Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_xive.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4
*/
5
6
#define pr_fmt(fmt) "xive-kvm: " fmt
7
8
#include <linux/kernel.h>
9
#include <linux/kvm_host.h>
10
#include <linux/err.h>
11
#include <linux/gfp.h>
12
#include <linux/spinlock.h>
13
#include <linux/delay.h>
14
#include <linux/percpu.h>
15
#include <linux/cpumask.h>
16
#include <linux/uaccess.h>
17
#include <linux/irqdomain.h>
18
#include <asm/kvm_book3s.h>
19
#include <asm/kvm_ppc.h>
20
#include <asm/hvcall.h>
21
#include <asm/xics.h>
22
#include <asm/xive.h>
23
#include <asm/xive-regs.h>
24
#include <asm/debug.h>
25
#include <asm/time.h>
26
#include <asm/opal.h>
27
28
#include <linux/debugfs.h>
29
#include <linux/seq_file.h>
30
31
#include "book3s_xive.h"
32
33
#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
34
#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
35
36
/* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */
37
#define XICS_DUMMY 1
38
39
static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc)
40
{
41
u8 cppr;
42
u16 ack;
43
44
/*
45
* Ensure any previous store to CPPR is ordered vs.
46
* the subsequent loads from PIPR or ACK.
47
*/
48
eieio();
49
50
/* Perform the acknowledge OS to register cycle. */
51
ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG));
52
53
/* Synchronize subsequent queue accesses */
54
mb();
55
56
/* XXX Check grouping level */
57
58
/* Anything ? */
59
if (!((ack >> 8) & TM_QW1_NSR_EO))
60
return;
61
62
/* Grab CPPR of the most favored pending interrupt */
63
cppr = ack & 0xff;
64
if (cppr < 8)
65
xc->pending |= 1 << cppr;
66
67
/* Check consistency */
68
if (cppr >= xc->hw_cppr)
69
pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
70
smp_processor_id(), cppr, xc->hw_cppr);
71
72
/*
73
* Update our image of the HW CPPR. We don't yet modify
74
* xc->cppr, this will be done as we scan for interrupts
75
* in the queues.
76
*/
77
xc->hw_cppr = cppr;
78
}
79
80
static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
81
{
82
u64 val;
83
84
if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
85
offset |= XIVE_ESB_LD_ST_MO;
86
87
val = __raw_readq(__x_eoi_page(xd) + offset);
88
#ifdef __LITTLE_ENDIAN__
89
val >>= 64-8;
90
#endif
91
return (u8)val;
92
}
93
94
95
static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
96
{
97
/* If the XIVE supports the new "store EOI facility, use it */
98
if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
99
__raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI);
100
else if (xd->flags & XIVE_IRQ_FLAG_LSI) {
101
/*
102
* For LSIs the HW EOI cycle is used rather than PQ bits,
103
* as they are automatically re-triggred in HW when still
104
* pending.
105
*/
106
__raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI);
107
} else {
108
uint64_t eoi_val;
109
110
/*
111
* Otherwise for EOI, we use the special MMIO that does
112
* a clear of both P and Q and returns the old Q,
113
* except for LSIs where we use the "EOI cycle" special
114
* load.
