Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kernel/eeh_cache.c
26444 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PCI address cache; allows the lookup of PCI devices based on I/O address
4
*
5
* Copyright IBM Corporation 2004
6
* Copyright Linas Vepstas <[email protected]> 2004
7
*/
8
9
#include <linux/list.h>
10
#include <linux/pci.h>
11
#include <linux/rbtree.h>
12
#include <linux/slab.h>
13
#include <linux/spinlock.h>
14
#include <linux/atomic.h>
15
#include <linux/debugfs.h>
16
#include <asm/pci-bridge.h>
17
#include <asm/ppc-pci.h>
18
19
20
/**
21
* DOC: Overview
22
*
23
* The pci address cache subsystem. This subsystem places
24
* PCI device address resources into a red-black tree, sorted
25
* according to the address range, so that given only an i/o
26
* address, the corresponding PCI device can be **quickly**
27
* found. It is safe to perform an address lookup in an interrupt
28
* context; this ability is an important feature.
29
*
30
* Currently, the only customer of this code is the EEH subsystem;
31
* thus, this code has been somewhat tailored to suit EEH better.
32
* In particular, the cache does *not* hold the addresses of devices
33
* for which EEH is not enabled.
34
*
35
* (Implementation Note: The RB tree seems to be better/faster
36
* than any hash algo I could think of for this problem, even
37
* with the penalty of slow pointer chases for d-cache misses).
38
*/
39
40
struct pci_io_addr_range {
41
struct rb_node rb_node;
42
resource_size_t addr_lo;
43
resource_size_t addr_hi;
44
struct eeh_dev *edev;
45
struct pci_dev *pcidev;
46
unsigned long flags;
47
};
48
49
static struct pci_io_addr_cache {
50
struct rb_root rb_root;
51
spinlock_t piar_lock;
52
} pci_io_addr_cache_root;
53
54
static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
55
{
56
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
57
58
while (n) {
59
struct pci_io_addr_range *piar;
60
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
61
62
if (addr < piar->addr_lo)
63
n = n->rb_left;
64
else if (addr > piar->addr_hi)
65
n = n->rb_right;
66
else
67
return piar->edev;
68
}
69
70
return NULL;
71
}
72
73
/**
74
* eeh_addr_cache_get_dev - Get device, given only address
75
* @addr: mmio (PIO) phys address or i/o port number
76
*
77
* Given an mmio phys address, or a port number, find a pci device
78
* that implements this address. I/O port numbers are assumed to be offset
79
* from zero (that is, they do *not* have pci_io_addr added in).
80
* It is safe to call this function within an interrupt.
81
*/
82
struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
83
{
84
struct eeh_dev *edev;
85
unsigned long flags;
86
87
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
88
edev = __eeh_addr_cache_get_device(addr);
89
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
90
return edev;
91
}
92
93
#ifdef DEBUG
94
/*
95
* Handy-dandy debug print routine, does nothing more
96
* than print out the contents of our addr cache.
