Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_hv_uvmem.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Secure pages management: Migration of pages between normal and secure
4
* memory of KVM guests.
5
*
6
* Copyright 2018 Bharata B Rao, IBM Corp. <[email protected]>
7
*/
8
9
/*
10
* A pseries guest can be run as secure guest on Ultravisor-enabled
11
* POWER platforms. On such platforms, this driver will be used to manage
12
* the movement of guest pages between the normal memory managed by
13
* hypervisor (HV) and secure memory managed by Ultravisor (UV).
14
*
15
* The page-in or page-out requests from UV will come to HV as hcalls and
16
* HV will call back into UV via ultracalls to satisfy these page requests.
17
*
18
* Private ZONE_DEVICE memory equal to the amount of secure memory
19
* available in the platform for running secure guests is hotplugged.
20
* Whenever a page belonging to the guest becomes secure, a page from this
21
* private device memory is used to represent and track that secure page
22
* on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23
* shared between UV and HV. However such pages aren't represented by
24
* device private memory and mappings to shared memory exist in both
25
* UV and HV page tables.
26
*/
27
28
/*
29
* Notes on locking
30
*
31
* kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32
* page-in and page-out requests for the same GPA. Concurrent accesses
33
* can either come via UV (guest vCPUs requesting for same page)
34
* or when HV and guest simultaneously access the same page.
35
* This mutex serializes the migration of page from HV(normal) to
36
* UV(secure) and vice versa. So the serialization points are around
37
* migrate_vma routines and page-in/out routines.
38
*
39
* Per-guest mutex comes with a cost though. Mainly it serializes the
40
* fault path as page-out can occur when HV faults on accessing secure
41
* guest pages. Currently UV issues page-in requests for all the guest
42
* PFNs one at a time during early boot (UV_ESM uvcall), so this is
43
* not a cause for concern. Also currently the number of page-outs caused
44
* by HV touching secure pages is very very low. If an when UV supports
45
* overcommitting, then we might see concurrent guest driven page-outs.
46
*
47
* Locking order
48
*
49
* 1. kvm->srcu - Protects KVM memslots
50
* 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51
* 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52
* as sync-points for page-in/out
53
*/
54
55
/*
56
* Notes on page size
57
*
58
* Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59
* and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60
* secure GPAs at 64K page size and maintains one device PFN for each
61
* 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62
* for 64K page at a time.
63
*
64
* HV faulting on secure pages: When HV touches any secure page, it
65
* faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66
* UV splits and remaps the 2MB page if necessary and copies out the
67
* required 64K page contents.
68
*
69
* Shared pages: Whenever guest shares a secure page, UV will split and
70
* remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71
*
72
* HV invalidating a page: When a regular page belonging to secure
73
* guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74
* page size. Using 64K page size is correct here because any non-secure
75
* page will essentially be of 64K page size. Splitting by UV during sharing
76
* and page-out ensures this.
77
*
78
* Page fault handling: When HV handles page fault of a page belonging
79
* to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80
* Using 64K size is correct here too as UV would have split the 2MB page
81
* into 64k mappings and would have done page-outs earlier.
82
*
83
* In summary, the current secure pages handling code in HV assumes
84
* 64K page size and in fact fails any page-in/page-out requests of
85
* non-64K size upfront. If and when UV starts supporting multiple
86
* page-sizes, we need to break this assumption.
87
*/
88
89
#include <linux/pagemap.h>
90
#include <linux/migrate.h>
91
#include <linux/kvm_host.h>
92
#include <linux/ksm.h>
93
#include <linux/of.h>
94
#include <linux/memremap.h>
95
#include <asm/ultravisor.h>
96
#include <asm/mman.h>
97
#include <asm/kvm_ppc.h>
98
#include <asm/kvm_book3s_uvmem.h>
99
100
static struct dev_pagemap kvmppc_uvmem_pgmap;
101
static unsigned long *kvmppc_uvmem_bitmap;
102
static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
103
104
/*
105
* States of a GFN
106
* ---------------
107
* The GFN can be in one of the following states.
108
*
109
* (a) Secure - The GFN is secure. The GFN is associated with
110
* a Secure VM, the contents of the GFN is not accessible
111
* to the Hypervisor. This GFN can be backed by a secure-PFN,
112
* or can be backed by a normal-PFN with contents encrypted.
113
* The former is true when the GFN is paged-in into the
114
* ultravisor. The latter is true when the GFN is paged-out
115
* of the ultravisor.
116
*
117
* (b) Shared - The GFN is shared. The GFN is associated with a
118
* a secure VM. The contents of the GFN is accessible to
119
* Hypervisor. This GFN is backed by a normal-PFN and its
120
* content is un-encrypted.