115
*
116
* This allows us to then do a re-trigger if Q was set
117
* rather than synthetizing an interrupt in software
118
*/
119
eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00);
120
121
/* Re-trigger if needed */
122
if ((eoi_val & 1) && __x_trig_page(xd))
123
__raw_writeq(0, __x_trig_page(xd));
124
}
125
}
126
127
enum {
128
scan_fetch,
129
scan_poll,
130
scan_eoi,
131
};
132
133
static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc,
134
u8 pending, int scan_type)
135
{
136
u32 hirq = 0;
137
u8 prio = 0xff;
138
139
/* Find highest pending priority */
140
while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
141
struct xive_q *q;
142
u32 idx, toggle;
143
__be32 *qpage;
144
145
/*
146
* If pending is 0 this will return 0xff which is what
147
* we want
148
*/
149
prio = ffs(pending) - 1;
150
151
/* Don't scan past the guest cppr */
152
if (prio >= xc->cppr || prio > 7) {
153
if (xc->mfrr < xc->cppr) {
154
prio = xc->mfrr;
155
hirq = XICS_IPI;
156
}
157
break;
158
}
159
160
/* Grab queue and pointers */
161
q = &xc->queues[prio];
162
idx = q->idx;
163
toggle = q->toggle;
164
165
/*
166
* Snapshot the queue page. The test further down for EOI
167
* must use the same "copy" that was used by __xive_read_eq
168
* since qpage can be set concurrently and we don't want
169
* to miss an EOI.
170
*/
171
qpage = READ_ONCE(q->qpage);
172
173
skip_ipi:
174
/*
175
* Try to fetch from the queue. Will return 0 for a
176
* non-queueing priority (ie, qpage = 0).
177
*/
178
hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
179
180
/*
181
* If this was a signal for an MFFR change done by
182
* H_IPI we skip it. Additionally, if we were fetching
183
* we EOI it now, thus re-enabling reception of a new
184
* such signal.
185
*
186
* We also need to do that if prio is 0 and we had no
187
* page for the queue. In this case, we have non-queued
188
* IPI that needs to be EOId.
189
*
190
* This is safe because if we have another pending MFRR
191
* change that wasn't observed above, the Q bit will have
192
* been set and another occurrence of the IPI will trigger.
193
*/
194
if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
195
if (scan_type == scan_fetch) {
196
xive_vm_source_eoi(xc->vp_ipi,
197
&xc->vp_ipi_data);
198
q->idx = idx;
199
q->toggle = toggle;
200
}
201
/* Loop back on same queue with updated idx/toggle */
202
WARN_ON(hirq && hirq != XICS_IPI);
203
if (hirq)
204
goto skip_ipi;
205
}
206
207
/* If it's the dummy interrupt, continue searching */
208
if (hirq == XICS_DUMMY)
209
goto skip_ipi;
210
211
/* Clear the pending bit if the queue is now empty */
212
if (!hirq) {
213
pending &= ~(1 << prio);
214
215
/*
216
* Check if the queue count needs adjusting due to
217
* interrupts being moved away.
218
*/
219
if (atomic_read(&q->pending_count)) {
220
int p = atomic_xchg(&q->pending_count, 0);
221
222
if (p) {
223
WARN_ON(p > atomic_read(&q->count));
224
atomic_sub(p, &q->count);
225
}
226
}
227
}
228
229
/*
230
* If the most favoured prio we found pending is less
231
* favored (or equal) than a pending IPI, we return
232
* the IPI instead.
233
*/
234
if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
235
prio = xc->mfrr;
236
hirq = XICS_IPI;
237
break;
238
}
239
240
/* If fetching, update queue pointers */
241
if (scan_type == scan_fetch) {
242
q->idx = idx;
243
q->toggle = toggle;
244
}
245
}
246
247
/* If we are just taking a "peek", do nothing else */
248
if (scan_type == scan_poll)
249
return hirq;
250
251
/* Update the pending bits */
252
xc->pending = pending;
253
254
/*
255
* If this is an EOI that's it, no CPPR adjustment done here,
256
* all we needed was cleanup the stale pending bits and check
257
* if there's anything left.
258
*/
259
if (scan_type == scan_eoi)
260
return hirq;
261
262
/*
263
* If we found an interrupt, adjust what the guest CPPR should
264
* be as if we had just fetched that interrupt from HW.
265
*
266
* Note: This can only make xc->cppr smaller as the previous
267
* loop will only exit with hirq != 0 if prio is lower than
268
* the current xc->cppr. Thus we don't need to re-check xc->mfrr
269
* for pending IPIs.
