Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_hv_ras.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
*
4
* Copyright 2012 Paul Mackerras, IBM Corp. <[email protected]>
5
*/
6
7
#include <linux/types.h>
8
#include <linux/string.h>
9
#include <linux/kvm.h>
10
#include <linux/kvm_host.h>
11
#include <linux/kernel.h>
12
#include <asm/lppaca.h>
13
#include <asm/opal.h>
14
#include <asm/mce.h>
15
#include <asm/machdep.h>
16
#include <asm/cputhreads.h>
17
#include <asm/hmi.h>
18
#include <asm/kvm_ppc.h>
19
20
/* SRR1 bits for machine check on POWER7 */
21
#define SRR1_MC_LDSTERR (1ul << (63-42))
22
#define SRR1_MC_IFETCH_SH (63-45)
23
#define SRR1_MC_IFETCH_MASK 0x7
24
#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
25
#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
26
#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
27
#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
28
29
/* DSISR bits for machine check on POWER7 */
30
#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
31
#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
32
#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
33
#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
34
#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
35
36
/* POWER7 SLB flush and reload */
37
static void reload_slb(struct kvm_vcpu *vcpu)
38
{
39
struct slb_shadow *slb;
40
unsigned long i, n;
41
42
/* First clear out SLB */
43
asm volatile("slbmte %0,%0; slbia" : : "r" (0));
44
45
/* Do they have an SLB shadow buffer registered? */
46
slb = vcpu->arch.slb_shadow.pinned_addr;
47
if (!slb)
48
return;
49
50
/* Sanity check */
51
n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
52
if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
53
return;
54
55
/* Load up the SLB from that */
56
for (i = 0; i < n; ++i) {
57
unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
58
unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
59
60
rb = (rb & ~0xFFFul) | i; /* insert entry number */
61
asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
62
}
63
}
64
65
/*
66
* On POWER7, see if we can handle a machine check that occurred inside
67
* the guest in real mode, without switching to the host partition.
68
*/
69
static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
70
{
71
unsigned long srr1 = vcpu->arch.shregs.msr;
72
long handled = 1;
73
74
if (srr1 & SRR1_MC_LDSTERR) {
75
/* error on load/store */
76
unsigned long dsisr = vcpu->arch.shregs.dsisr;
77
78
if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
79
DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
80
/* flush and reload SLB; flushes D-ERAT too */
81
reload_slb(vcpu);
82
dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83
DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
84
}
85
if (dsisr & DSISR_MC_TLB_MULTI) {
86
tlbiel_all_lpid(vcpu->kvm->arch.radix);
87
dsisr &= ~DSISR_MC_TLB_MULTI;
88
}
89
/* Any other errors we don't understand? */
90
if (dsisr & 0xffffffffUL)
91
handled = 0;
92
}
93
94
switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
95
case 0:
96
break;
97
case SRR1_MC_IFETCH_SLBPAR:
98
case SRR1_MC_IFETCH_SLBMULTI:
99
case SRR1_MC_IFETCH_SLBPARMULTI:
100
reload_slb(vcpu);
101
break;
102
case SRR1_MC_IFETCH_TLBMULTI:
103
tlbiel_all_lpid(vcpu->kvm->arch.radix);
104
break;
105
default:
106
handled = 0;
107
}
108
109
return handled;
110
}
111
112
void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
113
{
114
struct machine_check_event mce_evt;
115
long handled;
116
117
if (vcpu->kvm->arch.fwnmi_enabled) {
118
/* FWNMI guests handle their own recovery */
119
handled = 0;
120
} else {
121
handled = kvmppc_realmode_mc_power7(vcpu);
122
}
123
124
/*
125
* Now get the event and stash it in the vcpu struct so it can
126
* be handled by the primary thread in virtual mode. We can't
127
* call machine_check_queue_event() here if we are running on
128
* an offline secondary thread.
129
*/
130
if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
131
if (handled && mce_evt.version == MCE_V1)
132
mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
133
} else {
134
memset(&mce_evt, 0, sizeof(mce_evt));
135
}
136
137
vcpu->arch.mce_evt = mce_evt;
138
}
139
140
141
long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
142
{
143
struct kvmppc_vcore *vc = vcpu->arch.vcore;
144
long ret = 0;
145
146
/*
147
* Unapply and clear the offset first. That way, if the TB was not
148
* resynced then it will remain in host-offset, and if it was resynced
149
* then it is brought into host-offset. Then the tb offset is
150
* re-applied before continuing with the KVM exit.