121
*
122
* (c) Normal - The GFN is a normal. The GFN is associated with
123
* a normal VM. The contents of the GFN is accessible to
124
* the Hypervisor. Its content is never encrypted.
125
*
126
* States of a VM.
127
* ---------------
128
*
129
* Normal VM: A VM whose contents are always accessible to
130
* the hypervisor. All its GFNs are normal-GFNs.
131
*
132
* Secure VM: A VM whose contents are not accessible to the
133
* hypervisor without the VM's consent. Its GFNs are
134
* either Shared-GFN or Secure-GFNs.
135
*
136
* Transient VM: A Normal VM that is transitioning to secure VM.
137
* The transition starts on successful return of
138
* H_SVM_INIT_START, and ends on successful return
139
* of H_SVM_INIT_DONE. This transient VM, can have GFNs
140
* in any of the three states; i.e Secure-GFN, Shared-GFN,
141
* and Normal-GFN. The VM never executes in this state
142
* in supervisor-mode.
143
*
144
* Memory slot State.
145
* -----------------------------
146
* The state of a memory slot mirrors the state of the
147
* VM the memory slot is associated with.
148
*
149
* VM State transition.
150
* --------------------
151
*
152
* A VM always starts in Normal Mode.
153
*
154
* H_SVM_INIT_START moves the VM into transient state. During this
155
* time the Ultravisor may request some of its GFNs to be shared or
156
* secured. So its GFNs can be in one of the three GFN states.
157
*
158
* H_SVM_INIT_DONE moves the VM entirely from transient state to
159
* secure-state. At this point any left-over normal-GFNs are
160
* transitioned to Secure-GFN.
161
*
162
* H_SVM_INIT_ABORT moves the transient VM back to normal VM.
163
* All its GFNs are moved to Normal-GFNs.
164
*
165
* UV_TERMINATE transitions the secure-VM back to normal-VM. All
166
* the secure-GFN and shared-GFNs are tranistioned to normal-GFN
167
* Note: The contents of the normal-GFN is undefined at this point.
168
*
169
* GFN state implementation:
170
* -------------------------
171
*
172
* Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
173
* when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
174
* set, and contains the value of the secure-PFN.
175
* It is associated with a normal-PFN; also called mem_pfn, when
176
* the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
177
* The value of the normal-PFN is not tracked.
178
*
179
* Shared GFN is associated with a normal-PFN. Its pfn[] has
180
* KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
181
* is not tracked.
182
*
183
* Normal GFN is associated with normal-PFN. Its pfn[] has
184
* no flag set. The value of the normal-PFN is not tracked.
185
*
186
* Life cycle of a GFN
187
* --------------------
188
*
189
* --------------------------------------------------------------
190
* | | Share | Unshare | SVM |H_SVM_INIT_DONE|
191
* | |operation |operation | abort/ | |
192
* | | | | terminate | |
193
* -------------------------------------------------------------
194
* | | | | | |
195
* | Secure | Shared | Secure |Normal |Secure |
196
* | | | | | |
197
* | Shared | Shared | Secure |Normal |Shared |
198
* | | | | | |
199
* | Normal | Shared | Secure |Normal |Secure |
200
* --------------------------------------------------------------
201
*
202
* Life cycle of a VM
203
* --------------------
204
*
205
* --------------------------------------------------------------------
206
* | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
207
* | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
208
* | | | | | | |
209
* --------- ----------------------------------------------------------
210
* | | | | | | |
211
* | Normal | Normal | Transient|Error |Error |Normal |
212
* | | | | | | |
213
* | Secure | Error | Error |Error |Error |Normal |
214
* | | | | | | |
215
* |Transient| N/A | Error |Secure |Normal |Normal |
216
* --------------------------------------------------------------------
217
*/
218
219
#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
220
#define KVMPPC_GFN_MEM_PFN (1UL << 62)
221
#define KVMPPC_GFN_SHARED (1UL << 61)
222
#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
223
#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
224
#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
225
226
struct kvmppc_uvmem_slot {
227
struct list_head list;
228
unsigned long nr_pfns;
229
unsigned long base_pfn;
230
unsigned long *pfns;
231
};
232
struct kvmppc_uvmem_page_pvt {
233
struct kvm *kvm;
234
unsigned long gpa;
235
bool skip_page_out;
236
bool remove_gfn;
237
};
238
239
bool kvmppc_uvmem_available(void)
240
{
241
/*
242
* If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
243
* and our data structures have been initialized successfully.