270
*/
271
if (hirq)
272
xc->cppr = prio;
273
/*
274
* If it was an IPI the HW CPPR might have been lowered too much
275
* as the HW interrupt we use for IPIs is routed to priority 0.
276
*
277
* We re-sync it here.
278
*/
279
if (xc->cppr != xc->hw_cppr) {
280
xc->hw_cppr = xc->cppr;
281
__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
282
}
283
284
return hirq;
285
}
286
287
static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu)
288
{
289
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
290
u8 old_cppr;
291
u32 hirq;
292
293
pr_devel("H_XIRR\n");
294
295
xc->stat_vm_h_xirr++;
296
297
/* First collect pending bits from HW */
298
xive_vm_ack_pending(xc);
299
300
pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
301
xc->pending, xc->hw_cppr, xc->cppr);
302
303
/* Grab previous CPPR and reverse map it */
304
old_cppr = xive_prio_to_guest(xc->cppr);
305
306
/* Scan for actual interrupts */
307
hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch);
308
309
pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
310
hirq, xc->hw_cppr, xc->cppr);
311
312
/* That should never hit */
313
if (hirq & 0xff000000)
314
pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
315
316
/*
317
* XXX We could check if the interrupt is masked here and
318
* filter it. If we chose to do so, we would need to do:
319
*
320
* if (masked) {
321
* lock();
322
* if (masked) {
323
* old_Q = true;
324
* hirq = 0;
325
* }
326
* unlock();
327
* }
328
*/
329
330
/* Return interrupt and old CPPR in GPR4 */
331
kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24));
332
333
return H_SUCCESS;
334
}
335
336
static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
337
{
338
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
339
u8 pending = xc->pending;
340
u32 hirq;
341
342
pr_devel("H_IPOLL(server=%ld)\n", server);
343
344
xc->stat_vm_h_ipoll++;
345
346
/* Grab the target VCPU if not the current one */
347
if (xc->server_num != server) {
348
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
349
if (!vcpu)
350
return H_PARAMETER;
351
xc = vcpu->arch.xive_vcpu;
352
353
/* Scan all priorities */
354
pending = 0xff;
355
} else {
356
/* Grab pending interrupt if any */
357
__be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS);
358
u8 pipr = be64_to_cpu(qw1) & 0xff;
359
360
if (pipr < 8)
361
pending |= 1 << pipr;
362
}
363
364
hirq = xive_vm_scan_interrupts(xc, pending, scan_poll);
365
366
/* Return interrupt and old CPPR in GPR4 */
367
kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24));
368
369
return H_SUCCESS;
370
}
371
372
static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc)
373
{
374
u8 pending, prio;
375
376
pending = xc->pending;
377
if (xc->mfrr != 0xff) {
378
if (xc->mfrr < 8)
379
pending |= 1 << xc->mfrr;
380
else
381
pending |= 0x80;
382
}
383
if (!pending)
384
return;
385
prio = ffs(pending) - 1;
386
387
__raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING);
388
}
389
390
static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive,
391
struct kvmppc_xive_vcpu *xc)
392
{
393
unsigned int prio;
394
395
/* For each priority that is now masked */
396
for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
397
struct xive_q *q = &xc->queues[prio];
398
struct kvmppc_xive_irq_state *state;
399
struct kvmppc_xive_src_block *sb;
400
u32 idx, toggle, entry, irq, hw_num;
401
struct xive_irq_data *xd;
402
__be32 *qpage;
403
u16 src;
404
405
idx = q->idx;
406
toggle = q->toggle;
407
qpage = READ_ONCE(q->qpage);
408
if (!qpage)
409
continue;
410
411
/* For each interrupt in the queue */
412
for (;;) {
413
entry = be32_to_cpup(qpage + idx);
414
415
/* No more ? */
416
if ((entry >> 31) == toggle)
417
break;
418
irq = entry & 0x7fffffff;
419
420
/* Skip dummies and IPIs */
421
if (irq == XICS_DUMMY || irq == XICS_IPI)
422
goto next;
423
sb = kvmppc_xive_find_source(xive, irq, &src);
424
if (!sb)
425
goto next;
426
state = &sb->irq_state[src];
427
428
/* Has it been rerouted ? */
429
if (xc->server_num == state->act_server)
430
goto next;
431
432
/*
433
* Allright, it *has* been re-routed, kill it from
434
* the queue.
