Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_pr.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4
*
5
* Authors:
6
* Alexander Graf <[email protected]>
7
* Kevin Wolf <[email protected]>
8
* Paul Mackerras <[email protected]>
9
*
10
* Description:
11
* Functions relating to running KVM on Book 3S processors where
12
* we don't have access to hypervisor mode, and we run the guest
13
* in problem state (user mode).
14
*
15
* This file is derived from arch/powerpc/kvm/44x.c,
16
* by Hollis Blanchard <[email protected]>.
17
*/
18
19
#include <linux/kvm_host.h>
20
#include <linux/export.h>
21
#include <linux/err.h>
22
#include <linux/slab.h>
23
24
#include <asm/reg.h>
25
#include <asm/cputable.h>
26
#include <asm/cacheflush.h>
27
#include <linux/uaccess.h>
28
#include <asm/interrupt.h>
29
#include <asm/io.h>
30
#include <asm/kvm_ppc.h>
31
#include <asm/kvm_book3s.h>
32
#include <asm/mmu_context.h>
33
#include <asm/switch_to.h>
34
#include <asm/firmware.h>
35
#include <asm/setup.h>
36
#include <linux/gfp.h>
37
#include <linux/sched.h>
38
#include <linux/vmalloc.h>
39
#include <linux/highmem.h>
40
#include <linux/module.h>
41
#include <linux/miscdevice.h>
42
#include <asm/asm-prototypes.h>
43
#include <asm/tm.h>
44
45
#include "book3s.h"
46
47
#define CREATE_TRACE_POINTS
48
#include "trace_pr.h"
49
50
/* #define EXIT_DEBUG */
51
/* #define DEBUG_EXT */
52
53
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54
ulong msr);
55
#ifdef CONFIG_PPC_BOOK3S_64
56
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57
#endif
58
59
/* Some compatibility defines */
60
#ifdef CONFIG_PPC_BOOK3S_32
61
#define MSR_USER32 MSR_USER
62
#define MSR_USER64 MSR_USER
63
#define HW_PAGE_SIZE PAGE_SIZE
64
#define HPTE_R_M _PAGE_COHERENT
65
#endif
66
67
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68
{
69
ulong msr = kvmppc_get_msr(vcpu);
70
return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71
}
72
73
static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74
{
75
ulong msr = kvmppc_get_msr(vcpu);
76
ulong pc = kvmppc_get_pc(vcpu);
77
78
/* We are in DR only split real mode */
79
if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80
return;
81
82
/* We have not fixed up the guest already */
83
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84
return;
85
86
/* The code is in fixupable address space */
87
if (pc & SPLIT_HACK_MASK)
88
return;
89
90
vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91
kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92
}
93
94
static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95
{
96
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97
ulong pc = kvmppc_get_pc(vcpu);
98
ulong lr = kvmppc_get_lr(vcpu);
99
if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100
kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101
if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102
kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104
}
105
}
106
107
static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108
{
109
unsigned long msr, pc, new_msr, new_pc;
110
111
kvmppc_unfixup_split_real(vcpu);
112
113
msr = kvmppc_get_msr(vcpu);
114
pc = kvmppc_get_pc(vcpu);
115
new_msr = vcpu->arch.intr_msr;
116
new_pc = to_book3s(vcpu)->hior + vec;
117
118
#ifdef CONFIG_PPC_BOOK3S_64
119
/* If transactional, change to suspend mode on IRQ delivery */
120
if (MSR_TM_TRANSACTIONAL(msr))
121
new_msr |= MSR_TS_S;
122
else
123
new_msr |= msr & MSR_TS_MASK;
124
#endif
125
126
kvmppc_set_srr0(vcpu, pc);
127
kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128
kvmppc_set_pc(vcpu, new_pc);
129
kvmppc_set_msr(vcpu, new_msr);
130
}
131
132
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133
{
134
#ifdef CONFIG_PPC_BOOK3S_64
135
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138
svcpu->in_use = 0;
139
svcpu_put(svcpu);
140
141
/* Disable AIL if supported */
142
if (cpu_has_feature(CPU_FTR_HVMODE)) {
143
if (cpu_has_feature(CPU_FTR_ARCH_207S))
144
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
145
if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
146
mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
147
}
148
#endif
149
150
vcpu->cpu = smp_processor_id();
151
#ifdef CONFIG_PPC_BOOK3S_32
152
current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
153
#endif
154
155
if (kvmppc_is_split_real(vcpu))
156
kvmppc_fixup_split_real(vcpu);
157
158
kvmppc_restore_tm_pr(vcpu);
159
}
160
161
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
162
{
163
#ifdef CONFIG_PPC_BOOK3S_64
164
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
165
if (svcpu->in_use) {
166
kvmppc_copy_from_svcpu(vcpu);
167
}
168
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
169
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
170
svcpu_put(svcpu);
171
172
/* Enable AIL if supported */
173
if (cpu_has_feature(CPU_FTR_HVMODE)) {
174
if (cpu_has_feature(CPU_FTR_ARCH_207S))
175
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
176
if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
177
mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
178
}
179
#endif
180
181
if (kvmppc_is_split_real(vcpu))
182
kvmppc_unfixup_split_real(vcpu);
183
184
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
185
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
186
kvmppc_save_tm_pr(vcpu);
187
188
vcpu->cpu = -1;
189
}
190
191
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
192
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
193
{
194
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
195
196
svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
197
svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
198
svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
199
svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
200
svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
201
svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
202
svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
203
svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
204
svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
205
svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
206
svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
207
svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
208
svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
209
svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
210
svcpu->cr = vcpu->arch.regs.ccr;
211
svcpu->xer = vcpu->arch.regs.xer;
212
svcpu->ctr = vcpu->arch.regs.ctr;
213
svcpu->lr = vcpu->arch.regs.link;
214
svcpu->pc = vcpu->arch.regs.nip;
215
#ifdef CONFIG_PPC_BOOK3S_64
216
svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
217
#endif
218
/*
219
* Now also save the current time base value. We use this
220
* to find the guest purr and spurr value.
221
*/
222
vcpu->arch.entry_tb = get_tb();
223
vcpu->arch.entry_vtb = get_vtb();
224
if (cpu_has_feature(CPU_FTR_ARCH_207S))
225
vcpu->arch.entry_ic = mfspr(SPRN_IC);
226
svcpu->in_use = true;
227
228
svcpu_put(svcpu);
229
}
230
231
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
232
{
233
ulong guest_msr = kvmppc_get_msr(vcpu);
234
ulong smsr = guest_msr;
235
236
/* Guest MSR values */
237
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
238
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
239
MSR_TM | MSR_TS_MASK;
240
#else
241
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
242
#endif
243
/* Process MSR values */
244
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
245
/* External providers the guest reserved */
246
smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
247
/* 64-bit Process MSR values */
248
#ifdef CONFIG_PPC_BOOK3S_64
249
smsr |= MSR_HV;
250
#endif
251
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
252
/*
253
* in guest privileged state, we want to fail all TM transactions.
254
* So disable MSR TM bit so that all tbegin. will be able to be
255
* trapped into host.
256
*/
257
if (!(guest_msr & MSR_PR))
258
smsr &= ~MSR_TM;
259
#endif
260
vcpu->arch.shadow_msr = smsr;
261
}
262
263
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
264
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
265
{
266
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
267
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
268
ulong old_msr;
269
#endif
270
271
/*
272
* Maybe we were already preempted and synced the svcpu from
273
* our preempt notifiers. Don't bother touching this svcpu then.
274
*/
275
if (!svcpu->in_use)
276
goto out;
277
278
vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
279
vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
280
vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
281
vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
282
vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
283
vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
284
vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
285
vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
286
vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
287
vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
288
vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
289
vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
290
vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
291
vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
292
vcpu->arch.regs.ccr = svcpu->cr;
293
vcpu->arch.regs.xer = svcpu->xer;
294
vcpu->arch.regs.ctr = svcpu->ctr;
295
vcpu->arch.regs.link = svcpu->lr;
296
vcpu->arch.regs.nip = svcpu->pc;
297
vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
298
vcpu->arch.fault_dar = svcpu->fault_dar;
299
vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
300
vcpu->arch.last_inst = svcpu->last_inst;
301
#ifdef CONFIG_PPC_BOOK3S_64
302
vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
303
#endif
304
/*
305
* Update purr and spurr using time base on exit.