244
*/
245
return !!kvmppc_uvmem_bitmap;
246
}
247
248
int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
249
{
250
struct kvmppc_uvmem_slot *p;
251
252
p = kzalloc(sizeof(*p), GFP_KERNEL);
253
if (!p)
254
return -ENOMEM;
255
p->pfns = vcalloc(slot->npages, sizeof(*p->pfns));
256
if (!p->pfns) {
257
kfree(p);
258
return -ENOMEM;
259
}
260
p->nr_pfns = slot->npages;
261
p->base_pfn = slot->base_gfn;
262
263
mutex_lock(&kvm->arch.uvmem_lock);
264
list_add(&p->list, &kvm->arch.uvmem_pfns);
265
mutex_unlock(&kvm->arch.uvmem_lock);
266
267
return 0;
268
}
269
270
/*
271
* All device PFNs are already released by the time we come here.
272
*/
273
void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
274
{
275
struct kvmppc_uvmem_slot *p, *next;
276
277
mutex_lock(&kvm->arch.uvmem_lock);
278
list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
279
if (p->base_pfn == slot->base_gfn) {
280
vfree(p->pfns);
281
list_del(&p->list);
282
kfree(p);
283
break;
284
}
285
}
286
mutex_unlock(&kvm->arch.uvmem_lock);
287
}
288
289
static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
290
unsigned long flag, unsigned long uvmem_pfn)
291
{
292
struct kvmppc_uvmem_slot *p;
293
294
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
295
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
296
unsigned long index = gfn - p->base_pfn;
297
298
if (flag == KVMPPC_GFN_UVMEM_PFN)
299
p->pfns[index] = uvmem_pfn | flag;
300
else
301
p->pfns[index] = flag;
302
return;
303
}
304
}
305
}
306
307
/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
308
static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
309
unsigned long uvmem_pfn, struct kvm *kvm)
310
{
311
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
312
}
313
314
/* mark the GFN as secure-GFN associated with a memory-PFN. */
315
static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
316
{
317
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
318
}
319
320
/* mark the GFN as a shared GFN. */
321
static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
322
{
323
kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
324
}
325
326
/* mark the GFN as a non-existent GFN. */
327
static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
328
{
329
kvmppc_mark_gfn(gfn, kvm, 0, 0);
330
}
331
332
/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
333
static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
334
unsigned long *uvmem_pfn)
335
{
336
struct kvmppc_uvmem_slot *p;
337
338
list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
339
if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
340
unsigned long index = gfn - p->base_pfn;
341
342
if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
343
if (uvmem_pfn)
344
*uvmem_pfn = p->pfns[index] &
345
KVMPPC_GFN_PFN_MASK;
346
return true;
347
} else
348
return false;
349
}
350
}
351
return false;
352
}
353
354
/*
355
* starting from *gfn search for the next available GFN that is not yet
356
* transitioned to a secure GFN. return the value of that GFN in *gfn. If a
357
* GFN is found, return true, else return false
358
*
359
* Must be called with kvm->arch.uvmem_lock held.
360
*/
361
static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
362
struct kvm *kvm, unsigned long *gfn)
363
{
364
struct kvmppc_uvmem_slot *p = NULL, *iter;
365
bool ret = false;
366
unsigned long i;
367
368
list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list)
369
if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) {
370
p = iter;
371
break;
372
}
373
if (!p)
374
return ret;
375
/*
376
* The code below assumes, one to one correspondence between
377
* kvmppc_uvmem_slot and memslot.
378
*/
379
for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
380
unsigned long index = i - p->base_pfn;
381
382
if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
383
*gfn = i;
384
ret = true;
385
break;
386
}
387
}
388
return ret;
389
}
390
391
static int kvmppc_memslot_page_merge(struct kvm *kvm,
392
const struct kvm_memory_slot *memslot, bool merge)
393
{
394
unsigned long gfn = memslot->base_gfn;
395
unsigned long end, start = gfn_to_hva(kvm, gfn);
396
vm_flags_t vm_flags;
397
int ret = 0;
398
struct vm_area_struct *vma;
399
int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
400
401
if (kvm_is_error_hva(start))
402
return H_STATE;
403
404
end = start + (memslot->npages << PAGE_SHIFT);
405
406
mmap_write_lock(kvm->mm);
407
do {
408
vma = find_vma_intersection(kvm->mm, start, end);
409
if (!vma) {
410
ret = H_STATE;
411
break;
412
}
413
vma_start_write(vma);
414
/* Copy vm_flags to avoid partial modifications in ksm_madvise */
415
vm_flags = vma->vm_flags;
416
ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
417
merge_flag, &vm_flags);
418
if (ret) {
419
ret = H_STATE;
420
break;
421
}
422
vm_flags_reset(vma, vm_flags);
423
start = vma->vm_end;
424
} while (end > vma->vm_end);
425
426
mmap_write_unlock(kvm->mm);