435
*/
436
qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY);
437
438
/* Find the HW interrupt */
439
kvmppc_xive_select_irq(state, &hw_num, &xd);
440
441
/* If it's not an LSI, set PQ to 11 the EOI will force a resend */
442
if (!(xd->flags & XIVE_IRQ_FLAG_LSI))
443
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
444
445
/* EOI the source */
446
xive_vm_source_eoi(hw_num, xd);
447
448
next:
449
idx = (idx + 1) & q->msk;
450
if (idx == 0)
451
toggle ^= 1;
452
}
453
}
454
}
455
456
static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
457
{
458
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
459
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
460
u8 old_cppr;
461
462
pr_devel("H_CPPR(cppr=%ld)\n", cppr);
463
464
xc->stat_vm_h_cppr++;
465
466
/* Map CPPR */
467
cppr = xive_prio_from_guest(cppr);
468
469
/* Remember old and update SW state */
470
old_cppr = xc->cppr;
471
xc->cppr = cppr;
472
473
/*
474
* Order the above update of xc->cppr with the subsequent
475
* read of xc->mfrr inside push_pending_to_hw()
476
*/
477
smp_mb();
478
479
if (cppr > old_cppr) {
480
/*
481
* We are masking less, we need to look for pending things
482
* to deliver and set VP pending bits accordingly to trigger
483
* a new interrupt otherwise we might miss MFRR changes for
484
* which we have optimized out sending an IPI signal.
485
*/
486
xive_vm_push_pending_to_hw(xc);
487
} else {
488
/*
489
* We are masking more, we need to check the queue for any
490
* interrupt that has been routed to another CPU, take
491
* it out (replace it with the dummy) and retrigger it.
492
*
493
* This is necessary since those interrupts may otherwise
494
* never be processed, at least not until this CPU restores
495
* its CPPR.
496
*
497
* This is in theory racy vs. HW adding new interrupts to
498
* the queue. In practice this works because the interesting
499
* cases are when the guest has done a set_xive() to move the
500
* interrupt away, which flushes the xive, followed by the
501
* target CPU doing a H_CPPR. So any new interrupt coming into
502
* the queue must still be routed to us and isn't a source
503
* of concern.
504
*/
505
xive_vm_scan_for_rerouted_irqs(xive, xc);
506
}
507
508
/* Apply new CPPR */
509
xc->hw_cppr = cppr;
510
__raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR);
511
512
return H_SUCCESS;
513
}
514
515
static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
516
{
517
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
518
struct kvmppc_xive_src_block *sb;
519
struct kvmppc_xive_irq_state *state;
520
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
521
struct xive_irq_data *xd;
522
u8 new_cppr = xirr >> 24;
523
u32 irq = xirr & 0x00ffffff, hw_num;
524
u16 src;
525
int rc = 0;
526
527
pr_devel("H_EOI(xirr=%08lx)\n", xirr);
528
529
xc->stat_vm_h_eoi++;
530
531
xc->cppr = xive_prio_from_guest(new_cppr);
532
533
/*
534
* IPIs are synthesized from MFRR and thus don't need
535
* any special EOI handling. The underlying interrupt
536
* used to signal MFRR changes is EOId when fetched from
537
* the queue.
538
*/
539
if (irq == XICS_IPI || irq == 0) {
540
/*
541
* This barrier orders the setting of xc->cppr vs.
