Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kexec/core_64.c
50620 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* PPC64 code to handle Linux booting another kernel.
4
*
5
* Copyright (C) 2004-2005, IBM Corp.
6
*
7
* Created by: Milton D Miller II
8
*/
9
10
11
#include <linux/kexec.h>
12
#include <linux/smp.h>
13
#include <linux/thread_info.h>
14
#include <linux/init_task.h>
15
#include <linux/errno.h>
16
#include <linux/kernel.h>
17
#include <linux/cpu.h>
18
#include <linux/hardirq.h>
19
#include <linux/of.h>
20
#include <linux/libfdt.h>
21
22
#include <asm/page.h>
23
#include <asm/current.h>
24
#include <asm/machdep.h>
25
#include <asm/cacheflush.h>
26
#include <asm/firmware.h>
27
#include <asm/paca.h>
28
#include <asm/mmu.h>
29
#include <asm/sections.h> /* _end */
30
#include <asm/setup.h>
31
#include <asm/smp.h>
32
#include <asm/hw_breakpoint.h>
33
#include <asm/svm.h>
34
#include <asm/ultravisor.h>
35
#include <asm/crashdump-ppc64.h>
36
37
int machine_kexec_prepare(struct kimage *image)
38
{
39
int i;
40
unsigned long begin, end; /* limits of segment */
41
unsigned long low, high; /* limits of blocked memory range */
42
struct device_node *node;
43
const unsigned long *basep;
44
const unsigned int *sizep;
45
46
/*
47
* Since we use the kernel fault handlers and paging code to
48
* handle the virtual mode, we must make sure no destination
49
* overlaps kernel static data or bss.
50
*/
51
for (i = 0; i < image->nr_segments; i++)
52
if (image->segment[i].mem < __pa(_end))
53
return -ETXTBSY;
54
55
/* We also should not overwrite the tce tables */
56
for_each_node_by_type(node, "pci") {
57
basep = of_get_property(node, "linux,tce-base", NULL);
58
sizep = of_get_property(node, "linux,tce-size", NULL);
59
if (basep == NULL || sizep == NULL)
60
continue;
61
62
low = *basep;
63
high = low + (*sizep);
64
65
for (i = 0; i < image->nr_segments; i++) {
66
begin = image->segment[i].mem;
67
end = begin + image->segment[i].memsz;
68
69
if ((begin < high) && (end > low)) {
70
of_node_put(node);
71
return -ETXTBSY;
72
}
73
}
74
}
75
76
return 0;
77
}
78
79
/* Called during kexec sequence with MMU off */
80
static notrace void copy_segments(unsigned long ind)
81
{
82
unsigned long entry;
83
unsigned long *ptr;
84
void *dest;
85
void *addr;
86
87
/*
88
* We rely on kexec_load to create a lists that properly
89
* initializes these pointers before they are used.
90
* We will still crash if the list is wrong, but at least
91
* the compiler will be quiet.
92
*/
93
ptr = NULL;
94
dest = NULL;
95
96
for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
97
addr = __va(entry & PAGE_MASK);
98
99
switch (entry & IND_FLAGS) {
100
case IND_DESTINATION:
101
dest = addr;
102
break;
103
case IND_INDIRECTION:
104
ptr = addr;
105
break;
106
case IND_SOURCE:
107
copy_page(dest, addr);
108
dest += PAGE_SIZE;
109
}
110
}
111
}
112
113
/* Called during kexec sequence with MMU off */
114
notrace void kexec_copy_flush(struct kimage *image)
115
{
116
long i, nr_segments = image->nr_segments;
117
struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
118
119
/* save the ranges on the stack to efficiently flush the icache */
120
memcpy(ranges, image->segment, sizeof(ranges));
121
122
/*
123
* After this call we may not use anything allocated in dynamic
124
* memory, including *image.
125
*
126
* Only globals and the stack are allowed.
127
*/
128
copy_segments(image->head);
129
130
/*
131
* we need to clear the icache for all dest pages sometime,
132
* including ones that were in place on the original copy
133
*/
134
for (i = 0; i < nr_segments; i++)
135
flush_icache_range((unsigned long)__va(ranges[i].mem),
136
(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
137
}
138
139
#ifdef CONFIG_SMP
140
141
static int kexec_all_irq_disabled = 0;
142
143
static void kexec_smp_down(void *arg)
144
{
145
local_irq_disable();
146
hard_irq_disable();
147
148
mb(); /* make sure our irqs are disabled before we say they are */
149
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
150
while(kexec_all_irq_disabled == 0)
151
cpu_relax();
152
mb(); /* make sure all irqs are disabled before this */
153
hw_breakpoint_disable();
154
/*
155
* Now every CPU has IRQs off, we can clear out any pending
156
* IPIs and be sure that no more will come in after this.