427
return ret;
428
}
429
430
static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
431
const struct kvm_memory_slot *memslot)
432
{
433
uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
434
kvmppc_uvmem_slot_free(kvm, memslot);
435
kvmppc_memslot_page_merge(kvm, memslot, true);
436
}
437
438
static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
439
const struct kvm_memory_slot *memslot)
440
{
441
int ret = H_PARAMETER;
442
443
if (kvmppc_memslot_page_merge(kvm, memslot, false))
444
return ret;
445
446
if (kvmppc_uvmem_slot_init(kvm, memslot))
447
goto out1;
448
449
ret = uv_register_mem_slot(kvm->arch.lpid,
450
memslot->base_gfn << PAGE_SHIFT,
451
memslot->npages * PAGE_SIZE,
452
0, memslot->id);
453
if (ret < 0) {
454
ret = H_PARAMETER;
455
goto out;
456
}
457
return 0;
458
out:
459
kvmppc_uvmem_slot_free(kvm, memslot);
460
out1:
461
kvmppc_memslot_page_merge(kvm, memslot, true);
462
return ret;
463
}
464
465
unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
466
{
467
struct kvm_memslots *slots;
468
struct kvm_memory_slot *memslot, *m;
469
int ret = H_SUCCESS;
470
int srcu_idx, bkt;
471
472
kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
473
474
if (!kvmppc_uvmem_bitmap)
475
return H_UNSUPPORTED;
476
477
/* Only radix guests can be secure guests */
478
if (!kvm_is_radix(kvm))
479
return H_UNSUPPORTED;
480
481
/* NAK the transition to secure if not enabled */
482
if (!kvm->arch.svm_enabled)
483
return H_AUTHORITY;
484
485
srcu_idx = srcu_read_lock(&kvm->srcu);
486
487
/* register the memslot */
488
slots = kvm_memslots(kvm);
489
kvm_for_each_memslot(memslot, bkt, slots) {
490
ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
491
if (ret)
492
break;
493
}
494
495
if (ret) {
496
slots = kvm_memslots(kvm);
497
kvm_for_each_memslot(m, bkt, slots) {
498
if (m == memslot)
499
break;
500
__kvmppc_uvmem_memslot_delete(kvm, memslot);
501
}
502
}
503
504
srcu_read_unlock(&kvm->srcu, srcu_idx);
505
return ret;
506
}
507
508
/*
509
* Provision a new page on HV side and copy over the contents
510
* from secure memory using UV_PAGE_OUT uvcall.
511
* Caller must held kvm->arch.uvmem_lock.
512
*/
513
static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
514
unsigned long start,
515
unsigned long end, unsigned long page_shift,
516
struct kvm *kvm, unsigned long gpa, struct page *fault_page)
517
{
518
unsigned long src_pfn, dst_pfn = 0;
519
struct migrate_vma mig = { 0 };
520
struct page *dpage, *spage;
521
struct kvmppc_uvmem_page_pvt *pvt;
522
unsigned long pfn;
523
int ret = U_SUCCESS;
524
525
memset(&mig, 0, sizeof(mig));
526
mig.vma = vma;
527
mig.start = start;
528
mig.end = end;
529
mig.src = &src_pfn;
530
mig.dst = &dst_pfn;
531
mig.pgmap_owner = &kvmppc_uvmem_pgmap;
532
mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
533
mig.fault_page = fault_page;
534
535
/* The requested page is already paged-out, nothing to do */
536
if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
537
return ret;
538
539
ret = migrate_vma_setup(&mig);
540
if (ret)
541
return -1;
542
543
spage = migrate_pfn_to_page(*mig.src);
544
if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
545
goto out_finalize;
546
547
if (!is_zone_device_page(spage))
548
goto out_finalize;
549
550
dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
551
if (!dpage) {
552
ret = -1;
553
goto out_finalize;
554
}
555
556
lock_page(dpage);
557
pvt = spage->zone_device_data;
558
pfn = page_to_pfn(dpage);
559
560
/*
561
* This function is used in two cases:
562
* - When HV touches a secure page, for which we do UV_PAGE_OUT
563
* - When a secure page is converted to shared page, we *get*
564
* the page to essentially unmap the device page. In this
565
* case we skip page-out.
566
*/
567
if (!pvt->skip_page_out)
568
ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
569
gpa, 0, page_shift);
570
571
if (ret == U_SUCCESS)
572
*mig.dst = migrate_pfn(pfn);
573
else {
574
unlock_page(dpage);
575
__free_page(dpage);
576
goto out_finalize;
577
}
578
579
migrate_vma_pages(&mig);
580
581
out_finalize:
582
migrate_vma_finalize(&mig);
583
return ret;
584
}
585
586
static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
587
unsigned long start, unsigned long end,
588
unsigned long page_shift,
589
struct kvm *kvm, unsigned long gpa,
590
struct page *fault_page)
591
{
592
int ret;
593
594
mutex_lock(&kvm->arch.uvmem_lock);
595
ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa,
596
fault_page);
597
mutex_unlock(&kvm->arch.uvmem_lock);
598
599
return ret;
600
}
601
602
/*
603
* Drop device pages that we maintain for the secure guest
604
*
605
* We first mark the pages to be skipped from UV_PAGE_OUT when there
606
* is HV side fault on these pages. Next we *get* these pages, forcing
607
* fault on them, do fault time migration to replace the device PTEs in
608
* QEMU page table with normal PTEs from newly allocated pages.