542
* subsequent test of xc->mfrr done inside
543
* scan_interrupts and push_pending_to_hw
544
*/
545
smp_mb();
546
goto bail;
547
}
548
549
/* Find interrupt source */
550
sb = kvmppc_xive_find_source(xive, irq, &src);
551
if (!sb) {
552
pr_devel(" source not found !\n");
553
rc = H_PARAMETER;
554
/* Same as above */
555
smp_mb();
556
goto bail;
557
}
558
state = &sb->irq_state[src];
559
kvmppc_xive_select_irq(state, &hw_num, &xd);
560
561
state->in_eoi = true;
562
563
/*
564
* This barrier orders both setting of in_eoi above vs,
565
* subsequent test of guest_priority, and the setting
566
* of xc->cppr vs. subsequent test of xc->mfrr done inside
567
* scan_interrupts and push_pending_to_hw
568
*/
569
smp_mb();
570
571
again:
572
if (state->guest_priority == MASKED) {
573
arch_spin_lock(&sb->lock);
574
if (state->guest_priority != MASKED) {
575
arch_spin_unlock(&sb->lock);
576
goto again;
577
}
578
pr_devel(" EOI on saved P...\n");
579
580
/* Clear old_p, that will cause unmask to perform an EOI */
581
state->old_p = false;
582
583
arch_spin_unlock(&sb->lock);
584
} else {
585
pr_devel(" EOI on source...\n");
586
587
/* Perform EOI on the source */
588
xive_vm_source_eoi(hw_num, xd);
589
590
/* If it's an emulated LSI, check level and resend */
591
if (state->lsi && state->asserted)
592
__raw_writeq(0, __x_trig_page(xd));
593
594
}
595
596
/*
597
* This barrier orders the above guest_priority check
598
* and spin_lock/unlock with clearing in_eoi below.
599
*
600
* It also has to be a full mb() as it must ensure
601
* the MMIOs done in source_eoi() are completed before
602
* state->in_eoi is visible.
603
*/
604
mb();
605
state->in_eoi = false;
606
bail:
607
608
/* Re-evaluate pending IRQs and update HW */
609
xive_vm_scan_interrupts(xc, xc->pending, scan_eoi);
610
xive_vm_push_pending_to_hw(xc);
611
pr_devel(" after scan pending=%02x\n", xc->pending);
612
613
/* Apply new CPPR */
614
xc->hw_cppr = xc->cppr;
615
__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
616
617
return rc;
618
}
619
620
static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
621
unsigned long mfrr)
622
{
623
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
624
625
pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
626
627
xc->stat_vm_h_ipi++;
628
629
/* Find target */
630
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
631
if (!vcpu)
632
return H_PARAMETER;
633
xc = vcpu->arch.xive_vcpu;
634
635
/* Locklessly write over MFRR */
636
xc->mfrr = mfrr;
637
638
/*
639
* The load of xc->cppr below and the subsequent MMIO store
640
* to the IPI must happen after the above mfrr update is
641
* globally visible so that:
642
*
643
* - Synchronize with another CPU doing an H_EOI or a H_CPPR
644
* updating xc->cppr then reading xc->mfrr.
645
*
646
* - The target of the IPI sees the xc->mfrr update
647
*/
648
mb();
649
650
/* Shoot the IPI if most favored than target cppr */
651
if (mfrr < xc->cppr)
652
__raw_writeq(0, __x_trig_page(&xc->vp_ipi_data));
653
654
return H_SUCCESS;
655
}
656
657
/*
658
* We leave a gap of a couple of interrupts in the queue to
659
* account for the IPI and additional safety guard.
660
*/
661
#define XIVE_Q_GAP 2
662
663
static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
664
{
665
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
666
667
/* Check enablement at VP level */
668
return xc->vp_cam & TM_QW1W2_HO;
669
}
670
671
bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
672
{
673
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
674
struct kvmppc_xive *xive = xc->xive;
675
676
if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
677
return kvmppc_xive_vcpu_has_save_restore(vcpu);
678
679
return true;
680
}
681
682
/*
683
* Push a vcpu's context to the XIVE on guest entry.