157
*/
158
if (ppc_md.kexec_cpu_down)
159
ppc_md.kexec_cpu_down(0, 1);
160
161
reset_sprs();
162
163
kexec_smp_wait();
164
/* NOTREACHED */
165
}
166
167
static void kexec_prepare_cpus_wait(int wait_state)
168
{
169
int my_cpu, i, notified=-1;
170
171
hw_breakpoint_disable();
172
my_cpu = get_cpu();
173
/* Make sure each CPU has at least made it to the state we need.
174
*
175
* FIXME: There is a (slim) chance of a problem if not all of the CPUs
176
* are correctly onlined. If somehow we start a CPU on boot with RTAS
177
* start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
178
* time, the boot CPU will timeout. If it does eventually execute
179
* stuff, the secondary will start up (paca_ptrs[]->cpu_start was
180
* written) and get into a peculiar state.
181
* If the platform supports smp_ops->take_timebase(), the secondary CPU
182
* will probably be spinning in there. If not (i.e. pseries), the
183
* secondary will continue on and try to online itself/idle/etc. If it
184
* survives that, we need to find these
185
* possible-but-not-online-but-should-be CPUs and chaperone them into
186
* kexec_smp_wait().
187
*/
188
for_each_online_cpu(i) {
189
if (i == my_cpu)
190
continue;
191
192
while (paca_ptrs[i]->kexec_state < wait_state) {
193
barrier();
194
if (i != notified) {
195
printk(KERN_INFO "kexec: waiting for cpu %d "
196
"(physical %d) to enter %i state\n",
197
i, paca_ptrs[i]->hw_cpu_id, wait_state);
198
notified = i;
199
}
200
}
201
}
202
mb();
203
}
204
205
206
/*
207
* The add_cpu() call in wake_offline_cpus() can fail as cpu_bootable()
208
* returns false for CPUs that fail the cpu_smt_thread_allowed() check
209
* or non primary threads if SMT is disabled. Re-enable SMT and set the
210
* number of SMT threads to threads per core.
211
*/
212
static void kexec_smt_reenable(void)
213
{
214
#if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT)
215
lock_device_hotplug();
216
cpu_smt_num_threads = threads_per_core;
217
cpu_smt_control = CPU_SMT_ENABLED;
218
unlock_device_hotplug();
219
#endif
220
}
221
222
/*
223
* We need to make sure each present CPU is online. The next kernel will scan
224
* the device tree and assume primary threads are online and query secondary
225
* threads via RTAS to online them if required. If we don't online primary
226
* threads, they will be stuck. However, we also online secondary threads as we
227
* may be using 'cede offline'. In this case RTAS doesn't see the secondary
228
* threads as offline -- and again, these CPUs will be stuck.
229
*
230
* So, we online all CPUs that should be running, including secondary threads.
231
*/
232
static void wake_offline_cpus(void)
233
{
234
int cpu = 0;
235
236
kexec_smt_reenable();
237
238
for_each_present_cpu(cpu) {
239
if (!cpu_online(cpu)) {
240
printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
241
cpu);
242
WARN_ON(add_cpu(cpu));
243
}
244
}
245
}
246
247
static void kexec_prepare_cpus(void)
248
{
249
wake_offline_cpus();
250
smp_call_function(kexec_smp_down, NULL, /* wait */0);
251
local_irq_disable();
252
hard_irq_disable();
253
254
mb(); /* make sure IRQs are disabled before we say they are */
255
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
256
257
kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
258
/* we are sure every CPU has IRQs off at this point */
259
kexec_all_irq_disabled = 1;
260
261
/*
262
* Before removing MMU mappings make sure all CPUs have entered real
263
* mode:
264
*/
265
kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
266
267
/* after we tell the others to go down */
268
if (ppc_md.kexec_cpu_down)
269
ppc_md.kexec_cpu_down(0, 0);
270
271
put_cpu();
272
}
273
274
#else /* ! SMP */
275
276
static void kexec_prepare_cpus(void)
277
{
278
/*
279
* move the secondarys to us so that we can copy
280
* the new kernel 0-0x100 safely
281
*
282
* do this if kexec in setup.c ?
283
*
284
* We need to release the cpus if we are ever going from an
285
* UP to an SMP kernel.
286
*/
287
smp_release_cpus();
288
if (ppc_md.kexec_cpu_down)
289
ppc_md.kexec_cpu_down(0, 0);
290
local_irq_disable();
291
hard_irq_disable();
292
}
293
294
#endif /* SMP */
295
296
/*
297
* kexec thread structure and stack.
