Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_64_mmu_host.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
4
*
5
* Authors:
6
* Alexander Graf <[email protected]>
7
* Kevin Wolf <[email protected]>
8
*/
9
10
#include <linux/kvm_host.h>
11
#include <linux/pkeys.h>
12
13
#include <asm/kvm_ppc.h>
14
#include <asm/kvm_book3s.h>
15
#include <asm/book3s/64/mmu-hash.h>
16
#include <asm/machdep.h>
17
#include <asm/mmu_context.h>
18
#include <asm/hw_irq.h>
19
#include "trace_pr.h"
20
#include "book3s.h"
21
22
#define PTE_SIZE 12
23
24
void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
25
{
26
mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn,
27
pte->pagesize, pte->pagesize,
28
MMU_SEGSIZE_256M, false);
29
}
30
31
/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
32
* a hash, so we don't waste cycles on looping */
33
static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
34
{
35
return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
36
((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
37
((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
38
((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
39
((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
40
((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
41
((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
42
((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
43
}
44
45
46
static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
47
{
48
struct kvmppc_sid_map *map;
49
u16 sid_map_mask;
50
51
if (kvmppc_get_msr(vcpu) & MSR_PR)
52
gvsid |= VSID_PR;
53
54
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
55
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
56
if (map->valid && (map->guest_vsid == gvsid)) {
57
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
58
return map;
59
}
60
61
map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
62
if (map->valid && (map->guest_vsid == gvsid)) {
63
trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
64
return map;
65
}
66
67
trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
68
return NULL;
69
}
70
71
int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
72
bool iswrite)
73
{
74
unsigned long vpn;
75
kvm_pfn_t hpaddr;
76
ulong hash, hpteg;
77
u64 vsid;
78
int ret;
79
int rflags = 0x192;
80
int vflags = 0;
81
int attempt = 0;
82
struct kvmppc_sid_map *map;
83
int r = 0;
84
int hpsize = MMU_PAGE_4K;
85
bool writable;
86
unsigned long mmu_seq;
87
struct kvm *kvm = vcpu->kvm;
88
struct hpte_cache *cpte;
89
unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT;
90
unsigned long pfn;
91
struct page *page;
92
93
/* used to check for invalidations in progress */
94
mmu_seq = kvm->mmu_invalidate_seq;
95
smp_rmb();
96
97
/* Get host physical address for gpa */
98
pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable, &page);
99
if (is_error_noslot_pfn(pfn)) {
100
printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n",
101
orig_pte->raddr);
102
r = -EINVAL;
103
goto out;
104
}
105
hpaddr = pfn << PAGE_SHIFT;
106
107
/* and write the mapping ea -> hpa into the pt */
108
vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
109
map = find_sid_vsid(vcpu, vsid);
110
if (!map) {
111
ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
112
WARN_ON(ret < 0);
113
map = find_sid_vsid(vcpu, vsid);
114
}
115
if (!map) {
116
printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
117
vsid, orig_pte->eaddr);
118
WARN_ON(true);
119
r = -EINVAL;
120
goto out;
121
}
122
123
vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
124
125
if (!orig_pte->may_write || !writable)
126
rflags |= PP_RXRX;
127
else
128
mark_page_dirty(vcpu->kvm, gfn);
129
130
if (!orig_pte->may_execute)
131
rflags |= HPTE_R_N;
132
else
133
kvmppc_mmu_flush_icache(pfn);
134
135
rflags |= pte_to_hpte_pkey_bits(0, HPTE_USE_KERNEL_KEY);
136
rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg;
137
138
/*
139
* Use 64K pages if possible; otherwise, on 64K page kernels,
140
* we need to transfer 4 more bits from guest real to host real addr.
141
*/
142
if (vsid & VSID_64K)
143
hpsize = MMU_PAGE_64K;
144
else
145
hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
146
147
hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
148
149
cpte = kvmppc_mmu_hpte_cache_next(vcpu);
150
151
spin_lock(&kvm->mmu_lock);
152
if (!cpte || mmu_invalidate_retry(kvm, mmu_seq)) {
153
r = -EAGAIN;
154
goto out_unlock;
155
}
156
157
map_again:
158
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
159
160
/* In case we tried normal mapping already, let's nuke old entries */
161
if (attempt > 1)
162
if (mmu_hash_ops.hpte_remove(hpteg) < 0) {
163
r = -1;
164
goto out_unlock;
165
}
166
167
ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
168
hpsize, hpsize, MMU_SEGSIZE_256M);
169
170
if (ret == -1) {
171
/* If we couldn't map a primary PTE, try a secondary */
172
hash = ~hash;
173
vflags ^= HPTE_V_SECONDARY;
174
attempt++;
175
goto map_again;
176
} else if (ret < 0) {
177
r = -EIO;
178
goto out_unlock;
179
} else {
180
trace_kvm_book3s_64_mmu_map(rflags, hpteg,
181
vpn, hpaddr, orig_pte);
182
183
/*
184
* The mmu_hash_ops code may give us a secondary entry even
185
* though we asked for a primary. Fix up.