684
* This assumes we are in virtual mode (MMU on)
685
*/
686
void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
687
{
688
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
689
u64 pq;
690
691
/*
692
* Nothing to do if the platform doesn't have a XIVE
693
* or this vCPU doesn't have its own XIVE context
694
* (e.g. because it's not using an in-kernel interrupt controller).
695
*/
696
if (!tima || !vcpu->arch.xive_cam_word)
697
return;
698
699
eieio();
700
if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
701
__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
702
__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
703
vcpu->arch.xive_pushed = 1;
704
eieio();
705
706
/*
707
* We clear the irq_pending flag. There is a small chance of a
708
* race vs. the escalation interrupt happening on another
709
* processor setting it again, but the only consequence is to
710
* cause a spurious wakeup on the next H_CEDE, which is not an
711
* issue.
712
*/
713
vcpu->arch.irq_pending = 0;
714
715
/*
716
* In single escalation mode, if the escalation interrupt is
717
* on, we mask it.
718
*/
719
if (vcpu->arch.xive_esc_on) {
720
pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
721
XIVE_ESB_SET_PQ_01));
722
mb();
723
724
/*
725
* We have a possible subtle race here: The escalation
726
* interrupt might have fired and be on its way to the
727
* host queue while we mask it, and if we unmask it
728
* early enough (re-cede right away), there is a
729
* theoretical possibility that it fires again, thus
730
* landing in the target queue more than once which is
731
* a big no-no.
732
*
733
* Fortunately, solving this is rather easy. If the
734
* above load setting PQ to 01 returns a previous
735
* value where P is set, then we know the escalation
736
* interrupt is somewhere on its way to the host. In
737
* that case we simply don't clear the xive_esc_on
738
* flag below. It will be eventually cleared by the
739
* handler for the escalation interrupt.
740
*
741
* Then, when doing a cede, we check that flag again
742
* before re-enabling the escalation interrupt, and if
743
* set, we abort the cede.
744
*/
745
if (!(pq & XIVE_ESB_VAL_P))
746
/* Now P is 0, we can clear the flag */
747
vcpu->arch.xive_esc_on = 0;
748
}
749
}
750
EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
751
752
/*
753
* Pull a vcpu's context from the XIVE on guest exit.
754
* This assumes we are in virtual mode (MMU on)
755
*/
756
void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
757
{
758
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
759
760
if (!vcpu->arch.xive_pushed)
761
return;
762
763
/*
764
* Should not have been pushed if there is no tima
765
*/
766
if (WARN_ON(!tima))
767
return;
768
769
eieio();
770
/* First load to pull the context, we ignore the value */
771
__raw_readl(tima + TM_SPC_PULL_OS_CTX);
772
/* Second load to recover the context state (Words 0 and 1) */
773
if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
774
vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
775
776
/* Fixup some of the state for the next load */
777
vcpu->arch.xive_saved_state.lsmfb = 0;
778
vcpu->arch.xive_saved_state.ack = 0xff;
779
vcpu->arch.xive_pushed = 0;
780
eieio();
781
}
782
EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
783
784
bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
785
{
786
void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
787
bool ret = true;
788
789
if (!esc_vaddr)
790
return ret;
791
792
/* we are using XIVE with single escalation */
793
794
if (vcpu->arch.xive_esc_on) {
795
/*
796
* If we still have a pending escalation, abort the cede,
797
* and we must set PQ to 10 rather than 00 so that we don't
798
* potentially end up with two entries for the escalation
799
* interrupt in the XIVE interrupt queue. In that case
800
* we also don't want to set xive_esc_on to 1 here in
801
* case we race with xive_esc_irq().
802
*/
803
ret = false;
804
/*
805
* The escalation interrupts are special as we don't EOI them.
806
* There is no need to use the load-after-store ordering offset
807
* to set PQ to 10 as we won't use StoreEOI.
