))
911
#define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
912
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
913
914
static inline int pud_bad(pud_t pud)
915
{
916
if (radix_enabled())
917
return radix__pud_bad(pud);
918
return hash__pud_bad(pud);
919
}
920
921
#define pud_access_permitted pud_access_permitted
922
static inline bool pud_access_permitted(pud_t pud, bool write)
923
{
924
return pte_access_permitted(pud_pte(pud), write);
925
}
926
927
#define pud_user_accessible_page pud_user_accessible_page
928
static inline bool pud_user_accessible_page(pud_t pud, unsigned long addr)
929
{
930
return pud_leaf(pud) && pte_user_accessible_page(pud_pte(pud), addr);
931
}
932
933
#define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
934
static inline __be64 p4d_raw(p4d_t x)
935
{
936
return pgd_raw(x.pgd);
937
}
938
939
#define p4d_write(p4d) pte_write(p4d_pte(p4d))
940
941
static inline void p4d_clear(p4d_t *p4dp)
942
{
943
*p4dp = __p4d(0);
944
}
945
946
static inline int p4d_none(p4d_t p4d)
947
{
948
return !p4d_raw(p4d);
949
}
950
951
static inline int p4d_present(p4d_t p4d)
952
{
953
return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
954
}
955
956
static inline pte_t p4d_pte(p4d_t p4d)
957
{
958
return __pte_raw(p4d_raw(p4d));
959
}
960
961
static inline p4d_t pte_p4d(pte_t pte)
962
{
963
return __p4d_raw(pte_raw(pte));
964
}
965
966
static inline int p4d_bad(p4d_t p4d)
967
{
968
if (radix_enabled())
969
return radix__p4d_bad(p4d);
970
return hash__p4d_bad(p4d);
971
}
972
973
#define p4d_access_permitted p4d_access_permitted
974
static inline bool p4d_access_permitted(p4d_t p4d, bool write)
975
{
976
return pte_access_permitted(p4d_pte(p4d), write);
977
}
978
979
extern struct page *p4d_page(p4d_t p4d);
980
981
/* Pointers in the page table tree are physical addresses */
982
#define __pgtable_ptr_val(ptr) __pa(ptr)
983
984
static inline pud_t *p4d_pgtable(p4d_t p4d)
985
{
986
return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
987
}
988
989
static inline pmd_t *pud_pgtable(pud_t pud)
990
{
991
return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
992
}
993
994
#define pmd_ERROR(e) \
995
pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
996
#define pud_ERROR(e) \
997
pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
998
#define pgd_ERROR(e) \
999
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1000
1001
static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1002
{
1003
if (radix_enabled()) {
1004
#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1005
unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1006
WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1007
#endif
1008
return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1009
}
1010
return hash__map_kernel_page(ea, pa, prot);
1011
}
1012
1013
void unmap_kernel_page(unsigned long va);
1014
1015
static inline int __meminit vmemmap_create_mapping(unsigned long start,
1016
unsigned long page_size,
1017
unsigned long phys)
1018
{
1019
if (radix_enabled())
1020
return radix__vmemmap_create_mapping(start, page_size, phys);
1021
return hash__vmemmap_create_mapping(start, page_size, phys);
1022
}
1023
1024
#ifdef CONFIG_MEMORY_HOTPLUG
1025
static inline void vmemmap_remove_mapping(unsigned long start,
1026
unsigned long page_size)
1027
{
1028
if (radix_enabled())
1029
return radix__vmemmap_remove_mapping(start, page_size);
1030
return hash__vmemmap_remove_mapping(start, page_size);
1031
}
1032
#endif
1033
1034
static inline pte_t pmd_pte(pmd_t pmd)
1035
{
1036
return __pte_raw(pmd_raw(pmd));
1037
}
1038
1039
static inline pmd_t pte_pmd(pte_t pte)
1040
{
1041
return __pmd_raw(pte_raw(pte));
1042
}
1043
1044
static inline pte_t *pmdp_ptep(pmd_t *pmd)
1045
{
1046
return (pte_t *)pmd;
1047
}
1048
#define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1049
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1050
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
1051
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1052
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1053
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1054
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1055
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1056
#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1057
1058
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1059
#define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1060
#define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1061
#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1062
1063
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1064
#define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1065
#define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1066
#define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1067
#endif
1068
#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1069
1070
#ifdef CONFIG_NUMA_BALANCING
1071
static inline int pmd_protnone(pmd_t pmd)
1072
{
1073
return pte_protnone(pmd_pte(pmd));
1074
}
1075
#endif /* CONFIG_NUMA_BALANCING */
1076
1077
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
1078
1079
#define pmd_access_permitted pmd_access_permitted
1080
static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1081
{
1082
/*
1083
* pmdp_invalidate sets this combination (which is not caught by
1084
* !pte_present() check in pte_access_permitted), to prevent
1085
* lock-free lookups, as part of the serialize_against_pte_lookup()
1086
* synchronisation.