609
*/
610
void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
611
struct kvm *kvm, bool skip_page_out)
612
{
613
int i;
614
struct kvmppc_uvmem_page_pvt *pvt;
615
struct page *uvmem_page;
616
struct vm_area_struct *vma = NULL;
617
unsigned long uvmem_pfn, gfn;
618
unsigned long addr;
619
620
mmap_read_lock(kvm->mm);
621
622
addr = slot->userspace_addr;
623
624
gfn = slot->base_gfn;
625
for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
626
627
/* Fetch the VMA if addr is not in the latest fetched one */
628
if (!vma || addr >= vma->vm_end) {
629
vma = vma_lookup(kvm->mm, addr);
630
if (!vma) {
631
pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
632
break;
633
}
634
}
635
636
mutex_lock(&kvm->arch.uvmem_lock);
637
638
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
639
uvmem_page = pfn_to_page(uvmem_pfn);
640
pvt = uvmem_page->zone_device_data;
641
pvt->skip_page_out = skip_page_out;
642
pvt->remove_gfn = true;
643
644
if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
645
PAGE_SHIFT, kvm, pvt->gpa, NULL))
646
pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
647
pvt->gpa, addr);
648
} else {
649
/* Remove the shared flag if any */
650
kvmppc_gfn_remove(gfn, kvm);
651
}
652
653
mutex_unlock(&kvm->arch.uvmem_lock);
654
}
655
656
mmap_read_unlock(kvm->mm);
657
}
658
659
unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
660
{
661
int srcu_idx, bkt;
662
struct kvm_memory_slot *memslot;
663
664
/*
665
* Expect to be called only after INIT_START and before INIT_DONE.
666
* If INIT_DONE was completed, use normal VM termination sequence.
667
*/
668
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
669
return H_UNSUPPORTED;
670
671
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
672
return H_STATE;
673
674
srcu_idx = srcu_read_lock(&kvm->srcu);
675
676
kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
677
kvmppc_uvmem_drop_pages(memslot, kvm, false);
678
679
srcu_read_unlock(&kvm->srcu, srcu_idx);
680
681
kvm->arch.secure_guest = 0;
682
uv_svm_terminate(kvm->arch.lpid);
683
684
return H_PARAMETER;
685
}
686
687
/*
688
* Get a free device PFN from the pool
689
*
690
* Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
691
* PFN will be used to keep track of the secure page on HV side.
692
*
693
* Called with kvm->arch.uvmem_lock held
694
*/
695
static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
696
{
697
struct page *dpage = NULL;
698
unsigned long bit, uvmem_pfn;
699
struct kvmppc_uvmem_page_pvt *pvt;
700
unsigned long pfn_last, pfn_first;
701
702
pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
703
pfn_last = pfn_first +
704
(range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
705
706
spin_lock(&kvmppc_uvmem_bitmap_lock);
707
bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
708
pfn_last - pfn_first);
709
if (bit >= (pfn_last - pfn_first))
710
goto out;
711
bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
712
spin_unlock(&kvmppc_uvmem_bitmap_lock);
713
714
pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
715
if (!pvt)
716
goto out_clear;
717
718
uvmem_pfn = bit + pfn_first;
719
kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
720
721
pvt->gpa = gpa;
722
pvt->kvm = kvm;
723
724
dpage = pfn_to_page(uvmem_pfn);
725
dpage->zone_device_data = pvt;
726
zone_device_page_init(dpage);
727
return dpage;
728
out_clear:
729
spin_lock(&kvmppc_uvmem_bitmap_lock);
730
bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
731
out:
732
spin_unlock(&kvmppc_uvmem_bitmap_lock);
733
return NULL;
734
}
735
736
/*
737
* Alloc a PFN from private device memory pool. If @pagein is true,
738
* copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
739
*/
740
static int kvmppc_svm_page_in(struct vm_area_struct *vma,
741
unsigned long start,
742
unsigned long end, unsigned long gpa, struct kvm *kvm,
743
unsigned long page_shift,
744
bool pagein)
745
{
746
unsigned long src_pfn, dst_pfn = 0;
747
struct migrate_vma mig = { 0 };
748