808
*/
809
__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
810
} else {
811
vcpu->arch.xive_esc_on = true;
812
mb();
813
__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
814
}
815
mb();
816
817
return ret;
818
}
819
EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
820
821
/*
822
* This is a simple trigger for a generic XIVE IRQ. This must
823
* only be called for interrupts that support a trigger page
824
*/
825
static bool xive_irq_trigger(struct xive_irq_data *xd)
826
{
827
/* This should be only for MSIs */
828
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
829
return false;
830
831
/* Those interrupts should always have a trigger page */
832
if (WARN_ON(!xd->trig_mmio))
833
return false;
834
835
out_be64(xd->trig_mmio, 0);
836
837
return true;
838
}
839
840
static irqreturn_t xive_esc_irq(int irq, void *data)
841
{
842
struct kvm_vcpu *vcpu = data;
843
844
vcpu->arch.irq_pending = 1;
845
smp_mb();
846
if (vcpu->arch.ceded || vcpu->arch.nested)
847
kvmppc_fast_vcpu_kick(vcpu);
848
849
/* Since we have the no-EOI flag, the interrupt is effectively
850
* disabled now. Clearing xive_esc_on means we won't bother
851
* doing so on the next entry.
852
*
853
* This also allows the entry code to know that if a PQ combination
854
* of 10 is observed while xive_esc_on is true, it means the queue
855
* contains an unprocessed escalation interrupt. We don't make use of
856
* that knowledge today but might (see comment in book3s_hv_rmhandler.S)
857
*/
858
vcpu->arch.xive_esc_on = false;
859
860
/* This orders xive_esc_on = false vs. subsequent stale_p = true */
861
smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
862
863
return IRQ_HANDLED;
864
}
865
866
int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
867
bool single_escalation)
868
{
869
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
870
struct xive_q *q = &xc->queues[prio];
871
char *name = NULL;
872
int rc;
873
874
/* Already there ? */
875
if (xc->esc_virq[prio])
876
return 0;
877
878
/* Hook up the escalation interrupt */
879
xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
880
if (!xc->esc_virq[prio]) {
881
pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
882
prio, xc->server_num);
883
return -EIO;
884
}
885
886
if (single_escalation)
887
name = kasprintf(GFP_KERNEL, "kvm-%lld-%d",
888
vcpu->kvm->arch.lpid, xc->server_num);
889
else
890
name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d",
891
vcpu->kvm->arch.lpid, xc->server_num, prio);
892
if (!name) {
893
pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
894
prio, xc->server_num);
895
rc = -ENOMEM;
896
goto error;
897
}
898
899
pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
900
901
rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
902
IRQF_NO_THREAD, name, vcpu);
903
if (rc) {
904
pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
905
prio, xc->server_num);
906
goto error;
907
}
908
xc->esc_virq_names[prio] = name;
909
910
/* In single escalation mode, we grab the ESB MMIO of the
911
* interrupt and mask it. Also populate the VCPU v/raddr
912
* of the ESB page for use by asm entry/exit code. Finally
913
* set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
914
* core code from performing an EOI on the escalation
915
* interrupt, thus leaving it effectively masked after
916
* it fires once.
