Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kexec/core_64.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* PPC64 code to handle Linux booting another kernel.
4
*
5
* Copyright (C) 2004-2005, IBM Corp.
6
*
7
* Created by: Milton D Miller II
8
*/
9
10
11
#include <linux/kexec.h>
12
#include <linux/smp.h>
13
#include <linux/thread_info.h>
14
#include <linux/init_task.h>
15
#include <linux/errno.h>
16
#include <linux/kernel.h>
17
#include <linux/cpu.h>
18
#include <linux/hardirq.h>
19
#include <linux/of.h>
20
#include <linux/libfdt.h>
21
22
#include <asm/page.h>
23
#include <asm/current.h>
24
#include <asm/machdep.h>
25
#include <asm/cacheflush.h>
26
#include <asm/firmware.h>
27
#include <asm/paca.h>
28
#include <asm/mmu.h>
29
#include <asm/sections.h> /* _end */
30
#include <asm/setup.h>
31
#include <asm/smp.h>
32
#include <asm/hw_breakpoint.h>
33
#include <asm/svm.h>
34
#include <asm/ultravisor.h>
35
#include <asm/crashdump-ppc64.h>
36
37
int machine_kexec_prepare(struct kimage *image)
38
{
39
int i;
40
unsigned long begin, end; /* limits of segment */
41
unsigned long low, high; /* limits of blocked memory range */
42
struct device_node *node;
43
const unsigned long *basep;
44
const unsigned int *sizep;
45
46
/*
47
* Since we use the kernel fault handlers and paging code to
48
* handle the virtual mode, we must make sure no destination
49
* overlaps kernel static data or bss.
50
*/
51
for (i = 0; i < image->nr_segments; i++)
52
if (image->segment[i].mem < __pa(_end))
53
return -ETXTBSY;
54
55
/* We also should not overwrite the tce tables */
56
for_each_node_by_type(node, "pci") {
57
basep = of_get_property(node, "linux,tce-base", NULL);
58
sizep = of_get_property(node, "linux,tce-size", NULL);
59
if (basep == NULL || sizep == NULL)
60
continue;
61
62
low = *basep;
63
high = low + (*sizep);
64
65
for (i = 0; i < image->nr_segments; i++) {
66
begin = image->segment[i].mem;
67
end = begin + image->segment[i].memsz;
68
69
if ((begin < high) && (end > low)) {
70
of_node_put(node);
71
return -ETXTBSY;
72
}
73
}
74
}
75
76
return 0;
77
}
78
79
/* Called during kexec sequence with MMU off */
80
static notrace void copy_segments(unsigned long ind)
81
{
82
unsigned long entry;
83
unsigned long *ptr;
84
void *dest;
85
void *addr;
86
87
/*
88
* We rely on kexec_load to create a lists that properly
89
* initializes these pointers before they are used.
90
* We will still crash if the list is wrong, but at least
91
* the compiler will be quiet.
92
*/
93
ptr = NULL;
94
dest = NULL;
95
96
for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
97
addr = __va(entry & PAGE_MASK);
98
99
switch (entry & IND_FLAGS) {
100
case IND_DESTINATION:
101
dest = addr;
102
break;
103
case IND_INDIRECTION:
104
ptr = addr;
105
break;
106
case IND_SOURCE:
107
copy_page(dest, addr);
108
dest += PAGE_SIZE;
109
}
110
}
111
}
112
113
/* Called during kexec sequence with MMU off */
114
notrace void kexec_copy_flush(struct kimage *image)
115
{
116
long i, nr_segments = image->nr_segments;
117
struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
118
119
/* save the ranges on the stack to efficiently flush the icache */
120
memcpy(ranges, image->segment, sizeof(ranges));
121
122
/*
123
* After this call we may not use anything allocated in dynamic
124
* memory, including *image.
125
*
126
* Only globals and the stack are allowed.
127
*/
128
copy_segments(image->head);
129
130
/*
131
* we need to clear the icache for all dest pages sometime,
132
* including ones that were in place on the original copy
133
*/
134
for (i = 0; i < nr_segments; i++)
135
flush_icache_range((unsigned long)__va(ranges[i].mem),
136
(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
137
}
138
139
#ifdef CONFIG_SMP
140
141
static int kexec_all_irq_disabled = 0;
142
143
static void kexec_smp_down(void *arg)
144
{
145
local_irq_disable();
146
hard_irq_disable();
147
148
mb(); /* make sure our irqs are disabled before we say they are */
149
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
150
while(kexec_all_irq_disabled == 0)
151
cpu_relax();
152
mb(); /* make sure all irqs are disabled before this */
153
hw_breakpoint_disable();
154
/*
155
* Now every CPU has IRQs off, we can clear out any pending
156
* IPIs and be sure that no more will come in after this.