306
*/
307
vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
308
vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
309
to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
310
if (cpu_has_feature(CPU_FTR_ARCH_207S))
311
vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
312
313
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
314
/*
315
* Unlike other MSR bits, MSR[TS]bits can be changed at guest without
316
* notifying host:
317
* modified by unprivileged instructions like "tbegin"/"tend"/
318
* "tresume"/"tsuspend" in PR KVM guest.
319
*
320
* It is necessary to sync here to calculate a correct shadow_msr.
321
*
322
* privileged guest's tbegin will be failed at present. So we
323
* only take care of problem state guest.
324
*/
325
old_msr = kvmppc_get_msr(vcpu);
326
if (unlikely((old_msr & MSR_PR) &&
327
(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
328
(old_msr & (MSR_TS_MASK)))) {
329
old_msr &= ~(MSR_TS_MASK);
330
old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
331
kvmppc_set_msr_fast(vcpu, old_msr);
332
kvmppc_recalc_shadow_msr(vcpu);
333
}
334
#endif
335
336
svcpu->in_use = false;
337
338
out:
339
svcpu_put(svcpu);
340
}
341
342
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
343
void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
344
{
345
tm_enable();
346
vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
347
vcpu->arch.texasr = mfspr(SPRN_TEXASR);
348
vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
349
tm_disable();
350
}
351
352
void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
353
{
354
tm_enable();
355
mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
356
mtspr(SPRN_TEXASR, vcpu->arch.texasr);
357
mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
358
tm_disable();
359
}
360
361
/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
362
* hardware.
363
*/
364
static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
365
{
366
ulong exit_nr;
367
ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
368
(MSR_FP | MSR_VEC | MSR_VSX);
369
370
if (!ext_diff)
371
return;
372
373
if (ext_diff == MSR_FP)
374
exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
375
else if (ext_diff == MSR_VEC)
376
exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
377
else
378
exit_nr = BOOK3S_INTERRUPT_VSX;
379
380
kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
381
}
382
383
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
384
{
385
if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
386
kvmppc_save_tm_sprs(vcpu);
387
return;
388
}
389
390
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
391
kvmppc_giveup_ext(vcpu, MSR_VSX);
392
393
preempt_disable();
394
_kvmppc_save_tm_pr(vcpu, mfmsr());
395
preempt_enable();
396
}
397
398
void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
399
{
400
if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
401
kvmppc_restore_tm_sprs(vcpu);
402
if (kvmppc_get_msr(vcpu) & MSR_TM) {
403
kvmppc_handle_lost_math_exts(vcpu);
404
if (vcpu->arch.fscr & FSCR_TAR)
405
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
406
}
407
return;
408
}
409
410
preempt_disable();
411
_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
412
preempt_enable();
413
414
if (kvmppc_get_msr(vcpu) & MSR_TM) {
415
kvmppc_handle_lost_math_exts(vcpu);
416
if (vcpu->arch.fscr & FSCR_TAR)
417
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
418
}
419
}
420
#endif
421
422
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
423
{
424
int r = 1; /* Indicate we want to get back into the guest */
425
426
/* We misuse TLB_FLUSH to indicate that we want to clear
427
all shadow cache entries */
428
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
429
kvmppc_mmu_pte_flush(vcpu, 0, 0);
430
431
return r;
432
}
433
434
/************* MMU Notifiers *************/
435
static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
436
{
437
unsigned long i;
438
struct kvm_vcpu *vcpu;
439
440
kvm_for_each_vcpu(i, vcpu, kvm)
441
kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
442
range->end << PAGE_SHIFT);
443
444
return false;
445
}
446
447
static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
448
{
449
return do_kvm_unmap_gfn(kvm, range);
450
}
451
452
static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453
{
454
/* XXX could be more clever ;) */
455
return false;
456
}
457
458
static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459
{
460
/* XXX could be more clever ;) */
461
return false;
462
}
463
464
/*****************************************/
465
466
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467
{
468
ulong old_msr;
469
470
/* For PAPR guest, make sure MSR reflects guest mode */
471
if (vcpu->arch.papr_enabled)
472
msr = (msr & ~MSR_HV) | MSR_ME;
473
474
#ifdef EXIT_DEBUG
475
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476
#endif
477
478
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479
/* We should never target guest MSR to TS=10 && PR=0,
480
* since we always fail transaction for guest privilege
481
* state.
482
*/
483
if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484
kvmppc_emulate_tabort(vcpu,
485
TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486
#endif
487
488
old_msr = kvmppc_get_msr(vcpu);
489
msr &= to_book3s(vcpu)->msr_mask;
490
kvmppc_set_msr_fast(vcpu, msr);
491
kvmppc_recalc_shadow_msr(vcpu);
492
493
if (msr & MSR_POW) {
494
if (!vcpu->arch.pending_exceptions) {
495
kvm_vcpu_halt(vcpu);
496
vcpu->stat.generic.halt_wakeup++;
497
498
/* Unset POW bit after we woke up */
499
msr &= ~MSR_POW;
500
kvmppc_set_msr_fast(vcpu, msr);
501
}
502
}
503
504
if (kvmppc_is_split_real(vcpu))
505
kvmppc_fixup_split_real(vcpu);
506
else
507
kvmppc_unfixup_split_real(vcpu);
508
509
if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
510
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
511
kvmppc_mmu_flush_segments(vcpu);
512
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
513
514
/* Preload magic page segment when in kernel mode */
515
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
516
struct kvm_vcpu_arch *a = &vcpu->arch;
517
518
if (msr & MSR_DR)
519
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
520
else
521
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
522
}
523
}
524
525
/*
526
* When switching from 32 to 64-bit, we may have a stale 32-bit
527
* magic page around, we need to flush it. Typically 32-bit magic
528
* page will be instantiated when calling into RTAS. Note: We
529
* assume that such transition only happens while in kernel mode,
530
* ie, we never transition from user 32-bit to kernel 64-bit with
531
* a 32-bit magic page around.
532
*/
533
if (vcpu->arch.magic_page_pa &&
534
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
535
/* going from RTAS to normal kernel code */
536
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
537
~0xFFFUL);
538
}
539
540
/* Preload FPU if it's enabled */
541
if (kvmppc_get_msr(vcpu) & MSR_FP)
542
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
543
544
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
545
if (kvmppc_get_msr(vcpu) & MSR_TM)
546
kvmppc_handle_lost_math_exts(vcpu);
547
#endif
548
}
549
550
static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
551
{
552
u32 host_pvr;
553
554
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
555
vcpu->arch.pvr = pvr;
556
#ifdef CONFIG_PPC_BOOK3S_64
557
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
558
kvmppc_mmu_book3s_64_init(vcpu);
559
if (!to_book3s(vcpu)->hior_explicit)
560
to_book3s(vcpu)->hior = 0xfff00000;
561
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
562
vcpu->arch.cpu_type = KVM_CPU_3S_64;
563
} else
564
#endif
565
{
566
kvmppc_mmu_book3s_32_init(vcpu);
567
if (!to_book3s(vcpu)->hior_explicit)
568
to_book3s(vcpu)->hior = 0;
569
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
570
vcpu->arch.cpu_type = KVM_CPU_3S_32;
571
}
572
573
kvmppc_sanity_check(vcpu);
574
575
/* If we are in hypervisor level on 970, we can tell the CPU to
576
* treat DCBZ as 32 bytes store */
577
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
578
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
579
!strcmp(cur_cpu_spec->platform, "ppc970"))
580
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
581
582
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
583
really needs them in a VM on Cell and force disable them. */
584
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
585
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
586
587
/*
588
* If they're asking for POWER6 or later, set the flag
589
* indicating that we can do multiple large page sizes
590
* and 1TB segments.