struct page *spage;
749
unsigned long pfn;
750
struct page *dpage;
751
int ret = 0;
752
753
memset(&mig, 0, sizeof(mig));
754
mig.vma = vma;
755
mig.start = start;
756
mig.end = end;
757
mig.src = &src_pfn;
758
mig.dst = &dst_pfn;
759
mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
760
761
ret = migrate_vma_setup(&mig);
762
if (ret)
763
return ret;
764
765
if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
766
ret = -1;
767
goto out_finalize;
768
}
769
770
dpage = kvmppc_uvmem_get_page(gpa, kvm);
771
if (!dpage) {
772
ret = -1;
773
goto out_finalize;
774
}
775
776
if (pagein) {
777
pfn = *mig.src >> MIGRATE_PFN_SHIFT;
778
spage = migrate_pfn_to_page(*mig.src);
779
if (spage) {
780
ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
781
gpa, 0, page_shift);
782
if (ret)
783
goto out_finalize;
784
}
785
}
786
787
*mig.dst = migrate_pfn(page_to_pfn(dpage));
788
migrate_vma_pages(&mig);
789
out_finalize:
790
migrate_vma_finalize(&mig);
791
return ret;
792
}
793
794
static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
795
const struct kvm_memory_slot *memslot)
796
{
797
unsigned long gfn = memslot->base_gfn;
798
struct vm_area_struct *vma;
799
unsigned long start, end;
800
int ret = 0;
801
802
mmap_read_lock(kvm->mm);
803
mutex_lock(&kvm->arch.uvmem_lock);
804
while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
805
ret = H_STATE;
806
start = gfn_to_hva(kvm, gfn);
807
if (kvm_is_error_hva(start))
808
break;
809
810
end = start + (1UL << PAGE_SHIFT);
811
vma = find_vma_intersection(kvm->mm, start, end);
812
if (!vma || vma->vm_start > start || vma->vm_end < end)
813
break;
814
815
ret = kvmppc_svm_page_in(vma, start, end,
816
(gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
817
if (ret) {
818
ret = H_STATE;
819
break;
820
}
821
822
/* relinquish the cpu if needed */
823
cond_resched();
824
}
825
mutex_unlock(&kvm->arch.uvmem_lock);
826
mmap_read_unlock(kvm->mm);
827
return ret;
828
}
829
830
unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
831
{
832
struct kvm_memslots *slots;
833
struct kvm_memory_slot *memslot;
834
int srcu_idx, bkt;
835
long ret = H_SUCCESS;
836
837
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
838
return H_UNSUPPORTED;
839
840
/* migrate any unmoved normal pfn to device pfns*/
841
srcu_idx = srcu_read_lock(&kvm->srcu);
842
slots = kvm_memslots(kvm);
843
kvm_for_each_memslot(memslot, bkt, slots) {
844
ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
845
if (ret) {
846
/*
847
* The pages will remain transitioned.
848
* Its the callers responsibility to
849
* terminate the VM, which will undo
850
* all state of the VM. Till then
851
* this VM is in a erroneous state.
852
* Its KVMPPC_SECURE_INIT_DONE will
853
* remain unset.
854
*/
855
ret = H_STATE;
856
goto out;
857
}
858
}
859
860
kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
861
pr_info("LPID %lld went secure\n", kvm->arch.lpid);
862
863
out:
864
srcu_read_unlock(&kvm->srcu, srcu_idx);
865
return ret;
866
}
867
868
/*
869
* Shares the page with HV, thus making it a normal page.
870
*
871
* - If the page is already secure, then provision a new page and share
872
* - If the page is a normal page, share the existing page
873
*
874
* In the former case, uses dev_pagemap_ops.migrate_to_ram handler
875
* to unmap the device page from QEMU's page tables.
876
*/
877
static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
878
unsigned long page_shift)
879
{
880
881
int ret = H_PARAMETER;
882
struct page *page, *uvmem_page;
883
struct kvmppc_uvmem_page_pvt *pvt;
884
unsigned long gfn = gpa >> page_shift;
885
int srcu_idx;
886
unsigned long uvmem_pfn;
887
888
srcu_idx = srcu_read_lock(&kvm->srcu);
889
mutex_lock(&kvm->arch.uvmem_lock);
890
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
891
uvmem_page = pfn_to_page(uvmem_pfn);
892
pvt = uvmem_page->zone_device_data;
893
pvt->skip_page_out = true;
894
/*
895
* do not drop the GFN. It is a valid GFN
896
* that is transitioned to a shared GFN.