151
*
152
* This way, we don't need to actually know whether not OPAL resynced
153
* the timebase or do any of the complicated dance that the P7/8
154
* path requires.
155
*/
156
if (vc->tb_offset_applied) {
157
u64 new_tb = mftb() - vc->tb_offset_applied;
158
mtspr(SPRN_TBU40, new_tb);
159
if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
160
new_tb += 0x1000000;
161
mtspr(SPRN_TBU40, new_tb);
162
}
163
vc->tb_offset_applied = 0;
164
}
165
166
local_paca->hmi_irqs++;
167
168
if (hmi_handle_debugtrig(NULL) >= 0) {
169
ret = 1;
170
goto out;
171
}
172
173
if (ppc_md.hmi_exception_early)
174
ppc_md.hmi_exception_early(NULL);
175
176
out:
177
if (kvmppc_get_tb_offset(vcpu)) {
178
u64 new_tb = mftb() + vc->tb_offset;
179
mtspr(SPRN_TBU40, new_tb);
180
if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
181
new_tb += 0x1000000;
182
mtspr(SPRN_TBU40, new_tb);
183
}
184
vc->tb_offset_applied = kvmppc_get_tb_offset(vcpu);
185
}
186
187
return ret;
188
}
189
190
/*
191
* The following subcore HMI handling is all only for pre-POWER9 CPUs.
192
*/
193
194
/* Check if dynamic split is in force and return subcore size accordingly. */
195
static inline int kvmppc_cur_subcore_size(void)
196
{
197
if (local_paca->kvm_hstate.kvm_split_mode)
198
return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
199
200
return threads_per_subcore;
201
}
202
203
void kvmppc_subcore_enter_guest(void)
204
{
205
int thread_id, subcore_id;
206
207
thread_id = cpu_thread_in_core(local_paca->paca_index);
208
subcore_id = thread_id / kvmppc_cur_subcore_size();
209
210
local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
211
}
212
EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
213
214
void kvmppc_subcore_exit_guest(void)
215
{
216
int thread_id, subcore_id;
217
218
thread_id = cpu_thread_in_core(local_paca->paca_index);
219
subcore_id = thread_id / kvmppc_cur_subcore_size();
220
221
local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
222
}
223
EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
224
225
static bool kvmppc_tb_resync_required(void)
226
{
227
if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
228
&local_paca->sibling_subcore_state->flags))
229
return false;
230
231
return true;
232
}
233
234
static void kvmppc_tb_resync_done(void)
235
{
236
clear_bit(CORE_TB_RESYNC_REQ_BIT,
237
&local_paca->sibling_subcore_state->flags);
238
}
239
240
/*
241
* kvmppc_realmode_hmi_handler() is called only by primary thread during
242
* guest exit path.
243
*
244
* There are multiple reasons why HMI could occur, one of them is
245
* Timebase (TB) error. If this HMI is due to TB error, then TB would
246
* have been in stopped state. The opal hmi handler Will fix it and
247
* restore the TB value with host timebase value. For HMI caused due
248
* to non-TB errors, opal hmi handler will not touch/restore TB register
249
* and hence there won't be any change in TB value.
250
*
251
* Since we are not sure about the cause of this HMI, we can't be sure
252
* about the content of TB register whether it holds guest or host timebase
253
* value. Hence the idea is to resync the TB on every HMI, so that we
254
* know about the exact state of the TB value. Resync TB call will
255
* restore TB to host timebase.
256
*
257
* Things to consider:
258
* - On TB error, HMI interrupt is reported on all the threads of the core
259
* that has encountered TB error irrespective of split-core mode.
260
* - The very first thread on the core that get chance to fix TB error
261
* would rsync the TB with local chipTOD value.
262
* - The resync TB is a core level action i.e. it will sync all the TBs
263
* in that core independent of split-core mode. This means if we trigger
264
* TB sync from a thread from one subcore, it would affect TB values of
265
* sibling subcores of the same core.
