Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_hv_builtin.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
4
*/
5
6
#include <linux/cpu.h>
7
#include <linux/kvm_host.h>
8
#include <linux/preempt.h>
9
#include <linux/export.h>
10
#include <linux/sched.h>
11
#include <linux/spinlock.h>
12
#include <linux/init.h>
13
#include <linux/memblock.h>
14
#include <linux/sizes.h>
15
#include <linux/cma.h>
16
#include <linux/bitops.h>
17
18
#include <asm/cputable.h>
19
#include <asm/interrupt.h>
20
#include <asm/kvm_ppc.h>
21
#include <asm/kvm_book3s.h>
22
#include <asm/machdep.h>
23
#include <asm/xics.h>
24
#include <asm/xive.h>
25
#include <asm/dbell.h>
26
#include <asm/cputhreads.h>
27
#include <asm/io.h>
28
#include <asm/opal.h>
29
#include <asm/smp.h>
30
31
#define KVM_CMA_CHUNK_ORDER 18
32
33
#include "book3s_xics.h"
34
#include "book3s_xive.h"
35
#include "book3s_hv.h"
36
37
/*
38
* Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
39
* should be power of 2.
40
*/
41
#define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
42
/*
43
* By default we reserve 5% of memory for hash pagetable allocation.
44
*/
45
static unsigned long kvm_cma_resv_ratio = 5;
46
47
static struct cma *kvm_cma;
48
49
static int __init early_parse_kvm_cma_resv(char *p)
50
{
51
pr_debug("%s(%s)\n", __func__, p);
52
if (!p)
53
return -EINVAL;
54
return kstrtoul(p, 0, &kvm_cma_resv_ratio);
55
}
56
early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
57
58
struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
59
{
60
VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
61
62
return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
63
false);
64
}
65
EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
66
67
void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
68
{
69
cma_release(kvm_cma, page, nr_pages);
70
}
71
EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
72
73
/**
74
* kvm_cma_reserve() - reserve area for kvm hash pagetable
75
*
76
* This function reserves memory from early allocator. It should be
77
* called by arch specific code once the memblock allocator
78
* has been activated and all other subsystems have already allocated/reserved
79
* memory.
80
*/
81
void __init kvm_cma_reserve(void)
82
{
83
unsigned long align_size;
84
phys_addr_t selected_size;
85
86
/*
87
* We need CMA reservation only when we are in HV mode
88
*/
89
if (!cpu_has_feature(CPU_FTR_HVMODE))
90
return;
91
92
selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
93
if (selected_size) {
94
pr_info("%s: reserving %ld MiB for global area\n", __func__,
95
(unsigned long)selected_size / SZ_1M);
96
align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
97
cma_declare_contiguous(0, selected_size, 0, align_size,
98
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
99
&kvm_cma);
100
}
101
}
102
103
/*
104
* Real-mode H_CONFER implementation.
105
* We check if we are the only vcpu out of this virtual core
106
* still running in the guest and not ceded. If so, we pop up
107
* to the virtual-mode implementation; if not, just return to
108
* the guest.
109
*/
110
long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
111
unsigned int yield_count)
112
{
113
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
114
int ptid = local_paca->kvm_hstate.ptid;
115
int threads_running;
116
int threads_ceded;
117
int threads_conferring;
118
u64 stop = get_tb() + 10 * tb_ticks_per_usec;
119
int rv = H_SUCCESS; /* => don't yield */
120
121
set_bit(ptid, &vc->conferring_threads);
122
while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
123
threads_running = VCORE_ENTRY_MAP(vc);
124
threads_ceded = vc->napping_threads;
125
threads_conferring = vc->conferring_threads;
126
if ((threads_ceded | threads_conferring) == threads_running) {
127
rv = H_TOO_HARD; /* => do yield */
128
break;
129
}
130
}
131
clear_bit(ptid, &vc->conferring_threads);
132
return rv;
133
}
134
135
/*
136
* When running HV mode KVM we need to block certain operations while KVM VMs
137
* exist in the system. We use a counter of VMs to track this.
138
*
139
* One of the operations we need to block is onlining of secondaries, so we
140
* protect hv_vm_count with cpus_read_lock/unlock().