298
*
299
* We need to make sure that this is 16384-byte aligned due to the
300
* way process stacks are handled. It also must be statically allocated
301
* or allocated as part of the kimage, because everything else may be
302
* overwritten when we copy the kexec image. We piggyback on the
303
* "init_task" linker section here to statically allocate a stack.
304
*
305
* We could use a smaller stack if we don't care about anything using
306
* current, but that audit has not been performed.
307
*/
308
static union thread_union kexec_stack = { };
309
310
/*
311
* For similar reasons to the stack above, the kexecing CPU needs to be on a
312
* static PACA; we switch to kexec_paca.
313
*/
314
static struct paca_struct kexec_paca;
315
316
/* Our assembly helper, in misc_64.S */
317
extern void kexec_sequence(void *newstack, unsigned long start,
318
void *image, void *control,
319
void (*clear_all)(void),
320
bool copy_with_mmu_off) __noreturn;
321
322
/* too late to fail here */
323
void default_machine_kexec(struct kimage *image)
324
{
325
bool copy_with_mmu_off;
326
327
/* prepare control code if any */
328
329
/*
330
* If the kexec boot is the normal one, need to shutdown other cpus
331
* into our wait loop and quiesce interrupts.
332
* Otherwise, in the case of crashed mode (crashing_cpu >= 0),
333
* stopping other CPUs and collecting their pt_regs is done before
334
* using debugger IPI.
335
*/
336
337
if (!kdump_in_progress())
338
kexec_prepare_cpus();
339
340
#ifdef CONFIG_PPC_PSERIES
341
/*
342
* This must be done after other CPUs have shut down, otherwise they
343
* could execute the 'scv' instruction, which is not supported with
344
* reloc disabled (see configure_exceptions()).
345
*/
346
if (firmware_has_feature(FW_FEATURE_SET_MODE))
347
pseries_disable_reloc_on_exc();
348
#endif
349
350
printk("kexec: Starting switchover sequence.\n");
351
352
/* switch to a staticly allocated stack. Based on irq stack code.
353
* We setup preempt_count to avoid using VMX in memcpy.
354
* XXX: the task struct will likely be invalid once we do the copy!
355
*/
356
current_thread_info()->flags = 0;
357
current_thread_info()->preempt_count = HARDIRQ_OFFSET;
358
359
/* We need a static PACA, too; copy this CPU's PACA over and switch to
360
* it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
361
* non-static data.
362
*/
363
memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
364
kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
365
#ifdef CONFIG_PPC_PSERIES
366
kexec_paca.lppaca_ptr = NULL;
367
#endif
368
369
if (is_secure_guest() && !(image->preserve_context ||
370
image->type == KEXEC_TYPE_CRASH)) {
371
uv_unshare_all_pages();
372
printk("kexec: Unshared all shared pages.\n");
373
}
374
375
paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
376
377
setup_paca(&kexec_paca);
378
379
/*
380
* The lppaca should be unregistered at this point so the HV won't
381
* touch it. In the case of a crash, none of the lppacas are
382
* unregistered so there is not much we can do about it here.
383
*/
384
385
/*
386
* On Book3S, the copy must happen with the MMU off if we are either
387
* using Radix page tables or we are not in an LPAR since we can
388
* overwrite the page tables while copying.
389
*
390
* In an LPAR, we keep the MMU on otherwise we can't access beyond
391
* the RMA. On BookE there is no real MMU off mode, so we have to
392
* keep it enabled as well (but then we have bolted TLB entries).
393
*/
394
#ifdef CONFIG_PPC_BOOK3E_64
395
copy_with_mmu_off = false;
396
#else
397
copy_with_mmu_off = radix_enabled() ||
398
!(firmware_has_feature(FW_FEATURE_LPAR) ||
399
firmware_has_feature(FW_FEATURE_PS3_LV1));
400
#endif
401
402
/* Some things are best done in assembly. Finding globals with
403
* a toc is easier in C, so pass in what we can.