186
*/
187
if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
188
hash = ~hash;
189
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
190
}
191
192
cpte->slot = hpteg + (ret & 7);
193
cpte->host_vpn = vpn;
194
cpte->pte = *orig_pte;
195
cpte->pfn = pfn;
196
cpte->pagesize = hpsize;
197
198
kvmppc_mmu_hpte_cache_map(vcpu, cpte);
199
cpte = NULL;
200
}
201
202
out_unlock:
203
/* FIXME: Don't unconditionally pass unused=false. */
204
kvm_release_faultin_page(kvm, page, false,
205
orig_pte->may_write && writable);
206
spin_unlock(&kvm->mmu_lock);
207
if (cpte)
208
kvmppc_mmu_hpte_cache_free(cpte);
209
210
out:
211
return r;
212
}
213
214
void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
215
{
216
u64 mask = 0xfffffffffULL;
217
u64 vsid;
218
219
vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid);
220
if (vsid & VSID_64K)
221
mask = 0xffffffff0ULL;
222
kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask);
223
}
224
225
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
226
{
227
unsigned long vsid_bits = VSID_BITS_65_256M;
228
struct kvmppc_sid_map *map;
229
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
230
u16 sid_map_mask;
231
static int backwards_map;
232
233
if (kvmppc_get_msr(vcpu) & MSR_PR)
234
gvsid |= VSID_PR;
235
236
/* We might get collisions that trap in preceding order, so let's
237
map them differently */
238
239
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
240
if (backwards_map)
241
sid_map_mask = SID_MAP_MASK - sid_map_mask;
242
243
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
244
245
/* Make sure we're taking the other map next time */
246
backwards_map = !backwards_map;
247
248
/* Uh-oh ... out of mappings. Let's flush! */
249
if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
250
vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
251
memset(vcpu_book3s->sid_map, 0,
252
sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
253
kvmppc_mmu_pte_flush(vcpu, 0, 0);
254
kvmppc_mmu_flush_segments(vcpu);
255
}
256
257
if (mmu_has_feature(MMU_FTR_68_BIT_VA))
258
vsid_bits = VSID_BITS_256M;
259
260
map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++,
261
VSID_MULTIPLIER_256M, vsid_bits);
262
263
map->guest_vsid = gvsid;
264
map->valid = true;
265
266
trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
267
268
return map;
269
}
270
271
static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
272
{
273
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
274
int i;
275
int max_slb_size = 64;
276
int found_inval = -1;
277
int r;
278
279
/* Are we overwriting? */
280
for (i = 0; i < svcpu->slb_max; i++) {
281
if (!(svcpu->slb[i].esid & SLB_ESID_V))
282
found_inval = i;
283
else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
284
r = i;
285
goto out;
286
}
287
}
288
289
/* Found a spare entry that was invalidated before */
290
if (found_inval >= 0) {
291
r = found_inval;
292
goto out;
293
}
294
295
/* No spare invalid entry, so create one */
296
297
if (mmu_slb_size < 64)
298
max_slb_size = mmu_slb_size;
299
300
/* Overflowing -> purge */
301
if ((svcpu->slb_max) == max_slb_size)
302
kvmppc_mmu_flush_segments(vcpu);
303
304
r = svcpu->slb_max;
305
svcpu->slb_max++;
306
307
out:
308
svcpu_put(svcpu);
309
return r;
310
}
311
312
int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
313
{
314
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
315
u64 esid = eaddr >> SID_SHIFT;
316
u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
317
u64 slb_vsid = SLB_VSID_USER;
318
u64 gvsid;
319
int slb_index;
320
struct kvmppc_sid_map *map;
321
int r = 0;
322
323
slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
324
325
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
326
/* Invalidate an entry */
327
svcpu->slb[slb_index].esid = 0;
328
r = -ENOENT;
329
goto out;
330
}
331
332
map = find_sid_vsid(vcpu, gvsid);
333
if (!map)
334
map = create_sid_map(vcpu, gvsid);
335
336
map->guest_esid = esid;
337
338
slb_vsid |= (map->host_vsid << 12);
339
slb_vsid &= ~SLB_VSID_KP;
340
slb_esid |= slb_index;
341
342
#ifdef CONFIG_PPC_64K_PAGES
343
/* Set host segment base page size to 64K if possible */
344
if (gvsid & VSID_64K)
345
slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
346
#endif
347
348
svcpu->slb[slb_index].esid = slb_esid;
349
svcpu->slb[slb_index].vsid = slb_vsid;
350
351
trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
352
353
out:
354
svcpu_put(svcpu);
355
return r;
356
}
357
358
void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
359
{
360
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
361
ulong seg_mask = -seg_size;
362
int i;
363
364
for (i = 0; i < svcpu->slb_max; i++) {
365
if ((svcpu->slb[i].esid & SLB_ESID_V) &&
366
(svcpu->slb[i].esid & seg_mask) == ea) {
367
/* Invalidate this entry */
368
svcpu->slb[i].esid = 0;
369
}
370
}
371
372
svcpu_put(svcpu);
373
}
374
375
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
376
{
377
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
378
svcpu->slb_max = 0;
379
svcpu->slb[0].esid = 0;
380
svcpu_put(svcpu);
381
}
382
383
void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
384
{
385
kvmppc_mmu_hpte_destroy(vcpu);
386
__destroy_context(to_book3s(vcpu)->context_id[0]);
387
}
388
389
int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu)
390
{
391
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
392
int err;
393
394
err = hash__alloc_context_id();
395
if (err < 0)
396
return -1;
397
vcpu3s->context_id[0] = err;
398
399
vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
400
<< ESID_BITS) - 1;
401
vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
402
vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
403
404
kvmppc_mmu_hpte_init(vcpu);
405
406
return 0;
407
}
408
409