591
* Also set the flag that indicates that tlbie has the large
592
* page bit in the RB operand instead of the instruction.
593
*/
594
switch (PVR_VER(pvr)) {
595
case PVR_POWER6:
596
case PVR_POWER7:
597
case PVR_POWER7p:
598
case PVR_POWER8:
599
case PVR_POWER8E:
600
case PVR_POWER8NVL:
601
case PVR_HX_C2000:
602
case PVR_POWER9:
603
vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604
BOOK3S_HFLAG_NEW_TLBIE;
605
break;
606
}
607
608
#ifdef CONFIG_PPC_BOOK3S_32
609
/* 32 bit Book3S always has 32 byte dcbz */
610
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611
#endif
612
613
/* On some CPUs we can execute paired single operations natively */
614
asm ( "mfpvr %0" : "=r"(host_pvr));
615
switch (host_pvr) {
616
case 0x00080200: /* lonestar 2.0 */
617
case 0x00088202: /* lonestar 2.2 */
618
case 0x70000100: /* gekko 1.0 */
619
case 0x00080100: /* gekko 2.0 */
620
case 0x00083203: /* gekko 2.3a */
621
case 0x00083213: /* gekko 2.3b */
622
case 0x00083204: /* gekko 2.4 */
623
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
624
case 0x00087200: /* broadway */
625
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626
/* Enable HID2.PSE - in case we need it later */
627
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628
}
629
}
630
631
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633
* emulate 32 bytes dcbz length.
634
*
635
* The Book3s_64 inventors also realized this case and implemented a special bit
636
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637
*
638
* My approach here is to patch the dcbz instruction on executing pages.
639
*/
640
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641
{
642
struct kvm_host_map map;
643
u64 hpage_offset;
644
u32 *page;
645
int i, r;
646
647
r = kvm_vcpu_map(vcpu, pte->raddr >> PAGE_SHIFT, &map);
648
if (r)
649
return;
650
651
hpage_offset = pte->raddr & ~PAGE_MASK;
652
hpage_offset &= ~0xFFFULL;
653
hpage_offset /= 4;
654
655
page = map.hva;
656
657
/* patch dcbz into reserved instruction, so we trap */
658
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
659
if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
660
page[i] &= cpu_to_be32(0xfffffff7);
661
662
kvm_vcpu_unmap(vcpu, &map);
663
}
664
665
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
666
{
667
ulong mp_pa = vcpu->arch.magic_page_pa;
668
669
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
670
mp_pa = (uint32_t)mp_pa;
671
672
gpa &= ~0xFFFULL;
673
if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
674
return true;
675
}
676
677
return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
678
}
679
680
static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
681
ulong eaddr, int vec)
682
{
683
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
684
bool iswrite = false;
685
int r = RESUME_GUEST;
686
int relocated;
687
int page_found = 0;
688
struct kvmppc_pte pte = { 0 };
689
bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
690
bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
691
u64 vsid;
692
693
relocated = data ? dr : ir;
694
if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
695
iswrite = true;
696
697
/* Resolve real address if translation turned on */
698
if (relocated) {
699
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
700
} else {
701
pte.may_execute = true;
702
pte.may_read = true;
703
pte.may_write = true;
704
pte.raddr = eaddr & KVM_PAM;
705
pte.eaddr = eaddr;
706
pte.vpage = eaddr >> 12;
707
pte.page_size = MMU_PAGE_64K;
708
pte.wimg = HPTE_R_M;
709
}
710
711
switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
712
case 0:
713
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
714
break;
715
case MSR_DR:
716
if (!data &&
717
(vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
718
((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
719
pte.raddr &= ~SPLIT_HACK_MASK;
720
fallthrough;
721
case MSR_IR:
722
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
723
724
if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
725
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
726
else
727
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
728
pte.vpage |= vsid;
729
730
if (vsid == -1)
731
page_found = -EINVAL;
732
break;
733
}
734
735
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
736
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
737
/*
738
* If we do the dcbz hack, we have to NX on every execution,
739
* so we can patch the executing code. This renders our guest
740
* NX-less.
741
*/
742
pte.may_execute = !data;
743
}
744
745
if (page_found == -ENOENT || page_found == -EPERM) {
746
/* Page not found in guest PTE entries, or protection fault */
747
u64 flags;
748
749
if (page_found == -EPERM)
750
flags = DSISR_PROTFAULT;
751
else
752
flags = DSISR_NOHPTE;
753
if (data) {
754
flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
755
kvmppc_core_queue_data_storage(vcpu, 0, eaddr, flags);
756
} else {
757
kvmppc_core_queue_inst_storage(vcpu, flags);
758
}
759
} else if (page_found == -EINVAL) {
760
/* Page not found in guest SLB */
761
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
762
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
763
} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
764
if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
765
/*
766
* There is already a host HPTE there, presumably
767
* a read-only one for a page the guest thinks
768
* is writable, so get rid of it first.
769
*/
770
kvmppc_mmu_unmap_page(vcpu, &pte);
771
}
772
/* The guest's PTE is not mapped yet. Map on the host */
773
if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
774
/* Exit KVM if mapping failed */
775
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
776
return RESUME_HOST;
777
}
778
if (data)
779
vcpu->stat.sp_storage++;
780
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
781
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
782
kvmppc_patch_dcbz(vcpu, &pte);
783
} else {
784
/* MMIO */
785
vcpu->stat.mmio_exits++;
786
vcpu->arch.paddr_accessed = pte.raddr;
787
vcpu->arch.vaddr_accessed = pte.eaddr;
788
r = kvmppc_emulate_mmio(vcpu);
789
if ( r == RESUME_HOST_NV )
790
r = RESUME_HOST;
791
}
792
793
return r;
794
}
795
796
/* Give up external provider (FPU, Altivec, VSX) */
797
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
798
{
799
struct thread_struct *t = &current->thread;
800
801
/*
802
* VSX instructions can access FP and vector registers, so if
803
* we are giving up VSX, make sure we give up FP and VMX as well.
804
*/
805
if (msr & MSR_VSX)
806
msr |= MSR_FP | MSR_VEC;
807
808
msr &= vcpu->arch.guest_owned_ext;
809
if (!msr)
810
return;
811
812
#ifdef DEBUG_EXT
813
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
814
#endif
815
816
if (msr & MSR_FP) {
817
/*
818
* Note that on CPUs with VSX, giveup_fpu stores
819
* both the traditional FP registers and the added VSX
820
* registers into thread.fp_state.fpr[].
821
*/
822
if (t->regs->msr & MSR_FP)
823
giveup_fpu(current);
824
t->fp_save_area = NULL;
825
}
826
827
#ifdef CONFIG_ALTIVEC
828
if (msr & MSR_VEC) {
829
if (current->thread.regs->msr & MSR_VEC)
830
giveup_altivec(current);
831
t->vr_save_area = NULL;
832
}
833
#endif
834
835
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
836
kvmppc_recalc_shadow_msr(vcpu);
837
}
838
839
/* Give up facility (TAR / EBB / DSCR) */
840
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
841
{
842
#ifdef CONFIG_PPC_BOOK3S_64
843
if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
844
/* Facility not available to the guest, ignore giveup request*/
845
return;
846
}
847
848
switch (fac) {
849
case FSCR_TAR_LG:
850
vcpu->arch.tar = mfspr(SPRN_TAR);
851
mtspr(SPRN_TAR, current->thread.tar);
852
vcpu->arch.shadow_fscr &= ~FSCR_TAR;
853
break;
854
}
855
#endif
856
}
857
858
/* Handle external providers (FPU, Altivec, VSX) */
859
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
860
ulong msr)
861
{
862
struct thread_struct *t = &current->thread;
863
864
/* When we have paired singles, we emulate in software */
865
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
866
return RESUME_GUEST;
867
868
if (!(kvmppc_get_msr(vcpu) & msr)) {
869
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
870
return RESUME_GUEST;
871
}
872
873
if (msr == MSR_VSX) {
874
/* No VSX? Give an illegal instruction interrupt */
875
#ifdef CONFIG_VSX
876
if (!cpu_has_feature(CPU_FTR_VSX))
877
#endif
878
{
879
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
880
return RESUME_GUEST;
881
}
882
883
/*
884
* We have to load up all the FP and VMX registers before
885
* we can let the guest use VSX instructions.