141
*/
142
static atomic_t hv_vm_count;
143
144
void kvm_hv_vm_activated(void)
145
{
146
cpus_read_lock();
147
atomic_inc(&hv_vm_count);
148
cpus_read_unlock();
149
}
150
EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
151
152
void kvm_hv_vm_deactivated(void)
153
{
154
cpus_read_lock();
155
atomic_dec(&hv_vm_count);
156
cpus_read_unlock();
157
}
158
EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
159
160
bool kvm_hv_mode_active(void)
161
{
162
return atomic_read(&hv_vm_count) != 0;
163
}
164
165
extern int hcall_real_table[], hcall_real_table_end[];
166
167
int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
168
{
169
cmd /= 4;
170
if (cmd < hcall_real_table_end - hcall_real_table &&
171
hcall_real_table[cmd])
172
return 1;
173
174
return 0;
175
}
176
EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
177
178
int kvmppc_hwrng_present(void)
179
{
180
return ppc_md.get_random_seed != NULL;
181
}
182
EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
183
184
long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
185
{
186
unsigned long rand;
187
188
if (ppc_md.get_random_seed &&
189
ppc_md.get_random_seed(&rand)) {
190
kvmppc_set_gpr(vcpu, 4, rand);
191
return H_SUCCESS;
192
}
193
194
return H_HARDWARE;
195
}
196
197
/*
198
* Send an interrupt or message to another CPU.
199
* The caller needs to include any barrier needed to order writes
200
* to memory vs. the IPI/message.
201
*/
202
void kvmhv_rm_send_ipi(int cpu)
203
{
204
void __iomem *xics_phys;
205
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
206
207
/* On POWER9 we can use msgsnd for any destination cpu. */
208
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
209
msg |= get_hard_smp_processor_id(cpu);
210
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211
return;
212
}
213
214
/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
215
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
216
cpu_first_thread_sibling(cpu) ==
217
cpu_first_thread_sibling(raw_smp_processor_id())) {
218
msg |= cpu_thread_in_core(cpu);
219
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
220
return;
221
}
222
223
/* We should never reach this */
224
if (WARN_ON_ONCE(xics_on_xive()))
225
return;
226
227
/* Else poke the target with an IPI */
228
xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
229
if (xics_phys)
230
__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
231
else
232
opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
233
}
234
235
/*
236
* The following functions are called from the assembly code
237
* in book3s_hv_rmhandlers.S.
238
*/
239
static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
240
{
241
int cpu = vc->pcpu;
242
243
/* Order setting of exit map vs. msgsnd/IPI */
244
smp_mb();
245
for (; active; active >>= 1, ++cpu)
246
if (active & 1)
247
kvmhv_rm_send_ipi(cpu);
248
}
249
250
void kvmhv_commence_exit(int trap)
251
{
252
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
253
int ptid = local_paca->kvm_hstate.ptid;
254
struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
255
int me, ee, i;
256
257
/* Set our bit in the threads-exiting-guest map in the 0xff00
258
bits of vcore->entry_exit_map */
259
me = 0x100 << ptid;
260
do {
261
ee = vc->entry_exit_map;
262
} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
263
264
/* Are we the first here? */
265
if ((ee >> 8) != 0)
266
return;
267
268
/*
269
* Trigger the other threads in this vcore to exit the guest.
270
* If this is a hypervisor decrementer interrupt then they
271
* will be already on their way out of the guest.
272
*/
273
if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
274
kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
275
276
/*
277
* If we are doing dynamic micro-threading, interrupt the other
278
* subcores to pull them out of their guests too.
279
*/
280
if (!sip)
281
return;
282
283
for (i = 0; i < MAX_SUBCORES; ++i) {
284
vc = sip->vc[i];
285
if (!vc)
286
break;
287
do {
288
ee = vc->entry_exit_map;
289
/* Already asked to exit? */
290
if ((ee >> 8) != 0)
291
break;
292
} while (cmpxchg(&vc->entry_exit_map, ee,
293
ee | VCORE_EXIT_REQ) != ee);
294
if ((ee >> 8) == 0)
295
kvmhv_interrupt_vcore(vc, ee);
296
}
297
}
298
299
struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
300
EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
301
302
#ifdef CONFIG_KVM_XICS
303
static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
304
u32 xisr)
305
{
306
int i;
307
308
/*
309
* We access the mapped array here without a lock. That
310
* is safe because we never reduce the number of entries
311
* in the array and we never change the v_hwirq field of
312
* an entry once it is set.
313
*
314
* We have also carefully ordered the stores in the writer
315
* and the loads here in the reader, so that if we find a matching
316
* hwirq here, the associated GSI and irq_desc fields are valid.
317
*/
318
for (i = 0; i < pimap->n_mapped; i++) {
319
if (xisr == pimap->mapped[i].r_hwirq) {
320
/*
321
* Order subsequent reads in the caller to serialize
322
* with the writer.