97
*/
98
static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
99
{
100
struct rb_node *n;
101
int cnt = 0;
102
103
n = rb_first(&cache->rb_root);
104
while (n) {
105
struct pci_io_addr_range *piar;
106
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
107
pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
108
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
109
&piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
110
cnt++;
111
n = rb_next(n);
112
}
113
}
114
#endif
115
116
/* Insert address range into the rb tree. */
117
static struct pci_io_addr_range *
118
eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
119
resource_size_t ahi, unsigned long flags)
120
{
121
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
122
struct rb_node *parent = NULL;
123
struct pci_io_addr_range *piar;
124
125
/* Walk tree, find a place to insert into tree */
126
while (*p) {
127
parent = *p;
128
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
129
if (ahi < piar->addr_lo) {
130
p = &parent->rb_left;
131
} else if (alo > piar->addr_hi) {
132
p = &parent->rb_right;
133
} else {
134
if (dev != piar->pcidev ||
135
alo != piar->addr_lo || ahi != piar->addr_hi) {
136
pr_warn("PIAR: overlapping address range\n");
137
}
138
return piar;
139
}
140
}
141
piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
142
if (!piar)
143
return NULL;
144
145
piar->addr_lo = alo;
146
piar->addr_hi = ahi;
147
piar->edev = pci_dev_to_eeh_dev(dev);
148
piar->pcidev = dev;
149
piar->flags = flags;
150
151
eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
152
&alo, &ahi);
153
154
rb_link_node(&piar->rb_node, parent, p);
155
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
156
157
return piar;
158
}
159
160
static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
161
{
162
struct eeh_dev *edev;
163
int i;
164
165
edev = pci_dev_to_eeh_dev(dev);
166
if (!edev) {
167
pr_warn("PCI: no EEH dev found for %s\n",
168
pci_name(dev));
169
return;
170
}
171
172
/* Skip any devices for which EEH is not enabled. */
173
if (!edev->pe) {
174
dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
175
return;
176
}
177
178
/*
179
* Walk resources on this device, poke the first 7 (6 normal BAR and 1
180
* ROM BAR) into the tree.
181
*/
182
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
183
resource_size_t start = pci_resource_start(dev,i);
184
resource_size_t end = pci_resource_end(dev,i);
185
unsigned long flags = pci_resource_flags(dev,i);
186
187
/* We are interested only bus addresses, not dma or other stuff */
188
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
189
continue;
190
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
191
continue;
192
eeh_addr_cache_insert(dev, start, end, flags);
193
}
194
}
195
196
/**
197
* eeh_addr_cache_insert_dev - Add a device to the address cache
198
* @dev: PCI device whose I/O addresses we are interested in.
199
*
200
* In order to support the fast lookup of devices based on addresses,
201
* we maintain a cache of devices that can be quickly searched.
202
* This routine adds a device to that cache.
203
*/
204
void eeh_addr_cache_insert_dev(struct pci_dev *dev)
205
{
206
unsigned long flags;
207
208
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
209
__eeh_addr_cache_insert_dev(dev);
210
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
211
}
212
213
static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
214
{
215
struct rb_node *n;
216
217
restart:
218
n = rb_first(&pci_io_addr_cache_root.rb_root);
219
while (n) {
220
struct pci_io_addr_range *piar;
221
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
222
223
if (piar->pcidev == dev) {
224
eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
225
&piar->addr_lo, &piar->addr_hi);
226
rb_erase(n, &pci_io_addr_cache_root.rb_root);
227
kfree(piar);
228
goto restart;
229
}
230
n = rb_next(n);
231
}
232
}
233
234
/**
235
* eeh_addr_cache_rmv_dev - remove pci device from addr cache
236
* @dev: device to remove
237
*
238
* Remove a device from the addr-cache tree.
239
* This is potentially expensive, since it will walk
240
* the tree multiple times (once per resource).
241
* But so what; device removal doesn't need to be that fast.
242
*/
243
void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
244
{
245
unsigned long flags;
246
247
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
248
__eeh_addr_cache_rmv_dev(dev);
249
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
250
}
251
252
/**
253
* eeh_addr_cache_init - Initialize a cache of I/O addresses
254
*
255
* Initialize a cache of pci i/o addresses. This cache will be used to
256
* find the pci device that corresponds to a given address.
257
*/
258
void eeh_addr_cache_init(void)
259
{
260
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
261
}
262
263
static int eeh_addr_cache_show(struct seq_file *s, void *v)
264
{
265
struct pci_io_addr_range *piar;
266
struct rb_node *n;
267
unsigned long flags;
268
269
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
270
for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
271
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
272
273
seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
274
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
275
&piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
276
}
277
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
278
279
return 0;
280
}
281
DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
282
283
void __init eeh_cache_debugfs_init(void)
284
{
285
debugfs_create_file_unsafe("eeh_address_cache", 0400,
286
arch_debugfs_dir, NULL,
287
&eeh_addr_cache_fops);
288
}
289
290