886
*/
887
msr = MSR_FP | MSR_VEC | MSR_VSX;
888
}
889
890
/* See if we already own all the ext(s) needed */
891
msr &= ~vcpu->arch.guest_owned_ext;
892
if (!msr)
893
return RESUME_GUEST;
894
895
#ifdef DEBUG_EXT
896
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
897
#endif
898
899
if (msr & MSR_FP) {
900
preempt_disable();
901
enable_kernel_fp();
902
load_fp_state(&vcpu->arch.fp);
903
disable_kernel_fp();
904
t->fp_save_area = &vcpu->arch.fp;
905
preempt_enable();
906
}
907
908
if (msr & MSR_VEC) {
909
#ifdef CONFIG_ALTIVEC
910
preempt_disable();
911
enable_kernel_altivec();
912
load_vr_state(&vcpu->arch.vr);
913
disable_kernel_altivec();
914
t->vr_save_area = &vcpu->arch.vr;
915
preempt_enable();
916
#endif
917
}
918
919
t->regs->msr |= msr;
920
vcpu->arch.guest_owned_ext |= msr;
921
kvmppc_recalc_shadow_msr(vcpu);
922
923
return RESUME_GUEST;
924
}
925
926
/*
927
* Kernel code using FP or VMX could have flushed guest state to
928
* the thread_struct; if so, get it back now.
929
*/
930
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
931
{
932
unsigned long lost_ext;
933
934
lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
935
if (!lost_ext)
936
return;
937
938
if (lost_ext & MSR_FP) {
939
preempt_disable();
940
enable_kernel_fp();
941
load_fp_state(&vcpu->arch.fp);
942
disable_kernel_fp();
943
preempt_enable();
944
}
945
#ifdef CONFIG_ALTIVEC
946
if (lost_ext & MSR_VEC) {
947
preempt_disable();
948
enable_kernel_altivec();
949
load_vr_state(&vcpu->arch.vr);
950
disable_kernel_altivec();
951
preempt_enable();
952
}
953
#endif
954
current->thread.regs->msr |= lost_ext;
955
}
956
957
#ifdef CONFIG_PPC_BOOK3S_64
958
959
void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
960
{
961
/* Inject the Interrupt Cause field and trigger a guest interrupt */
962
vcpu->arch.fscr &= ~(0xffULL << 56);
963
vcpu->arch.fscr |= (fac << 56);
964
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
965
}
966
967
static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
968
{
969
enum emulation_result er = EMULATE_FAIL;
970
971
if (!(kvmppc_get_msr(vcpu) & MSR_PR))
972
er = kvmppc_emulate_instruction(vcpu);
973
974
if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
975
/* Couldn't emulate, trigger interrupt in guest */
976
kvmppc_trigger_fac_interrupt(vcpu, fac);
977
}
978
}
979
980
/* Enable facilities (TAR, EBB, DSCR) for the guest */
981
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
982
{
983
bool guest_fac_enabled;
984
BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
985
986
/*
987
* Not every facility is enabled by FSCR bits, check whether the
988
* guest has this facility enabled at all.
989
*/
990
switch (fac) {
991
case FSCR_TAR_LG:
992
case FSCR_EBB_LG:
993
guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
994
break;
995
case FSCR_TM_LG:
996
guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
997
break;
998
default:
999
guest_fac_enabled = false;
1000
break;
1001
}
1002
1003
if (!guest_fac_enabled) {
1004
/* Facility not enabled by the guest */
1005
kvmppc_trigger_fac_interrupt(vcpu, fac);
1006
return RESUME_GUEST;
1007
}
1008
1009
switch (fac) {
1010
case FSCR_TAR_LG:
1011
/* TAR switching isn't lazy in Linux yet */
1012
current->thread.tar = mfspr(SPRN_TAR);
1013
mtspr(SPRN_TAR, vcpu->arch.tar);
1014
vcpu->arch.shadow_fscr |= FSCR_TAR;
1015
break;
1016
default:
1017
kvmppc_emulate_fac(vcpu, fac);
1018
break;
1019
}
1020
1021
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1022
/* Since we disabled MSR_TM at privilege state, the mfspr instruction
1023
* for TM spr can trigger TM fac unavailable. In this case, the
1024
* emulation is handled by kvmppc_emulate_fac(), which invokes
1025
* kvmppc_emulate_mfspr() finally. But note the mfspr can include
1026
* RT for NV registers. So it need to restore those NV reg to reflect
1027
* the update.
1028
*/
1029
if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1030
return RESUME_GUEST_NV;
1031
#endif
1032
1033
return RESUME_GUEST;
1034
}
1035
1036
void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1037
{
1038
if (fscr & FSCR_SCV)
1039
fscr &= ~FSCR_SCV; /* SCV must not be enabled */
1040
/* Prohibit prefixed instructions for now */
1041
fscr &= ~FSCR_PREFIX;
1042
if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1043
/* TAR got dropped, drop it in shadow too */
1044
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1045
} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1046
vcpu->arch.fscr = fscr;
1047
kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1048
return;
1049
}
1050
1051
vcpu->arch.fscr = fscr;
1052
}
1053
#endif
1054
1055
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1056
{
1057
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1058
u64 msr = kvmppc_get_msr(vcpu);
1059
1060
kvmppc_set_msr(vcpu, msr | MSR_SE);
1061
}
1062
}
1063
1064
static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1065
{
1066
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1067
u64 msr = kvmppc_get_msr(vcpu);
1068
1069
kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1070
}
1071
}
1072
1073
static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1074
{
1075
enum emulation_result er;
1076
ulong flags;
1077
ppc_inst_t last_inst;
1078
int emul, r;
1079
1080
/*
1081
* shadow_srr1 only contains valid flags if we came here via a program
1082
* exception. The other exceptions (emulation assist, FP unavailable,
1083
* etc.) do not provide flags in SRR1, so use an illegal-instruction
1084
* exception when injecting a program interrupt into the guest.