897
*/
898
pvt->remove_gfn = false;
899
}
900
901
retry:
902
mutex_unlock(&kvm->arch.uvmem_lock);
903
page = gfn_to_page(kvm, gfn);
904
if (!page)
905
goto out;
906
907
mutex_lock(&kvm->arch.uvmem_lock);
908
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
909
uvmem_page = pfn_to_page(uvmem_pfn);
910
pvt = uvmem_page->zone_device_data;
911
pvt->skip_page_out = true;
912
pvt->remove_gfn = false; /* it continues to be a valid GFN */
913
kvm_release_page_unused(page);
914
goto retry;
915
}
916
917
if (!uv_page_in(kvm->arch.lpid, page_to_pfn(page) << page_shift, gpa, 0,
918
page_shift)) {
919
kvmppc_gfn_shared(gfn, kvm);
920
ret = H_SUCCESS;
921
}
922
kvm_release_page_clean(page);
923
mutex_unlock(&kvm->arch.uvmem_lock);
924
out:
925
srcu_read_unlock(&kvm->srcu, srcu_idx);
926
return ret;
927
}
928
929
/*
930
* H_SVM_PAGE_IN: Move page from normal memory to secure memory.
931
*
932
* H_PAGE_IN_SHARED flag makes the page shared which means that the same
933
* memory in is visible from both UV and HV.
934
*/
935
unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
936
unsigned long flags,
937
unsigned long page_shift)
938
{
939
unsigned long start, end;
940
struct vm_area_struct *vma;
941
int srcu_idx;
942
unsigned long gfn = gpa >> page_shift;
943
int ret;
944
945
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
946
return H_UNSUPPORTED;
947
948
if (page_shift != PAGE_SHIFT)
949
return H_P3;
950
951
if (flags & ~H_PAGE_IN_SHARED)
952
return H_P2;
953
954
if (flags & H_PAGE_IN_SHARED)
955
return kvmppc_share_page(kvm, gpa, page_shift);
956
957
ret = H_PARAMETER;
958
srcu_idx = srcu_read_lock(&kvm->srcu);
959
mmap_read_lock(kvm->mm);
960
961
start = gfn_to_hva(kvm, gfn);
962
if (kvm_is_error_hva(start))
963
goto out;
964
965
mutex_lock(&kvm->arch.uvmem_lock);
966
/* Fail the page-in request of an already paged-in page */
967
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
968
goto out_unlock;
969
970
end = start + (1UL << page_shift);
971
vma = find_vma_intersection(kvm->mm, start, end);
972
if (!vma || vma->vm_start > start || vma->vm_end < end)
973
goto out_unlock;
974
975
if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
976
true))
977
goto out_unlock;
978
979
ret = H_SUCCESS;
980
981
out_unlock:
982
mutex_unlock(&kvm->arch.uvmem_lock);
983
out:
984
mmap_read_unlock(kvm->mm);
985
srcu_read_unlock(&kvm->srcu, srcu_idx);
986
return ret;
987
}
988
989
990
/*
991
* Fault handler callback that gets called when HV touches any page that
992
* has been moved to secure memory, we ask UV to give back the page by
993
* issuing UV_PAGE_OUT uvcall.
994
*
995
* This eventually results in dropping of device PFN and the newly
996
* provisioned page/PFN gets populated in QEMU page tables.
997
*/
998
static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
999
{
1000
struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
1001
1002
if (kvmppc_svm_page_out(vmf->vma, vmf->address,
1003
vmf->address + PAGE_SIZE, PAGE_SHIFT,
1004
pvt->kvm, pvt->gpa, vmf->page))
1005
return VM_FAULT_SIGBUS;
1006
else
1007
return 0;
1008
}
1009
1010
/*
1011
* Release the device PFN back to the pool
1012
*
1013
* Gets called when secure GFN tranistions from a secure-PFN
1014
* to a normal PFN during H_SVM_PAGE_OUT.
1015
* Gets called with kvm->arch.uvmem_lock held.