404
*/
405
kexec_sequence(&kexec_stack, image->start, image,
406
page_address(image->control_code_page),
407
mmu_cleanup_all, copy_with_mmu_off);
408
/* NOTREACHED */
409
}
410
411
#ifdef CONFIG_PPC_64S_HASH_MMU
412
/* Values we need to export to the second kernel via the device tree. */
413
static __be64 htab_base;
414
static __be64 htab_size;
415
416
static struct property htab_base_prop = {
417
.name = "linux,htab-base",
418
.length = sizeof(unsigned long),
419
.value = &htab_base,
420
};
421
422
static struct property htab_size_prop = {
423
.name = "linux,htab-size",
424
.length = sizeof(unsigned long),
425
.value = &htab_size,
426
};
427
428
static int __init export_htab_values(void)
429
{
430
struct device_node *node;
431
432
/* On machines with no htab htab_address is NULL */
433
if (!htab_address)
434
return -ENODEV;
435
436
node = of_find_node_by_path("/chosen");
437
if (!node)
438
return -ENODEV;
439
440
/* remove any stale properties so ours can be found */
441
of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
442
of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
443
444
htab_base = cpu_to_be64(__pa(htab_address));
445
of_add_property(node, &htab_base_prop);
446
htab_size = cpu_to_be64(htab_size_bytes);
447
of_add_property(node, &htab_size_prop);
448
449
of_node_put(node);
450
return 0;
451
}
452
late_initcall(export_htab_values);
453
#endif /* CONFIG_PPC_64S_HASH_MMU */
454
455
#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP)
456
/**
457
* add_node_props - Reads node properties from device node structure and add
458
* them to fdt.
459
* @fdt: Flattened device tree of the kernel
460
* @node_offset: offset of the node to add a property at
461
* @dn: device node pointer
462
*
463
* Returns 0 on success, negative errno on error.
464
*/
465
static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
466
{
467
int ret = 0;
468
struct property *pp;
469
470
if (!dn)
471
return -EINVAL;
472
473
for_each_property_of_node(dn, pp) {
474
ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
475
if (ret < 0) {
476
pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
477
return ret;
478
}
479
}
480
return ret;
481
}
482
483
/**
484
* update_cpus_node - Update cpus node of flattened device tree using of_root
485
* device node.
486
* @fdt: Flattened device tree of the kernel.
487
*
488
* Returns 0 on success, negative errno on error.
489
*
490
* Note: expecting no subnodes under /cpus/<node> with device_type == "cpu".
491
* If this changes, update this function to include them.
492
*/
493
int update_cpus_node(void *fdt)
494
{
495
int prev_node_offset;
496
const char *device_type;
497
const struct fdt_property *prop;
498
struct device_node *cpus_node, *dn;
499
int cpus_offset, cpus_subnode_offset, ret = 0;
500
501
cpus_offset = fdt_path_offset(fdt, "/cpus");
502
if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
503
pr_err("Malformed device tree: error reading /cpus node: %s\n",
504
fdt_strerror(cpus_offset));
505
return cpus_offset;
506
}
507
508
prev_node_offset = cpus_offset;
509
/* Delete sub-nodes of /cpus node with device_type == "cpu" */
510
for (cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); cpus_subnode_offset >= 0;) {
511
/* Ignore nodes that do not have a device_type property or device_type != "cpu" */
512
prop = fdt_get_property(fdt, cpus_subnode_offset, "device_type", NULL);
513
if (!prop || strcmp(prop->data, "cpu")) {
514
prev_node_offset = cpus_subnode_offset;
515
goto next_node;
516
}
517
518
ret = fdt_del_node(fdt, cpus_subnode_offset);
519
if (ret < 0) {
520
pr_err("Failed to delete a cpus sub-node: %s\n", fdt_strerror(ret));
521
return ret;
522
}
523
next_node:
524
if (prev_node_offset == cpus_offset)
525
cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset);
526
else
527
cpus_subnode_offset = fdt_next_subnode(fdt, prev_node_offset);
528
}
529
530
cpus_node = of_find_node_by_path("/cpus");
531
/* Fail here to avoid kexec/kdump kernel boot hung */
532
if (!cpus_node) {
533
pr_err("No /cpus node found\n");
534
return -EINVAL;
535
}
536
537
/* Add all /cpus sub-nodes of device_type == "cpu" to FDT */
538
for_each_child_of_node(cpus_node, dn) {
539
/* Ignore device nodes that do not have a device_type property
540
* or device_type != "cpu".
541
*/
542
device_type = of_get_property(dn, "device_type", NULL);
543
if (!device_type || strcmp(device_type, "cpu"))
544
continue;
545
546
cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
547
if (cpus_subnode_offset < 0) {
548
pr_err("Unable to add %s subnode: %s\n", dn->full_name,
549
fdt_strerror(cpus_subnode_offset));
550
ret = cpus_subnode_offset;
551
goto out;
552
}
553
554
ret = add_node_props(fdt, cpus_subnode_offset, dn);
555
if (ret < 0)
556
goto out;
557
}
558
out:
559
of_node_put(cpus_node);
560
of_node_put(dn);
561
return ret;
562
}
563
#endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */
564
565