266
*
267
* All threads need to co-ordinate before making opal hmi handler.
268
* All threads will use sibling_subcore_state->in_guest[] (shared by all
269
* threads in the core) in paca which holds information about whether
270
* sibling subcores are in Guest mode or host mode. The in_guest[] array
271
* is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
272
* subcore status. Only primary threads from each subcore is responsible
273
* to set/unset its designated array element while entering/exiting the
274
* guset.
275
*
276
* After invoking opal hmi handler call, one of the thread (of entire core)
277
* will need to resync the TB. Bit 63 from subcore state bitmap flags
278
* (sibling_subcore_state->flags) will be used to co-ordinate between
279
* primary threads to decide who takes up the responsibility.
280
*
281
* This is what we do:
282
* - Primary thread from each subcore tries to set resync required bit[63]
283
* of paca->sibling_subcore_state->flags.
284
* - The first primary thread that is able to set the flag takes the
285
* responsibility of TB resync. (Let us call it as thread leader)
286
* - All other threads which are in host will call
287
* wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
288
* paca->sibling_subcore_state to get cleared.
289
* - All the primary thread will clear its subcore status from subcore
290
* state in_guest[] array respectively.
291
* - Once all primary threads clear in_guest[0-3], all of them will invoke
292
* opal hmi handler.
293
* - Now all threads will wait for TB resync to complete by invoking
294
* wait_for_tb_resync() except the thread leader.
295
* - Thread leader will do a TB resync by invoking opal_resync_timebase()
296
* call and the it will clear the resync required bit.
297
* - All other threads will now come out of resync wait loop and proceed
298
* with individual execution.
299
* - On return of this function, primary thread will signal all
300
* secondary threads to proceed.
301
* - All secondary threads will eventually call opal hmi handler on
302
* their exit path.
303
*
304
* Returns 1 if the timebase offset should be applied, 0 if not.
305
*/
306
307
long kvmppc_realmode_hmi_handler(void)
308
{
309
bool resync_req;
310
311
local_paca->hmi_irqs++;
312
313
if (hmi_handle_debugtrig(NULL) >= 0)
314
return 1;
315
316
/*
317
* By now primary thread has already completed guest->host
318
* partition switch but haven't signaled secondaries yet.
319
* All the secondary threads on this subcore is waiting
320
* for primary thread to signal them to go ahead.
321
*
322
* For threads from subcore which isn't in guest, they all will
323
* wait until all other subcores on this core exit the guest.
324
*
325
* Now set the resync required bit. If you are the first to
326
* set this bit then kvmppc_tb_resync_required() function will
327
* return true. For rest all other subcores
328
* kvmppc_tb_resync_required() will return false.
329
*
330
* If resync_req == true, then this thread is responsible to
331
* initiate TB resync after hmi handler has completed.
332
* All other threads on this core will wait until this thread
333
* clears the resync required bit flag.
334
*/
335
resync_req = kvmppc_tb_resync_required();
336
337
/* Reset the subcore status to indicate it has exited guest */
338
kvmppc_subcore_exit_guest();
339
340
/*
341
* Wait for other subcores on this core to exit the guest.
342
* All the primary threads and threads from subcore that are
343
* not in guest will wait here until all subcores are out
344
* of guest context.
345
*/
346
wait_for_subcore_guest_exit();
347
348
/*
349
* At this point we are sure that primary threads from each
350
* subcore on this core have completed guest->host partition
351
* switch. Now it is safe to call HMI handler.
352
*/
353
if (ppc_md.hmi_exception_early)
354
ppc_md.hmi_exception_early(NULL);
355
356
/*
357
* Check if this thread is responsible to resync TB.
358
* All other threads will wait until this thread completes the
359
* TB resync.
360
*/
361
if (resync_req) {
362
opal_resync_timebase();
363
/* Reset TB resync req bit */
364
kvmppc_tb_resync_done();
365
} else {
366
wait_for_tb_resync();
367
}
368
369
/*
370
* Reset tb_offset_applied so the guest exit code won't try
371
* to subtract the previous timebase offset from the timebase.
372
*/
373
if (local_paca->kvm_hstate.kvm_vcore)
374
local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
375
376
return 0;
377
}
378
379