1016
*/
1017
static void kvmppc_uvmem_page_free(struct page *page)
1018
{
1019
unsigned long pfn = page_to_pfn(page) -
1020
(kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1021
struct kvmppc_uvmem_page_pvt *pvt;
1022
1023
spin_lock(&kvmppc_uvmem_bitmap_lock);
1024
bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1025
spin_unlock(&kvmppc_uvmem_bitmap_lock);
1026
1027
pvt = page->zone_device_data;
1028
page->zone_device_data = NULL;
1029
if (pvt->remove_gfn)
1030
kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1031
else
1032
kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1033
kfree(pvt);
1034
}
1035
1036
static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1037
.page_free = kvmppc_uvmem_page_free,
1038
.migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
1039
};
1040
1041
/*
1042
* H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1043
*/
1044
unsigned long
1045
kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1046
unsigned long flags, unsigned long page_shift)
1047
{
1048
unsigned long gfn = gpa >> page_shift;
1049
unsigned long start, end;
1050
struct vm_area_struct *vma;
1051
int srcu_idx;
1052
int ret;
1053
1054
if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1055
return H_UNSUPPORTED;
1056
1057
if (page_shift != PAGE_SHIFT)
1058
return H_P3;
1059
1060
if (flags)
1061
return H_P2;
1062
1063
ret = H_PARAMETER;
1064
srcu_idx = srcu_read_lock(&kvm->srcu);
1065
mmap_read_lock(kvm->mm);
1066
start = gfn_to_hva(kvm, gfn);
1067
if (kvm_is_error_hva(start))
1068
goto out;
1069
1070
end = start + (1UL << page_shift);
1071
vma = find_vma_intersection(kvm->mm, start, end);
1072
if (!vma || vma->vm_start > start || vma->vm_end < end)
1073
goto out;
1074
1075
if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL))
1076
ret = H_SUCCESS;
1077
out:
1078
mmap_read_unlock(kvm->mm);
1079
srcu_read_unlock(&kvm->srcu, srcu_idx);
1080
return ret;
1081
}
1082
1083
int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1084
{
1085
struct page *page;
1086
int ret = U_SUCCESS;
1087
1088
page = gfn_to_page(kvm, gfn);
1089
if (!page)
1090
return -EFAULT;
1091
1092
mutex_lock(&kvm->arch.uvmem_lock);
1093
if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1094
goto out;
1095
1096
ret = uv_page_in(kvm->arch.lpid, page_to_pfn(page) << PAGE_SHIFT,
1097
gfn << PAGE_SHIFT, 0, PAGE_SHIFT);
1098
out:
1099
kvm_release_page_clean(page);
1100
mutex_unlock(&kvm->arch.uvmem_lock);
1101
return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1102
}
1103
1104
int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1105
{
1106
int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1107
1108
if (!ret)
1109
ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1110
1111
return ret;
1112
}
1113
1114
void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1115
{
1116
__kvmppc_uvmem_memslot_delete(kvm, old);
1117
}
1118
1119
static u64 kvmppc_get_secmem_size(void)
1120
{
1121
struct device_node *np;
1122
int i, len;
1123
const __be32 *prop;
1124
u64 size = 0;
1125
1126
/*
1127
* First try the new ibm,secure-memory nodes which supersede the
1128
* secure-memory-ranges property.
1129
* If we found some, no need to read the deprecated ones.
1130
*/
1131
for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1132
prop = of_get_property(np, "reg", &len);
1133
if (!prop)
1134
continue;
1135
size += of_read_number(prop + 2, 2);
1136
}
1137
if (size)
1138
return size;
1139
1140
np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1141
if (!np)
1142
goto out;
1143
1144
prop = of_get_property(np, "secure-memory-ranges", &len);
1145
if (!prop)
1146
goto out_put;
1147
1148
for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1149
size += of_read_number(prop + (i * 4) + 2, 2);
1150
1151
out_put:
1152
of_node_put(np);
1153
out:
1154
return size;
1155
}
1156
1157
int kvmppc_uvmem_init(void)
1158
{
1159
int ret = 0;
1160
unsigned long size;
1161
struct resource *res;
1162
void *addr;
1163
unsigned long pfn_last, pfn_first;
1164
1165
size = kvmppc_get_secmem_size();
1166
if (!size) {
1167
/*
1168
* Don't fail the initialization of kvm-hv module if
1169
* the platform doesn't export ibm,uv-firmware node.
1170
* Let normal guests run on such PEF-disabled platform.
1171
*/
1172
pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1173
goto out;
1174
}
1175
1176
res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1177
if (IS_ERR(res)) {
1178
ret = PTR_ERR(res);
1179
goto out;
1180
}
1181
1182
kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1183
kvmppc_uvmem_pgmap.range.start = res->start;
1184
kvmppc_uvmem_pgmap.range.end = res->end;
1185
kvmppc_uvmem_pgmap.nr_range = 1;
1186
kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1187
/* just one global instance: */
1188
kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1189
addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1190
if (IS_ERR(addr)) {
1191
ret = PTR_ERR(addr);
1192
goto out_free_region;
1193
}
1194
1195
pfn_first = res->start >> PAGE_SHIFT;
1196
pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1197
kvmppc_uvmem_bitmap = bitmap_zalloc(pfn_last - pfn_first, GFP_KERNEL);
1198
if (!kvmppc_uvmem_bitmap) {
1199
ret = -ENOMEM;
1200
goto out_unmap;
1201
}
1202
1203
pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1204
return ret;
1205
out_unmap:
1206
memunmap_pages(&kvmppc_uvmem_pgmap);
1207
out_free_region:
1208
release_mem_region(res->start, size);
1209
out:
1210
return ret;
1211
}
1212
1213
void kvmppc_uvmem_free(void)
1214
{
1215
if (!kvmppc_uvmem_bitmap)
1216
return;
1217
1218
memunmap_pages(&kvmppc_uvmem_pgmap);
1219
release_mem_region(kvmppc_uvmem_pgmap.range.start,
1220
range_len(&kvmppc_uvmem_pgmap.range));
1221
bitmap_free(kvmppc_uvmem_bitmap);
1222
}
1223
1224