1087
*
1088
* This also catches the case where the PTE's hardware PRESENT bit is
1089
* cleared while TLB is flushed, which is suboptimal but should not
1090
* be frequent.
1091
*/
1092
if (pmd_is_serializing(pmd))
1093
return false;
1094
1095
return pte_access_permitted(pmd_pte(pmd), write);
1096
}
1097
1098
#define pmd_user_accessible_page pmd_user_accessible_page
1099
static inline bool pmd_user_accessible_page(pmd_t pmd, unsigned long addr)
1100
{
1101
return pmd_leaf(pmd) && pte_user_accessible_page(pmd_pte(pmd), addr);
1102
}
1103
1104
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105
extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106
extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1107
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1108
extern pud_t pud_modify(pud_t pud, pgprot_t newprot);
1109
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1110
pmd_t *pmdp, pmd_t pmd);
1111
extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1112
pud_t *pudp, pud_t pud);
1113
1114
static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1115
unsigned long addr, pmd_t *pmd)
1116
{
1117
}
1118
1119
static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1120
unsigned long addr, pud_t *pud)
1121
{
1122
}
1123
1124
extern int hash__has_transparent_hugepage(void);
1125
static inline int has_transparent_hugepage(void)
1126
{
1127
if (radix_enabled())
1128
return radix__has_transparent_hugepage();
1129
return hash__has_transparent_hugepage();
1130
}
1131
#define has_transparent_hugepage has_transparent_hugepage
1132
1133
static inline int has_transparent_pud_hugepage(void)
1134
{
1135
if (radix_enabled())
1136
return radix__has_transparent_pud_hugepage();
1137
return 0;
1138
}
1139
#define has_transparent_pud_hugepage has_transparent_pud_hugepage
1140
1141
static inline unsigned long
1142
pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1143
unsigned long clr, unsigned long set)
1144
{
1145
if (radix_enabled())
1146
return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1147
return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1148
}
1149
1150
static inline unsigned long
1151
pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1152
unsigned long clr, unsigned long set)
1153
{
1154
if (radix_enabled())
1155
return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1156
BUG();
1157
return pud_val(*pudp);
1158
}
1159
1160
/*
1161
* For radix we should always find H_PAGE_HASHPTE zero. Hence
1162
* the below will work for radix too
1163
*/
1164
static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1165
unsigned long addr, pmd_t *pmdp)
1166
{
1167
unsigned long old;
1168
1169
if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1170
return 0;
1171
old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1172
return ((old & _PAGE_ACCESSED) != 0);
1173
}
1174
1175
static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1176
unsigned long addr, pud_t *pudp)
1177
{
1178
unsigned long old;
1179
1180
if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1181
return 0;
1182
old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1183
return ((old & _PAGE_ACCESSED) != 0);
1184
}
1185
1186
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1187
static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1188
pmd_t *pmdp)
1189
{
1190
if (pmd_write(*pmdp))
1191
pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1192
}
1193
1194
#define __HAVE_ARCH_PUDP_SET_WRPROTECT
1195
static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1196
pud_t *pudp)
1197
{
1198
if (pud_write(*pudp))
1199
pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1200
}
1201
1202
/*
1203
* Only returns true for a THP. False for pmd migration entry.
1204
* We also need to return true when we come across a pte that
1205
* in between a thp split. While splitting THP, we mark the pmd
1206
* invalid (pmdp_invalidate()) before we set it with pte page
1207
* address. A pmd_trans_huge() check against a pmd entry during that time
1208
* should return true.
1209
* We should not call this on a hugetlb entry. We should check for HugeTLB
1210
* entry using vma->vm_flags
1211
* The page table walk rule is explained in Documentation/mm/transhuge.rst
1212
*/
1213
static inline int pmd_trans_huge(pmd_t pmd)
1214
{
1215
if (!pmd_present(pmd))
1216
return false;
1217
1218
if (radix_enabled())
1219
return radix__pmd_trans_huge(pmd);
1220
return hash__pmd_trans_huge(pmd);
1221
}
1222
1223
static inline int pud_trans_huge(pud_t pud)
1224
{
1225
if (!pud_present(pud))
1226
return false;
1227
1228
if (radix_enabled())
1229
return radix__pud_trans_huge(pud);
1230
return 0;
1231
}
1232
1233
1234
#define __HAVE_ARCH_PMD_SAME
1235
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1236
{
1237
if (radix_enabled())
1238
return radix__pmd_same(pmd_a, pmd_b);
1239
return hash__pmd_same(pmd_a, pmd_b);
1240
}
1241
1242
#define pud_same pud_same
1243
static inline int pud_same(pud_t pud_a, pud_t pud_b)
1244
{
1245
if (radix_enabled())
1246
return radix__pud_same(pud_a, pud_b);
1247
return hash__pud_same(pud_a, pud_b);
1248
}
1249
1250
1251
static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1252
{
1253
if (radix_enabled())
1254
return radix__pmd_mkhuge(pmd);
1255
return hash__pmd_mkhuge(pmd);
1256
}
1257
1258
static inline pud_t __pud_mkhuge(pud_t pud)
1259
{
1260
if (radix_enabled())
1261
return radix__pud_mkhuge(pud);
1262
BUG();
1263
return pud;
1264
}
1265
1266
/*
1267
* pfn_pmd return a pmd_t that can be used as pmd pte entry.