157
*/
158
if (ppc_md.kexec_cpu_down)
159
ppc_md.kexec_cpu_down(0, 1);
160
161
reset_sprs();
162
163
kexec_smp_wait();
164
/* NOTREACHED */
165
}
166
167
static void kexec_prepare_cpus_wait(int wait_state)
168
{
169
int my_cpu, i, notified=-1;
170
171
hw_breakpoint_disable();
172
my_cpu = get_cpu();
173
/* Make sure each CPU has at least made it to the state we need.
174
*
175
* FIXME: There is a (slim) chance of a problem if not all of the CPUs
176
* are correctly onlined. If somehow we start a CPU on boot with RTAS
177
* start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
178
* time, the boot CPU will timeout. If it does eventually execute
179
* stuff, the secondary will start up (paca_ptrs[]->cpu_start was
180
* written) and get into a peculiar state.
181
* If the platform supports smp_ops->take_timebase(), the secondary CPU
182
* will probably be spinning in there. If not (i.e. pseries), the
183
* secondary will continue on and try to online itself/idle/etc. If it
184
* survives that, we need to find these
185
* possible-but-not-online-but-should-be CPUs and chaperone them into
186
* kexec_smp_wait().
187
*/
188
for_each_online_cpu(i) {
189
if (i == my_cpu)
190
continue;
191
192
while (paca_ptrs[i]->kexec_state < wait_state) {
193
barrier();
194
if (i != notified) {
195
printk(KERN_INFO "kexec: waiting for cpu %d "
196
"(physical %d) to enter %i state\n",
197
i, paca_ptrs[i]->hw_cpu_id, wait_state);
198
notified = i;
199
}
200
}
201
}
202
mb();
203
}
204
205
/*
206
* We need to make sure each present CPU is online. The next kernel will scan
207
* the device tree and assume primary threads are online and query secondary
208
* threads via RTAS to online them if required. If we don't online primary
209
* threads, they will be stuck. However, we also online secondary threads as we
210
* may be using 'cede offline'. In this case RTAS doesn't see the secondary
211
* threads as offline -- and again, these CPUs will be stuck.
212
*
213
* So, we online all CPUs that should be running, including secondary threads.
214
*/
215
static void wake_offline_cpus(void)
216
{
217
int cpu = 0;
218
219
for_each_present_cpu(cpu) {
220
if (!cpu_online(cpu)) {
221
printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
222
cpu);
223
WARN_ON(add_cpu(cpu));
224
}
225
}
226
}
227
228
static void kexec_prepare_cpus(void)
229
{
230
wake_offline_cpus();
231
smp_call_function(kexec_smp_down, NULL, /* wait */0);
232
local_irq_disable();
233
hard_irq_disable();
234
235
mb(); /* make sure IRQs are disabled before we say they are */
236
get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
237
238
kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
239
/* we are sure every CPU has IRQs off at this point */
240
kexec_all_irq_disabled = 1;
241
242
/*
243
* Before removing MMU mappings make sure all CPUs have entered real
244
* mode:
245
*/
246
kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
247
248
/* after we tell the others to go down */
249
if (ppc_md.kexec_cpu_down)
250
ppc_md.kexec_cpu_down(0, 0);
251
252
put_cpu();
253
}
254
255
#else /* ! SMP */
256
257
static void kexec_prepare_cpus(void)
258
{
259
/*
260
* move the secondarys to us so that we can copy
261
* the new kernel 0-0x100 safely
262
*
263
* do this if kexec in setup.c ?
264
*
265
* We need to release the cpus if we are ever going from an
266
* UP to an SMP kernel.
267
*/
268
smp_release_cpus();
269
if (ppc_md.kexec_cpu_down)
270
ppc_md.kexec_cpu_down(0, 0);
271
local_irq_disable();
272
hard_irq_disable();
273
}
274
275
#endif /* SMP */
276
277
/*
278
* kexec thread structure and stack.
279
*
280
* We need to make sure that this is 16384-byte aligned due to the
281
* way process stacks are handled. It also must be statically allocated
282
* or allocated as part of the kimage, because everything else may be
283
* overwritten when we copy the kexec image. We piggyback on the
284
* "init_task" linker section here to statically allocate a stack.