1085
*/
1086
if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1087
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1088
else
1089
flags = SRR1_PROGILL;
1090
1091
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1092
if (emul != EMULATE_DONE)
1093
return RESUME_GUEST;
1094
1095
if (kvmppc_get_msr(vcpu) & MSR_PR) {
1096
#ifdef EXIT_DEBUG
1097
pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1098
kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1099
#endif
1100
if ((ppc_inst_val(last_inst) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1101
kvmppc_core_queue_program(vcpu, flags);
1102
return RESUME_GUEST;
1103
}
1104
}
1105
1106
vcpu->stat.emulated_inst_exits++;
1107
er = kvmppc_emulate_instruction(vcpu);
1108
switch (er) {
1109
case EMULATE_DONE:
1110
r = RESUME_GUEST_NV;
1111
break;
1112
case EMULATE_AGAIN:
1113
r = RESUME_GUEST;
1114
break;
1115
case EMULATE_FAIL:
1116
pr_crit("%s: emulation at %lx failed (%08x)\n",
1117
__func__, kvmppc_get_pc(vcpu), ppc_inst_val(last_inst));
1118
kvmppc_core_queue_program(vcpu, flags);
1119
r = RESUME_GUEST;
1120
break;
1121
case EMULATE_DO_MMIO:
1122
vcpu->run->exit_reason = KVM_EXIT_MMIO;
1123
r = RESUME_HOST_NV;
1124
break;
1125
case EMULATE_EXIT_USER:
1126
r = RESUME_HOST_NV;
1127
break;
1128
default:
1129
BUG();
1130
}
1131
1132
return r;
1133
}
1134
1135
int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1136
{
1137
struct kvm_run *run = vcpu->run;
1138
int r = RESUME_HOST;
1139
int s;
1140
1141
vcpu->stat.sum_exits++;
1142
1143
run->exit_reason = KVM_EXIT_UNKNOWN;
1144
run->ready_for_interrupt_injection = 1;
1145
1146
/* We get here with MSR.EE=1 */
1147
1148
trace_kvm_exit(exit_nr, vcpu);
1149
guest_exit();
1150
1151
switch (exit_nr) {
1152
case BOOK3S_INTERRUPT_INST_STORAGE:
1153
{
1154
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1155
vcpu->stat.pf_instruc++;
1156
1157
if (kvmppc_is_split_real(vcpu))
1158
kvmppc_fixup_split_real(vcpu);
1159
1160
#ifdef CONFIG_PPC_BOOK3S_32
1161
/* We set segments as unused segments when invalidating them. So
1162
* treat the respective fault as segment fault. */
1163
{
1164
struct kvmppc_book3s_shadow_vcpu *svcpu;
1165
u32 sr;
1166
1167
svcpu = svcpu_get(vcpu);
1168
sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1169
svcpu_put(svcpu);
1170
if (sr == SR_INVALID) {
1171
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1172
r = RESUME_GUEST;
1173
break;
1174
}
1175
}
1176
#endif
1177
1178
/* only care about PTEG not found errors, but leave NX alone */
1179
if (shadow_srr1 & 0x40000000) {
1180
int idx = srcu_read_lock(&vcpu->kvm->srcu);
1181
r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1182
srcu_read_unlock(&vcpu->kvm->srcu, idx);
1183
vcpu->stat.sp_instruc++;
1184
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1185
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1186
/*
1187
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1188
* so we can't use the NX bit inside the guest. Let's cross our fingers,
1189
* that no guest that needs the dcbz hack does NX.
1190
*/
1191
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1192
r = RESUME_GUEST;
1193
} else {
1194
kvmppc_core_queue_inst_storage(vcpu,
1195
shadow_srr1 & 0x58000000);
1196
r = RESUME_GUEST;
1197
}
1198
break;
1199
}
1200
case BOOK3S_INTERRUPT_DATA_STORAGE:
1201
{
1202
ulong dar = kvmppc_get_fault_dar(vcpu);
1203
u32 fault_dsisr = vcpu->arch.fault_dsisr;
1204
vcpu->stat.pf_storage++;
1205
1206
#ifdef CONFIG_PPC_BOOK3S_32
1207
/* We set segments as unused segments when invalidating them. So
1208
* treat the respective fault as segment fault. */
1209
{
1210
struct kvmppc_book3s_shadow_vcpu *svcpu;
1211
u32 sr;
1212
1213
svcpu = svcpu_get(vcpu);
1214
sr = svcpu->sr[dar >> SID_SHIFT];
1215
svcpu_put(svcpu);
1216
if (sr == SR_INVALID) {
1217
kvmppc_mmu_map_segment(vcpu, dar);
1218
r = RESUME_GUEST;
1219
break;
1220
}
1221
}
1222
#endif
1223
1224
/*
1225
* We need to handle missing shadow PTEs, and
1226
* protection faults due to us mapping a page read-only
1227
* when the guest thinks it is writable.
1228
*/
1229
if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1230
int idx = srcu_read_lock(&vcpu->kvm->srcu);
1231
r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1232
srcu_read_unlock(&vcpu->kvm->srcu, idx);
1233
} else {
1234
kvmppc_core_queue_data_storage(vcpu, 0, dar, fault_dsisr);
1235
r = RESUME_GUEST;
1236
}
1237
break;
1238
}
1239
case BOOK3S_INTERRUPT_DATA_SEGMENT:
1240
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1241
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1242
kvmppc_book3s_queue_irqprio(vcpu,
1243
BOOK3S_INTERRUPT_DATA_SEGMENT);
1244
}
1245
r = RESUME_GUEST;
1246
break;
1247
case BOOK3S_INTERRUPT_INST_SEGMENT:
1248
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1249
kvmppc_book3s_queue_irqprio(vcpu,
1250
BOOK3S_INTERRUPT_INST_SEGMENT);
1251
}
1252
r = RESUME_GUEST;
1253
break;
1254
/* We're good on these - the host merely wanted to get our attention */
1255
case BOOK3S_INTERRUPT_DECREMENTER:
1256
case BOOK3S_INTERRUPT_HV_DECREMENTER:
1257
case BOOK3S_INTERRUPT_DOORBELL:
1258
case BOOK3S_INTERRUPT_H_DOORBELL:
1259
vcpu->stat.dec_exits++;
1260
r = RESUME_GUEST;
1261
break;
1262
case BOOK3S_INTERRUPT_EXTERNAL:
1263
case BOOK3S_INTERRUPT_EXTERNAL_HV:
1264
case BOOK3S_INTERRUPT_H_VIRT:
1265
vcpu->stat.ext_intr_exits++;
1266
r = RESUME_GUEST;
1267
break;
1268
case BOOK3S_INTERRUPT_HMI:
1269
case BOOK3S_INTERRUPT_PERFMON:
1270
case BOOK3S_INTERRUPT_SYSTEM_RESET:
1271
r = RESUME_GUEST;
1272
break;
1273
case BOOK3S_INTERRUPT_PROGRAM:
1274
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1275
r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1276
break;
1277
case BOOK3S_INTERRUPT_SYSCALL:
1278
{
1279
ppc_inst_t last_sc;
1280
int emul;
1281
1282
/* Get last sc for papr */
1283
if (vcpu->arch.papr_enabled) {
1284
/* The sc instruction points SRR0 to the next inst */
1285
emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1286
if (emul != EMULATE_DONE) {
1287
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1288
r = RESUME_GUEST;
1289
break;
1290
}
1291
}
1292
1293
if (vcpu->arch.papr_enabled &&
1294
(ppc_inst_val(last_sc) == 0x44000022) &&
1295
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
1296
/* SC 1 papr hypercalls */
1297
ulong cmd = kvmppc_get_gpr(vcpu, 3);
1298
int i;
1299
1300
#ifdef CONFIG_PPC_BOOK3S_64
1301
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1302
r = RESUME_GUEST;
1303
break;
1304
}
1305
#endif
1306
1307
run->papr_hcall.nr = cmd;
1308
for (i = 0; i < 9; ++i) {
1309
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1310
run->papr_hcall.args[i] = gpr;
1311
}
1312
run->exit_reason = KVM_EXIT_PAPR_HCALL;
1313
vcpu->arch.hcall_needed = 1;
1314
r = RESUME_HOST;
1315
} else if (vcpu->arch.osi_enabled &&
1316
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1317
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1318
/* MOL hypercalls */
1319
u64 *gprs = run->osi.gprs;
1320
int i;
1321
1322
run->exit_reason = KVM_EXIT_OSI;
1323
for (i = 0; i < 32; i++)
1324
gprs[i] = kvmppc_get_gpr(vcpu, i);
1325
vcpu->arch.osi_needed = 1;
1326
r = RESUME_HOST_NV;
1327
} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1328
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1329
/* KVM PV hypercalls */
1330
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1331
r = RESUME_GUEST;
1332
} else {
1333
/* Guest syscalls */
1334
vcpu->stat.syscall_exits++;
1335
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1336
r = RESUME_GUEST;
1337
}
1338
break;
1339
}
1340
case BOOK3S_INTERRUPT_FP_UNAVAIL:
1341
case BOOK3S_INTERRUPT_ALTIVEC:
1342
case BOOK3S_INTERRUPT_VSX:
1343
{
1344
int ext_msr = 0;
1345
int emul;
1346
ppc_inst_t last_inst;
1347
1348
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1349
/* Do paired single instruction emulation */
1350
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1351
&last_inst);
1352
if (emul == EMULATE_DONE)
1353
r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1354
else
1355
r = RESUME_GUEST;
1356
1357
break;
1358
}
1359
1360
/* Enable external provider */
1361
switch (exit_nr) {
1362
case BOOK3S_INTERRUPT_FP_UNAVAIL:
1363
ext_msr = MSR_FP;
1364
break;
1365
1366
case BOOK3S_INTERRUPT_ALTIVEC:
1367
ext_msr = MSR_VEC;
1368
break;
1369
1370
case BOOK3S_INTERRUPT_VSX:
1371
ext_msr = MSR_VSX;
1372
break;
1373
}
1374
1375
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1376
break;
1377
}
1378
case BOOK3S_INTERRUPT_ALIGNMENT:
1379
{
1380
ppc_inst_t last_inst;
1381
int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1382
1383
if (emul == EMULATE_DONE) {
1384
u32 dsisr;
1385
u64 dar;
1386
1387
dsisr = kvmppc_alignment_dsisr(vcpu, ppc_inst_val(last_inst));
1388
dar = kvmppc_alignment_dar(vcpu, ppc_inst_val(last_inst));
1389
1390
kvmppc_set_dsisr(vcpu, dsisr);
1391
kvmppc_set_dar(vcpu, dar);
1392
1393
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1394
}
1395
r = RESUME_GUEST;
1396
break;
1397
}
1398
#ifdef CONFIG_PPC_BOOK3S_64
1399
case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1400
r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1401
break;
1402
#endif
1403
case BOOK3S_INTERRUPT_MACHINE_CHECK:
1404
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1405
r = RESUME_GUEST;
1406
break;
1407
case BOOK3S_INTERRUPT_TRACE:
1408
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1409
run->exit_reason = KVM_EXIT_DEBUG;
1410
r = RESUME_HOST;
1411
} else {
1412
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1413
r = RESUME_GUEST;
1414
}
1415
break;
1416
default:
1417
{
1418
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1419
/* Ugh - bork here! What did we get? */
1420
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1421
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1422
r = RESUME_HOST;
1423
BUG();
1424
break;
1425
}
1426
}
1427
1428
if (!(r & RESUME_HOST)) {
1429
/* To avoid clobbering exit_reason, only check for signals if
1430
* we aren't already exiting to userspace for some other
1431
* reason. */
1432
1433
/*
1434
* Interrupts could be timers for the guest which we have to
1435
* inject again, so let's postpone them until we're in the guest
1436
* and if we really did time things so badly, then we just exit
1437
* again due to a host external interrupt.