323
*/
324
smp_rmb();
325
return &pimap->mapped[i];
326
}
327
}
328
return NULL;
329
}
330
331
/*
332
* If we have an interrupt that's not an IPI, check if we have a
333
* passthrough adapter and if so, check if this external interrupt
334
* is for the adapter.
335
* We will attempt to deliver the IRQ directly to the target VCPU's
336
* ICP, the virtual ICP (based on affinity - the xive value in ICS).
337
*
338
* If the delivery fails or if this is not for a passthrough adapter,
339
* return to the host to handle this interrupt. We earlier
340
* saved a copy of the XIRR in the PACA, it will be picked up by
341
* the host ICP driver.
342
*/
343
static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
344
{
345
struct kvmppc_passthru_irqmap *pimap;
346
struct kvmppc_irq_map *irq_map;
347
struct kvm_vcpu *vcpu;
348
349
vcpu = local_paca->kvm_hstate.kvm_vcpu;
350
if (!vcpu)
351
return 1;
352
pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
353
if (!pimap)
354
return 1;
355
irq_map = get_irqmap(pimap, xisr);
356
if (!irq_map)
357
return 1;
358
359
/* We're handling this interrupt, generic code doesn't need to */
360
local_paca->kvm_hstate.saved_xirr = 0;
361
362
return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
363
}
364
365
#else
366
static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
367
{
368
return 1;
369
}
370
#endif
371
372
/*
373
* Determine what sort of external interrupt is pending (if any).
374
* Returns:
375
* 0 if no interrupt is pending
376
* 1 if an interrupt is pending that needs to be handled by the host
377
* 2 Passthrough that needs completion in the host
378
* -1 if there was a guest wakeup IPI (which has now been cleared)
379
* -2 if there is PCI passthrough external interrupt that was handled
380
*/
381
static long kvmppc_read_one_intr(bool *again);
382
383
long kvmppc_read_intr(void)
384
{
385
long ret = 0;
386
long rc;
387
bool again;
388
389
if (xive_enabled())
390
return 1;
391
392
do {
393
again = false;
394
rc = kvmppc_read_one_intr(&again);
395
if (rc && (ret == 0 || rc > ret))
396
ret = rc;
397
} while (again);
398
return ret;
399
}
400
401
static long kvmppc_read_one_intr(bool *again)
402
{
403
void __iomem *xics_phys;
404
u32 h_xirr;
405
__be32 xirr;
406
u32 xisr;
407
u8 host_ipi;
408
int64_t rc;
409
410
if (xive_enabled())
411
return 1;
412
413
/* see if a host IPI is pending */
414
host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
415
if (host_ipi)
416
return 1;
417
418
/* Now read the interrupt from the ICP */
419
xics_phys = local_paca->kvm_hstate.xics_phys;
420
rc = 0;
421
if (!xics_phys)
422
rc = opal_int_get_xirr(&xirr, false);
423
else
424
xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
425
if (rc < 0)
426
return 1;
427
428
/*
429
* Save XIRR for later. Since we get control in reverse endian
430
* on LE systems, save it byte reversed and fetch it back in
431
* host endian. Note that xirr is the value read from the
432
* XIRR register, while h_xirr is the host endian version.
433
*/
434
h_xirr = be32_to_cpu(xirr);
435
local_paca->kvm_hstate.saved_xirr = h_xirr;
436
xisr = h_xirr & 0xffffff;
437
/*
438
* Ensure that the store/load complete to guarantee all side
439
* effects of loading from XIRR has completed
440
*/
441
smp_mb();
442
443
/* if nothing pending in the ICP */
444
if (!xisr)
445
return 0;
446
447
/* We found something in the ICP...
448
*
449
* If it is an IPI, clear the MFRR and EOI it.
450
*/
451
if (xisr == XICS_IPI) {
452
rc = 0;
453
if (xics_phys) {
454
__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
455
__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
456
} else {
457
opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
458
rc = opal_int_eoi(h_xirr);
459
}
460
/* If rc > 0, there is another interrupt pending */
461
*again = rc > 0;
462
463
/*
464
* Need to ensure side effects of above stores
465
* complete before proceeding.