285
*
286
* We could use a smaller stack if we don't care about anything using
287
* current, but that audit has not been performed.
288
*/
289
static union thread_union kexec_stack = { };
290
291
/*
292
* For similar reasons to the stack above, the kexecing CPU needs to be on a
293
* static PACA; we switch to kexec_paca.
294
*/
295
static struct paca_struct kexec_paca;
296
297
/* Our assembly helper, in misc_64.S */
298
extern void kexec_sequence(void *newstack, unsigned long start,
299
void *image, void *control,
300
void (*clear_all)(void),
301
bool copy_with_mmu_off) __noreturn;
302
303
/* too late to fail here */
304
void default_machine_kexec(struct kimage *image)
305
{
306
bool copy_with_mmu_off;
307
308
/* prepare control code if any */
309
310
/*
311
* If the kexec boot is the normal one, need to shutdown other cpus
312
* into our wait loop and quiesce interrupts.
313
* Otherwise, in the case of crashed mode (crashing_cpu >= 0),
314
* stopping other CPUs and collecting their pt_regs is done before
315
* using debugger IPI.
316
*/
317
318
if (!kdump_in_progress())
319
kexec_prepare_cpus();
320
321
#ifdef CONFIG_PPC_PSERIES
322
/*
323
* This must be done after other CPUs have shut down, otherwise they
324
* could execute the 'scv' instruction, which is not supported with
325
* reloc disabled (see configure_exceptions()).
326
*/
327
if (firmware_has_feature(FW_FEATURE_SET_MODE))
328
pseries_disable_reloc_on_exc();
329
#endif
330
331
printk("kexec: Starting switchover sequence.\n");
332
333
/* switch to a staticly allocated stack. Based on irq stack code.
334
* We setup preempt_count to avoid using VMX in memcpy.
335
* XXX: the task struct will likely be invalid once we do the copy!
336
*/
337
current_thread_info()->flags = 0;
338
current_thread_info()->preempt_count = HARDIRQ_OFFSET;
339
340
/* We need a static PACA, too; copy this CPU's PACA over and switch to
341
* it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
342
* non-static data.
343
*/
344
memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
345
kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
346
#ifdef CONFIG_PPC_PSERIES
347
kexec_paca.lppaca_ptr = NULL;
348
#endif
349
350
if (is_secure_guest() && !(image->preserve_context ||
351
image->type == KEXEC_TYPE_CRASH)) {
352
uv_unshare_all_pages();
353
printk("kexec: Unshared all shared pages.\n");
354
}
355
356
paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
357
358
setup_paca(&kexec_paca);
359
360
/*
361
* The lppaca should be unregistered at this point so the HV won't
362
* touch it. In the case of a crash, none of the lppacas are
363
* unregistered so there is not much we can do about it here.
364
*/
365
366
/*
367
* On Book3S, the copy must happen with the MMU off if we are either
368
* using Radix page tables or we are not in an LPAR since we can
369
* overwrite the page tables while copying.
370
*
371
* In an LPAR, we keep the MMU on otherwise we can't access beyond
372
* the RMA. On BookE there is no real MMU off mode, so we have to
373
* keep it enabled as well (but then we have bolted TLB entries).
374
*/
375
#ifdef CONFIG_PPC_BOOK3E_64
376
copy_with_mmu_off = false;
377
#else
378
copy_with_mmu_off = radix_enabled() ||
379
!(firmware_has_feature(FW_FEATURE_LPAR) ||
380
firmware_has_feature(FW_FEATURE_PS3_LV1));
381
#endif
382
383
/* Some things are best done in assembly. Finding globals with
384
* a toc is easier in C, so pass in what we can.