1438
*/
1439
s = kvmppc_prepare_to_enter(vcpu);
1440
if (s <= 0)
1441
r = s;
1442
else {
1443
/* interrupts now hard-disabled */
1444
kvmppc_fix_ee_before_entry();
1445
}
1446
1447
kvmppc_handle_lost_ext(vcpu);
1448
}
1449
1450
trace_kvm_book3s_reenter(r, vcpu);
1451
1452
return r;
1453
}
1454
1455
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1456
struct kvm_sregs *sregs)
1457
{
1458
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1459
int i;
1460
1461
sregs->pvr = vcpu->arch.pvr;
1462
1463
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1464
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1465
for (i = 0; i < 64; i++) {
1466
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1467
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1468
}
1469
} else {
1470
for (i = 0; i < 16; i++)
1471
sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1472
1473
for (i = 0; i < 8; i++) {
1474
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1475
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1476
}
1477
}
1478
1479
return 0;
1480
}
1481
1482
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1483
struct kvm_sregs *sregs)
1484
{
1485
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1486
int i;
1487
1488
kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1489
1490
vcpu3s->sdr1 = sregs->u.s.sdr1;
1491
#ifdef CONFIG_PPC_BOOK3S_64
1492
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1493
/* Flush all SLB entries */
1494
vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1495
vcpu->arch.mmu.slbia(vcpu);
1496
1497
for (i = 0; i < 64; i++) {
1498
u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1499
u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1500
1501
if (rb & SLB_ESID_V)
1502
vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1503
}
1504
} else
1505
#endif
1506
{
1507
for (i = 0; i < 16; i++) {
1508
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1509
}
1510
for (i = 0; i < 8; i++) {
1511
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1512
(u32)sregs->u.s.ppc32.ibat[i]);
1513
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1514
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1515
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1516
(u32)sregs->u.s.ppc32.dbat[i]);
1517
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1518
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1519
}
1520
}
1521
1522
/* Flush the MMU after messing with the segments */
1523
kvmppc_mmu_pte_flush(vcpu, 0, 0);
1524
1525
return 0;
1526
}
1527
1528
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1529
union kvmppc_one_reg *val)
1530
{
1531
int r = 0;
1532
1533
switch (id) {
1534
case KVM_REG_PPC_DEBUG_INST:
1535
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1536
break;
1537
case KVM_REG_PPC_HIOR:
1538
*val = get_reg_val(id, to_book3s(vcpu)->hior);
1539
break;
1540
case KVM_REG_PPC_VTB:
1541
*val = get_reg_val(id, to_book3s(vcpu)->vtb);
1542
break;
1543
case KVM_REG_PPC_LPCR:
1544
case KVM_REG_PPC_LPCR_64:
1545
/*
1546
* We are only interested in the LPCR_ILE bit
1547
*/
1548
if (vcpu->arch.intr_msr & MSR_LE)
1549
*val = get_reg_val(id, LPCR_ILE);
1550
else
1551
*val = get_reg_val(id, 0);
1552
break;
1553
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1554
case KVM_REG_PPC_TFHAR:
1555
*val = get_reg_val(id, vcpu->arch.tfhar);
1556
break;
1557
case KVM_REG_PPC_TFIAR:
1558
*val = get_reg_val(id, vcpu->arch.tfiar);
1559
break;
1560
case KVM_REG_PPC_TEXASR:
1561
*val = get_reg_val(id, vcpu->arch.texasr);
1562
break;
1563
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1564
*val = get_reg_val(id,
1565
vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1566
break;
1567
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1568
{
1569
int i, j;
1570
1571
i = id - KVM_REG_PPC_TM_VSR0;
1572
if (i < 32)
1573
for (j = 0; j < TS_FPRWIDTH; j++)
1574
val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1575
else {
1576
if (cpu_has_feature(CPU_FTR_ALTIVEC))
1577
val->vval = vcpu->arch.vr_tm.vr[i-32];
1578
else
1579
r = -ENXIO;
1580
}
1581
break;
1582
}
1583
case KVM_REG_PPC_TM_CR:
1584
*val = get_reg_val(id, vcpu->arch.cr_tm);
1585
break;
1586
case KVM_REG_PPC_TM_XER:
1587
*val = get_reg_val(id, vcpu->arch.xer_tm);
1588
break;
1589
case KVM_REG_PPC_TM_LR:
1590
*val = get_reg_val(id, vcpu->arch.lr_tm);
1591
break;
1592
case KVM_REG_PPC_TM_CTR:
1593
*val = get_reg_val(id, vcpu->arch.ctr_tm);
1594
break;
1595
case KVM_REG_PPC_TM_FPSCR:
1596
*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1597
break;
1598
case KVM_REG_PPC_TM_AMR:
1599
*val = get_reg_val(id, vcpu->arch.amr_tm);
1600
break;
1601
case KVM_REG_PPC_TM_PPR:
1602
*val = get_reg_val(id, vcpu->arch.ppr_tm);
1603
break;
1604
case KVM_REG_PPC_TM_VRSAVE:
1605
*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1606
break;
1607
case KVM_REG_PPC_TM_VSCR:
1608
if (cpu_has_feature(CPU_FTR_ALTIVEC))
1609
*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1610
else
1611
r = -ENXIO;
1612
break;
1613
case KVM_REG_PPC_TM_DSCR:
1614
*val = get_reg_val(id, vcpu->arch.dscr_tm);
1615
break;
1616
case KVM_REG_PPC_TM_TAR:
1617
*val = get_reg_val(id, vcpu->arch.tar_tm);
1618
break;
1619
#endif
1620
default:
1621
r = -EINVAL;
1622
break;
1623
}
1624
1625
return r;
1626
}
1627
1628
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1629
{
1630
if (new_lpcr & LPCR_ILE)
1631
vcpu->arch.intr_msr |= MSR_LE;
1632
else
1633
vcpu->arch.intr_msr &= ~MSR_LE;
1634
}
1635
1636
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1637
union kvmppc_one_reg *val)
1638
{
1639
int r = 0;
1640
1641
switch (id) {
1642
case KVM_REG_PPC_HIOR:
1643
to_book3s(vcpu)->hior = set_reg_val(id, *val);
1644
to_book3s(vcpu)->hior_explicit = true;
1645
break;
1646
case KVM_REG_PPC_VTB:
1647
to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1648
break;
1649
case KVM_REG_PPC_LPCR:
1650
case KVM_REG_PPC_LPCR_64:
1651
kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1652
break;
1653
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1654
case KVM_REG_PPC_TFHAR:
1655
vcpu->arch.tfhar = set_reg_val(id, *val);
1656
break;
1657
case KVM_REG_PPC_TFIAR:
1658
vcpu->arch.tfiar = set_reg_val(id, *val);
1659
break;
1660
case KVM_REG_PPC_TEXASR:
1661
vcpu->arch.texasr = set_reg_val(id, *val);
1662
break;
1663
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1664
vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1665
set_reg_val(id, *val);
1666
break;
1667
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1668
{
1669
int i, j;
1670
1671
i = id - KVM_REG_PPC_TM_VSR0;
1672
if (i < 32)
1673
for (j = 0; j < TS_FPRWIDTH; j++)
1674
vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1675
else
1676
if (cpu_has_feature(CPU_FTR_ALTIVEC))
1677
vcpu->arch.vr_tm.vr[i-32] = val->vval;
1678
else
1679
r = -ENXIO;
1680
break;
1681
}
1682
case KVM_REG_PPC_TM_CR:
1683
vcpu->arch.cr_tm = set_reg_val(id, *val);
1684
break;
1685
case KVM_REG_PPC_TM_XER:
1686
vcpu->arch.xer_tm = set_reg_val(id, *val);
1687
break;
1688
case KVM_REG_PPC_TM_LR:
1689
vcpu->arch.lr_tm = set_reg_val(id, *val);
1690
break;
1691
case KVM_REG_PPC_TM_CTR:
1692
vcpu->arch.ctr_tm = set_reg_val(id, *val);
1693
break;
1694
case KVM_REG_PPC_TM_FPSCR:
1695
vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1696
break;
1697
case KVM_REG_PPC_TM_AMR:
1698
vcpu->arch.amr_tm = set_reg_val(id, *val);
1699
break;
1700
case KVM_REG_PPC_TM_PPR:
1701
vcpu->arch.ppr_tm = set_reg_val(id, *val);
1702
break;
1703
case KVM_REG_PPC_TM_VRSAVE:
1704
vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1705
break;
1706
case KVM_REG_PPC_TM_VSCR:
1707
if (cpu_has_feature(CPU_FTR_ALTIVEC))
1708
vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1709
else
1710
r = -ENXIO;
1711
break;
1712
case KVM_REG_PPC_TM_DSCR:
1713
vcpu->arch.dscr_tm = set_reg_val(id, *val);
1714
break;
1715
case KVM_REG_PPC_TM_TAR:
1716
vcpu->arch.tar_tm = set_reg_val(id, *val);
1717
break;
1718
#endif
1719
default:
1720
r = -EINVAL;
1721
break;
1722
}
1723
1724
return r;
1725
}
1726
1727
static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1728
{
1729
struct kvmppc_vcpu_book3s *vcpu_book3s;
1730
unsigned long p;
1731
int err;
1732
1733
err = -ENOMEM;
1734
1735
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1736
if (!vcpu_book3s)
1737
goto out;
1738
vcpu->arch.book3s = vcpu_book3s;
1739
1740
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1741
vcpu->arch.shadow_vcpu =
1742
kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1743
if (!vcpu->arch.shadow_vcpu)
1744
goto free_vcpu3s;
1745
#endif
1746
1747
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1748
if (!p)
1749
goto free_shadow_vcpu;
1750
vcpu->arch.shared = (void *)p;
1751
#ifdef CONFIG_PPC_BOOK3S_64
1752
/* Always start the shared struct in native endian mode */
1753
#ifdef __BIG_ENDIAN__
1754
vcpu->arch.shared_big_endian = true;
1755
#else
1756
vcpu->arch.shared_big_endian = false;
1757
#endif
1758
1759
/*
1760
* Default to the same as the host if we're on sufficiently
1761
* recent machine that we have 1TB segments;
1762
* otherwise default to PPC970FX.
1763
*/
1764
vcpu->arch.pvr = 0x3C0301;
1765
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1766
vcpu->arch.pvr = mfspr(SPRN_PVR);
1767
vcpu->arch.intr_msr = MSR_SF;
1768
#else
1769
/* default to book3s_32 (750) */
1770
vcpu->arch.pvr = 0x84202;
1771
vcpu->arch.intr_msr = 0;
1772
#endif
1773
kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1774
vcpu->arch.slb_nr = 64;
1775
1776
vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1777
1778
err = kvmppc_mmu_init_pr(vcpu);
1779
if (err < 0)
1780
goto free_shared_page;
1781
1782
return 0;
1783
1784
free_shared_page:
1785
free_page((unsigned long)vcpu->arch.shared);
1786
free_shadow_vcpu:
1787
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1788
kfree(vcpu->arch.shadow_vcpu);
1789
free_vcpu3s:
1790
#endif
1791
vfree(vcpu_book3s);
1792
out:
1793
return err;
1794
}
1795
1796
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1797
{
1798
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1799
1800
kvmppc_mmu_destroy_pr(vcpu);
1801
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1802
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1803
kfree(vcpu->arch.shadow_vcpu);
1804
#endif
1805
vfree(vcpu_book3s);
1806
}
1807
1808
static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1809
{
1810
int ret;
1811
1812
/* Check if we can run the vcpu at all */
1813
if (!vcpu->arch.sane) {
1814
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1815
ret = -EINVAL;
1816
goto out;
1817
}
1818
1819
kvmppc_setup_debug(vcpu);
1820
1821
/*
1822
* Interrupts could be timers for the guest which we have to inject
1823
* again, so let's postpone them until we're in the guest and if we
1824
* really did time things so badly, then we just exit again due to
1825
* a host external interrupt.
1826
*/
1827
ret = kvmppc_prepare_to_enter(vcpu);
1828
if (ret <= 0)
1829
goto out;
1830
/* interrupts now hard-disabled */
1831
1832
/* Save FPU, Altivec and VSX state */
1833
giveup_all(current);
1834
1835
/* Preload FPU if it's enabled */
1836
if (kvmppc_get_msr(vcpu) & MSR_FP)
1837
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1838
1839
kvmppc_fix_ee_before_entry();
1840
1841
ret = __kvmppc_vcpu_run(vcpu);
1842
1843
kvmppc_clear_debug(vcpu);
1844
1845
/* No need for guest_exit. It's done in handle_exit.
1846
We also get here with interrupts enabled. */
1847
1848
/* Make sure we save the guest FPU/Altivec/VSX state */
1849
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1850
1851
/* Make sure we save the guest TAR/EBB/DSCR state */
1852
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1853
1854
srr_regs_clobbered();
1855
out:
1856
vcpu->mode = OUTSIDE_GUEST_MODE;
1857
return ret;
1858
}
1859
1860
/*
1861
* Get (and clear) the dirty memory log for a memory slot.