1268
*/
1269
static inline pmd_t pmd_mkhuge(pmd_t pmd)
1270
{
1271
#ifdef CONFIG_DEBUG_VM
1272
if (radix_enabled())
1273
WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1274
else
1275
WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1276
cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1277
#endif
1278
return pmd;
1279
}
1280
1281
static inline pud_t pud_mkhuge(pud_t pud)
1282
{
1283
#ifdef CONFIG_DEBUG_VM
1284
if (radix_enabled())
1285
WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1286
else
1287
WARN_ON(1);
1288
#endif
1289
return pud;
1290
}
1291
1292
1293
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1294
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1295
unsigned long address, pmd_t *pmdp,
1296
pmd_t entry, int dirty);
1297
#define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1298
extern int pudp_set_access_flags(struct vm_area_struct *vma,
1299
unsigned long address, pud_t *pudp,
1300
pud_t entry, int dirty);
1301
1302
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1303
extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1304
unsigned long address, pmd_t *pmdp);
1305
#define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1306
extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1307
unsigned long address, pud_t *pudp);
1308
1309
1310
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1311
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1312
unsigned long addr, pmd_t *pmdp)
1313
{
1314
pmd_t old_pmd;
1315
1316
if (radix_enabled()) {
1317
old_pmd = radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1318
} else {
1319
old_pmd = hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1320
}
1321
1322
page_table_check_pmd_clear(mm, addr, old_pmd);
1323
1324
return old_pmd;
1325
}
1326
1327
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1328
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1329
unsigned long addr, pud_t *pudp)
1330
{
1331
pud_t old_pud;
1332
1333
if (radix_enabled()) {
1334
old_pud = radix__pudp_huge_get_and_clear(mm, addr, pudp);
1335
} else {
1336
BUG();
1337
}
1338
1339
page_table_check_pud_clear(mm, addr, old_pud);
1340
1341
return old_pud;
1342
}
1343
1344
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1345
unsigned long address, pmd_t *pmdp)
1346
{
1347
if (radix_enabled())
1348
return radix__pmdp_collapse_flush(vma, address, pmdp);
1349
return hash__pmdp_collapse_flush(vma, address, pmdp);
1350
}
1351
#define pmdp_collapse_flush pmdp_collapse_flush
1352
1353
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1354
pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1355
unsigned long addr,
1356
pmd_t *pmdp, int full);
1357
1358
#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1359
pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1360
unsigned long addr,
1361
pud_t *pudp, int full);
1362
1363
#define __HAVE_ARCH_PGTABLE_DEPOSIT
1364
static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1365
pmd_t *pmdp, pgtable_t pgtable)
1366
{
1367
if (radix_enabled())
1368
return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1369
return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1370
}
1371
1372
#define __HAVE_ARCH_PGTABLE_WITHDRAW
1373
static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1374
pmd_t *pmdp)
1375
{
1376
if (radix_enabled())
1377
return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1378
return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1379
}
1380
1381
#define __HAVE_ARCH_PMDP_INVALIDATE
1382
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1383
pmd_t *pmdp);
1384
extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
1385
pud_t *pudp);
1386
1387
#define pmd_move_must_withdraw pmd_move_must_withdraw
1388
struct spinlock;
1389
extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1390
struct spinlock *old_pmd_ptl,
1391
struct vm_area_struct *vma);
1392
/*
1393
* Hash translation mode use the deposited table to store hash pte
1394
* slot information.
1395
*/
1396
#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1397
static inline bool arch_needs_pgtable_deposit(void)
1398
{
1399
if (radix_enabled())
1400
return false;
1401
return true;
1402
}
1403
extern void serialize_against_pte_lookup(struct mm_struct *mm);
1404
1405
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1406
1407
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1408
pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1409
void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1410
pte_t *, pte_t, pte_t);
1411
1412
/*
1413
* Returns true for a R -> RW upgrade of pte
1414
*/
1415
static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1416
{
1417
if (!(old_val & _PAGE_READ))
1418
return false;
1419
1420
if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1421
return true;
1422
1423
return false;
1424
}
1425
1426
#endif /* __ASSEMBLER__ */
1427
#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1428
1429