385
*/
386
kexec_sequence(&kexec_stack, image->start, image,
387
page_address(image->control_code_page),
388
mmu_cleanup_all, copy_with_mmu_off);
389
/* NOTREACHED */
390
}
391
392
#ifdef CONFIG_PPC_64S_HASH_MMU
393
/* Values we need to export to the second kernel via the device tree. */
394
static __be64 htab_base;
395
static __be64 htab_size;
396
397
static struct property htab_base_prop = {
398
.name = "linux,htab-base",
399
.length = sizeof(unsigned long),
400
.value = &htab_base,
401
};
402
403
static struct property htab_size_prop = {
404
.name = "linux,htab-size",
405
.length = sizeof(unsigned long),
406
.value = &htab_size,
407
};
408
409
static int __init export_htab_values(void)
410
{
411
struct device_node *node;
412
413
/* On machines with no htab htab_address is NULL */
414
if (!htab_address)
415
return -ENODEV;
416
417
node = of_find_node_by_path("/chosen");
418
if (!node)
419
return -ENODEV;
420
421
/* remove any stale properties so ours can be found */
422
of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
423
of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
424
425
htab_base = cpu_to_be64(__pa(htab_address));
426
of_add_property(node, &htab_base_prop);
427
htab_size = cpu_to_be64(htab_size_bytes);
428
of_add_property(node, &htab_size_prop);
429
430
of_node_put(node);
431
return 0;
432
}
433
late_initcall(export_htab_values);
434
#endif /* CONFIG_PPC_64S_HASH_MMU */
435
436
#if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP)
437
/**
438
* add_node_props - Reads node properties from device node structure and add
439
* them to fdt.
440
* @fdt: Flattened device tree of the kernel
441
* @node_offset: offset of the node to add a property at
442
* @dn: device node pointer
443
*
444
* Returns 0 on success, negative errno on error.
445
*/
446
static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
447
{
448
int ret = 0;
449
struct property *pp;
450
451
if (!dn)
452
return -EINVAL;
453
454
for_each_property_of_node(dn, pp) {
455
ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
456
if (ret < 0) {
457
pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
458
return ret;
459
}
460
}
461
return ret;
462
}
463
464
/**
465
* update_cpus_node - Update cpus node of flattened device tree using of_root
466
* device node.
467
* @fdt: Flattened device tree of the kernel.
468
*
469
* Returns 0 on success, negative errno on error.
470
*
471
* Note: expecting no subnodes under /cpus/<node> with device_type == "cpu".
472
* If this changes, update this function to include them.
473
*/
474
int update_cpus_node(void *fdt)
475
{
476
int prev_node_offset;
477
const char *device_type;
478
const struct fdt_property *prop;
479
struct device_node *cpus_node, *dn;
480
int cpus_offset, cpus_subnode_offset, ret = 0;
481
482
cpus_offset = fdt_path_offset(fdt, "/cpus");
483
if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
484
pr_err("Malformed device tree: error reading /cpus node: %s\n",
485
fdt_strerror(cpus_offset));
486
return cpus_offset;
487
}
488
489
prev_node_offset = cpus_offset;
490
/* Delete sub-nodes of /cpus node with device_type == "cpu" */
491
for (cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset); cpus_subnode_offset >= 0;) {
492
/* Ignore nodes that do not have a device_type property or device_type != "cpu" */
493
prop = fdt_get_property(fdt, cpus_subnode_offset, "device_type", NULL);
494
if (!prop || strcmp(prop->data, "cpu")) {
495
prev_node_offset = cpus_subnode_offset;
496
goto next_node;
497
}
498
499
ret = fdt_del_node(fdt, cpus_subnode_offset);
500
if (ret < 0) {
501
pr_err("Failed to delete a cpus sub-node: %s\n", fdt_strerror(ret));
502
return ret;
503
}
504
next_node:
505
if (prev_node_offset == cpus_offset)
506
cpus_subnode_offset = fdt_first_subnode(fdt, cpus_offset);
507
else
508
cpus_subnode_offset = fdt_next_subnode(fdt, prev_node_offset);
509
}
510
511
cpus_node = of_find_node_by_path("/cpus");
512
/* Fail here to avoid kexec/kdump kernel boot hung */
513
if (!cpus_node) {
514
pr_err("No /cpus node found\n");
515
return -EINVAL;
516
}
517
518
/* Add all /cpus sub-nodes of device_type == "cpu" to FDT */
519
for_each_child_of_node(cpus_node, dn) {
520
/* Ignore device nodes that do not have a device_type property
521
* or device_type != "cpu".
522
*/
523
device_type = of_get_property(dn, "device_type", NULL);
524
if (!device_type || strcmp(device_type, "cpu"))
525
continue;
526
527
cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
528
if (cpus_subnode_offset < 0) {
529
pr_err("Unable to add %s subnode: %s\n", dn->full_name,
530
fdt_strerror(cpus_subnode_offset));
531
ret = cpus_subnode_offset;
532
goto out;
533
}
534
535
ret = add_node_props(fdt, cpus_subnode_offset, dn);
536
if (ret < 0)
537
goto out;
538
}
539
out:
540
of_node_put(cpus_node);
541
of_node_put(dn);
542
return ret;
543
}
544
#endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */
545
546