1862
*/
1863
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1864
struct kvm_dirty_log *log)
1865
{
1866
struct kvm_memory_slot *memslot;
1867
struct kvm_vcpu *vcpu;
1868
ulong ga, ga_end;
1869
int is_dirty = 0;
1870
int r;
1871
unsigned long n;
1872
1873
mutex_lock(&kvm->slots_lock);
1874
1875
r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1876
if (r)
1877
goto out;
1878
1879
/* If nothing is dirty, don't bother messing with page tables. */
1880
if (is_dirty) {
1881
ga = memslot->base_gfn << PAGE_SHIFT;
1882
ga_end = ga + (memslot->npages << PAGE_SHIFT);
1883
1884
kvm_for_each_vcpu(n, vcpu, kvm)
1885
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1886
1887
n = kvm_dirty_bitmap_bytes(memslot);
1888
memset(memslot->dirty_bitmap, 0, n);
1889
}
1890
1891
r = 0;
1892
out:
1893
mutex_unlock(&kvm->slots_lock);
1894
return r;
1895
}
1896
1897
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1898
struct kvm_memory_slot *memslot)
1899
{
1900
return;
1901
}
1902
1903
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1904
const struct kvm_memory_slot *old,
1905
struct kvm_memory_slot *new,
1906
enum kvm_mr_change change)
1907
{
1908
return 0;
1909
}
1910
1911
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1912
struct kvm_memory_slot *old,
1913
const struct kvm_memory_slot *new,
1914
enum kvm_mr_change change)
1915
{
1916
return;
1917
}
1918
1919
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1920
{
1921
return;
1922
}
1923
1924
#ifdef CONFIG_PPC64
1925
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1926
struct kvm_ppc_smmu_info *info)
1927
{
1928
long int i;
1929
struct kvm_vcpu *vcpu;
1930
1931
info->flags = 0;
1932
1933
/* SLB is always 64 entries */
1934
info->slb_size = 64;
1935
1936
/* Standard 4k base page size segment */
1937
info->sps[0].page_shift = 12;
1938
info->sps[0].slb_enc = 0;
1939
info->sps[0].enc[0].page_shift = 12;
1940
info->sps[0].enc[0].pte_enc = 0;
1941
1942
/*
1943
* 64k large page size.
1944
* We only want to put this in if the CPUs we're emulating
1945
* support it, but unfortunately we don't have a vcpu easily
1946
* to hand here to test. Just pick the first vcpu, and if
1947
* that doesn't exist yet, report the minimum capability,
1948
* i.e., no 64k pages.
1949
* 1T segment support goes along with 64k pages.
1950
*/
1951
i = 1;
1952
vcpu = kvm_get_vcpu(kvm, 0);
1953
if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1954
info->flags = KVM_PPC_1T_SEGMENTS;
1955
info->sps[i].page_shift = 16;
1956
info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1957
info->sps[i].enc[0].page_shift = 16;
1958
info->sps[i].enc[0].pte_enc = 1;
1959
++i;
1960
}
1961
1962
/* Standard 16M large page size segment */
1963
info->sps[i].page_shift = 24;
1964
info->sps[i].slb_enc = SLB_VSID_L;
1965
info->sps[i].enc[0].page_shift = 24;
1966
info->sps[i].enc[0].pte_enc = 0;
1967
1968
return 0;
1969
}
1970
1971
static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1972
{
1973
if (!cpu_has_feature(CPU_FTR_ARCH_300))
1974
return -ENODEV;
1975
/* Require flags and process table base and size to all be zero. */
1976
if (cfg->flags || cfg->process_table)
1977
return -EINVAL;
1978
return 0;
1979
}
1980
1981
#else
1982
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1983
struct kvm_ppc_smmu_info *info)
1984
{
1985
/* We should not get called */
1986
BUG();
1987
return 0;
1988
}
1989
#endif /* CONFIG_PPC64 */
1990
1991
static unsigned int kvm_global_user_count = 0;
1992
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1993
1994
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1995
{
1996
mutex_init(&kvm->arch.hpt_mutex);
1997
1998
#ifdef CONFIG_PPC_BOOK3S_64
1999
/* Start out with the default set of hcalls enabled */
2000
kvmppc_pr_init_default_hcalls(kvm);
2001
#endif
2002
2003
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2004
spin_lock(&kvm_global_user_count_lock);
2005
if (++kvm_global_user_count == 1)
2006
pseries_disable_reloc_on_exc();
2007
spin_unlock(&kvm_global_user_count_lock);
2008
}
2009
return 0;
2010
}
2011
2012
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2013
{
2014
#ifdef CONFIG_PPC64
2015
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2016
#endif
2017
2018
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2019
spin_lock(&kvm_global_user_count_lock);
2020
BUG_ON(kvm_global_user_count == 0);
2021
if (--kvm_global_user_count == 0)
2022
pseries_enable_reloc_on_exc();
2023
spin_unlock(&kvm_global_user_count_lock);
2024
}
2025
}
2026
2027
static int kvmppc_core_check_processor_compat_pr(void)
2028
{
2029
/*
2030
* PR KVM can work on POWER9 inside a guest partition
2031
* running in HPT mode. It can't work if we are using
2032
* radix translation (because radix provides no way for
2033
* a process to have unique translations in quadrant 3).
2034
*/
2035
if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2036
return -EIO;
2037
return 0;
2038
}
2039
2040
static int kvm_arch_vm_ioctl_pr(struct file *filp,
2041
unsigned int ioctl, unsigned long arg)
2042
{
2043
return -ENOTTY;
2044
}
2045
2046
static struct kvmppc_ops kvm_ops_pr = {
2047
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2048
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2049
.get_one_reg = kvmppc_get_one_reg_pr,
2050
.set_one_reg = kvmppc_set_one_reg_pr,
2051
.vcpu_load = kvmppc_core_vcpu_load_pr,
2052
.vcpu_put = kvmppc_core_vcpu_put_pr,
2053
.inject_interrupt = kvmppc_inject_interrupt_pr,
2054
.set_msr = kvmppc_set_msr_pr,
2055
.vcpu_run = kvmppc_vcpu_run_pr,
2056
.vcpu_create = kvmppc_core_vcpu_create_pr,
2057
.vcpu_free = kvmppc_core_vcpu_free_pr,
2058
.check_requests = kvmppc_core_check_requests_pr,
2059
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2060
.flush_memslot = kvmppc_core_flush_memslot_pr,
2061
.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2062
.commit_memory_region = kvmppc_core_commit_memory_region_pr,
2063
.unmap_gfn_range = kvm_unmap_gfn_range_pr,
2064
.age_gfn = kvm_age_gfn_pr,
2065
.test_age_gfn = kvm_test_age_gfn_pr,
2066
.free_memslot = kvmppc_core_free_memslot_pr,
2067
.init_vm = kvmppc_core_init_vm_pr,
2068
.destroy_vm = kvmppc_core_destroy_vm_pr,
2069
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2070
.emulate_op = kvmppc_core_emulate_op_pr,
2071
.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2072
.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2073
.fast_vcpu_kick = kvm_vcpu_kick,
2074
.arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
2075
#ifdef CONFIG_PPC_BOOK3S_64
2076
.hcall_implemented = kvmppc_hcall_impl_pr,
2077
.configure_mmu = kvm_configure_mmu_pr,
2078
#endif
2079
.giveup_ext = kvmppc_giveup_ext,
2080
};
2081
2082
2083
int kvmppc_book3s_init_pr(void)
2084
{
2085
int r;
2086
2087
r = kvmppc_core_check_processor_compat_pr();
2088
if (r < 0)
2089
return r;
2090
2091
kvm_ops_pr.owner = THIS_MODULE;
2092
kvmppc_pr_ops = &kvm_ops_pr;
2093
2094
r = kvmppc_mmu_hpte_sysinit();
2095
return r;
2096
}
2097
2098
void kvmppc_book3s_exit_pr(void)
2099
{
2100
kvmppc_pr_ops = NULL;
2101
kvmppc_mmu_hpte_sysexit();
2102
}
2103
2104
/*
2105
* We only support separate modules for book3s 64
2106
*/
2107
#ifdef CONFIG_PPC_BOOK3S_64
2108
2109
module_init(kvmppc_book3s_init_pr);
2110
module_exit(kvmppc_book3s_exit_pr);
2111
2112
MODULE_DESCRIPTION("KVM on Book3S without using hypervisor mode");
2113
MODULE_LICENSE("GPL");
2114
MODULE_ALIAS_MISCDEV(KVM_MINOR);
2115
MODULE_ALIAS("devname:kvm");
2116
#endif
2117
2118