466
*/
467
smp_mb();
468
469
/*
470
* We need to re-check host IPI now in case it got set in the
471
* meantime. If it's clear, we bounce the interrupt to the
472
* guest
473
*/
474
host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
475
if (unlikely(host_ipi != 0)) {
476
/* We raced with the host,
477
* we need to resend that IPI, bummer
478
*/
479
if (xics_phys)
480
__raw_rm_writeb(IPI_PRIORITY,
481
xics_phys + XICS_MFRR);
482
else
483
opal_int_set_mfrr(hard_smp_processor_id(),
484
IPI_PRIORITY);
485
/* Let side effects complete */
486
smp_mb();
487
return 1;
488
}
489
490
/* OK, it's an IPI for us */
491
local_paca->kvm_hstate.saved_xirr = 0;
492
return -1;
493
}
494
495
return kvmppc_check_passthru(xisr, xirr, again);
496
}
497
498
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
499
{
500
vcpu->arch.ceded = 0;
501
if (vcpu->arch.timer_running) {
502
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
503
vcpu->arch.timer_running = 0;
504
}
505
}
506
507
void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
508
{
509
/* Guest must always run with ME enabled, HV disabled. */
510
msr = (msr | MSR_ME) & ~MSR_HV;
511
512
/*
513
* Check for illegal transactional state bit combination
514
* and if we find it, force the TS field to a safe state.
515
*/
516
if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
517
msr &= ~MSR_TS_MASK;
518
__kvmppc_set_msr_hv(vcpu, msr);
519
kvmppc_end_cede(vcpu);
520
}
521
EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
522
523
static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
524
{
525
unsigned long msr, pc, new_msr, new_pc;
526
527
msr = kvmppc_get_msr(vcpu);
528
pc = kvmppc_get_pc(vcpu);
529
new_msr = vcpu->arch.intr_msr;
530
new_pc = vec;
531
532
/* If transactional, change to suspend mode on IRQ delivery */
533
if (MSR_TM_TRANSACTIONAL(msr))
534
new_msr |= MSR_TS_S;
535
else
536
new_msr |= msr & MSR_TS_MASK;
537
538
/*
539
* Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
540
* applicable. AIL=2 is not supported.
541
*
542
* AIL does not apply to SRESET, MCE, or HMI (which is never
543
* delivered to the guest), and does not apply if IR=0 or DR=0.
544
*/
545
if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
546
vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
547
(vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
548
(msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
549
new_msr |= MSR_IR | MSR_DR;
550
new_pc += 0xC000000000004000ULL;
551
}
552
553
kvmppc_set_srr0(vcpu, pc);
554
kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
555
kvmppc_set_pc(vcpu, new_pc);
556
__kvmppc_set_msr_hv(vcpu, new_msr);
557
}
558
559
void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
560
{
561
inject_interrupt(vcpu, vec, srr1_flags);
562
kvmppc_end_cede(vcpu);
563
}
564
EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
565
566
/*
567
* Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
568
* Can we inject a Decrementer or a External interrupt?
569
*/
570
void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
571
{
572
int ext;
573
unsigned long lpcr;
574
575
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
576
577
/* Insert EXTERNAL bit into LPCR at the MER bit position */
578
ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
579
lpcr = mfspr(SPRN_LPCR);
580
lpcr |= ext << LPCR_MER_SH;
581
mtspr(SPRN_LPCR, lpcr);
582
isync();
583
584
if (vcpu->arch.shregs.msr & MSR_EE) {
585
if (ext) {
586
inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
587
} else {
588
long int dec = mfspr(SPRN_DEC);
589
if (!(lpcr & LPCR_LD))
590
dec = (int) dec;
591
if (dec < 0)
592
inject_interrupt(vcpu,
593
BOOK3S_INTERRUPT_DECREMENTER, 0);
594
}
595
}
596
597
if (vcpu->arch.doorbell_request) {
598
mtspr(SPRN_DPDES, 1);
599
vcpu->arch.vcore->dpdes = 1;
600
smp_wmb();
601
vcpu->arch.doorbell_request = 0;
602
}
603
}
604
605
static void flush_guest_tlb(struct kvm *kvm)
606
{
607
unsigned long rb, set;
608
609
rb = PPC_BIT(52); /* IS = 2 */
610
for (set = 0; set < kvm->arch.tlb_sets; ++set) {
611
/* R=0 PRS=0 RIC=0 */
612
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
613
: : "r" (rb), "i" (0), "i" (0), "i" (0),
614
"r" (0) : "memory");
615
rb += PPC_BIT(51); /* increment set number */
616
}
617
asm volatile("ptesync": : :"memory");
618
}
619
620
void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
621
{
622
if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
623
flush_guest_tlb(kvm);
624
625
/* Clear the bit after the TLB flush */
626
cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
627
}
628
}
629
EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
630
631