917
*/
918
if (single_escalation) {
919
struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
920
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
921
922
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
923
vcpu->arch.xive_esc_raddr = xd->eoi_page;
924
vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
925
xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
926
}
927
928
return 0;
929
error:
930
irq_dispose_mapping(xc->esc_virq[prio]);
931
xc->esc_virq[prio] = 0;
932
kfree(name);
933
return rc;
934
}
935
936
static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
937
{
938
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
939
struct kvmppc_xive *xive = xc->xive;
940
struct xive_q *q = &xc->queues[prio];
941
void *qpage;
942
int rc;
943
944
if (WARN_ON(q->qpage))
945
return 0;
946
947
/* Allocate the queue and retrieve infos on current node for now */
948
qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
949
if (!qpage) {
950
pr_err("Failed to allocate queue %d for VCPU %d\n",
951
prio, xc->server_num);
952
return -ENOMEM;
953
}
954
memset(qpage, 0, 1 << xive->q_order);
955
956
/*
957
* Reconfigure the queue. This will set q->qpage only once the
958
* queue is fully configured. This is a requirement for prio 0
959
* as we will stop doing EOIs for every IPI as soon as we observe
960
* qpage being non-NULL, and instead will only EOI when we receive
961
* corresponding queue 0 entries
962
*/
963
rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
964
xive->q_order, true);
965
if (rc)
966
pr_err("Failed to configure queue %d for VCPU %d\n",
967
prio, xc->server_num);
968
return rc;
969
}
970
971
/* Called with xive->lock held */
972
static int xive_check_provisioning(struct kvm *kvm, u8 prio)
973
{
974
struct kvmppc_xive *xive = kvm->arch.xive;
975
struct kvm_vcpu *vcpu;
976
unsigned long i;
977
int rc;
978
979
lockdep_assert_held(&xive->lock);
980
981
/* Already provisioned ? */
982
if (xive->qmap & (1 << prio))
983
return 0;
984
985
pr_devel("Provisioning prio... %d\n", prio);
986
987
/* Provision each VCPU and enable escalations if needed */
988
kvm_for_each_vcpu(i, vcpu, kvm) {
989
if (!vcpu->arch.xive_vcpu)
990
continue;
991
rc = xive_provision_queue(vcpu, prio);
992
if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
993
kvmppc_xive_attach_escalation(vcpu, prio,
994
kvmppc_xive_has_single_escalation(xive));
995
if (rc)
996
return rc;
997
}
998
999
/* Order previous stores and mark it as provisioned */
1000
mb();
1001
xive->qmap |= (1 << prio);
1002
return 0;
1003
}
1004
1005
static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
1006
{
1007
struct kvm_vcpu *vcpu;
1008
struct kvmppc_xive_vcpu *xc;
1009
struct xive_q *q;
1010
1011
/* Locate target server */
1012
vcpu = kvmppc_xive_find_server(kvm, server);
1013
if (!vcpu) {
1014
pr_warn("%s: Can't find server %d\n", __func__, server);
1015
return;
1016
}
1017
xc = vcpu->arch.xive_vcpu;
1018
if (WARN_ON(!xc))
1019
return;
1020
1021
q = &xc->queues[prio];
1022
atomic_inc(&q->pending_count);
1023
}
1024
1025
static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
1026
{
1027
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1028
struct xive_q *q;
1029
u32 max;
1030
1031
if (WARN_ON(!xc))
1032
return -ENXIO;
1033
if (!xc->valid)
1034
return -ENXIO;
1035
1036
q = &xc->queues[prio];
1037
if (WARN_ON(!q->qpage))
1038
return -ENXIO;
1039
1040
/* Calculate max number of interrupts in that queue. */
1041
max = (q->msk + 1) - XIVE_Q_GAP;
1042
return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
1043
}
1044
1045
int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
1046
{
1047
struct kvm_vcpu *vcpu;
1048
unsigned long i;
1049
int rc;
1050
1051
/* Locate target server */
1052
vcpu = kvmppc_xive_find_server(kvm, *server);
1053
if (!vcpu) {
1054
pr_devel("Can't find server %d\n", *server);
1055
return -EINVAL;
1056
}
1057
1058
pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
1059
1060
/* Try pick it */
1061
rc = xive_try_pick_queue(vcpu, prio);
1062
if (rc == 0)
1063
return rc;
1064
1065
pr_devel(" .. failed, looking up candidate...\n");
1066
1067
/* Failed, pick another VCPU */
1068
kvm_for_each_vcpu(i, vcpu, kvm) {
1069
if (!vcpu->arch.xive_vcpu)
1070
continue;
1071
rc = xive_try_pick_queue(vcpu, prio);
1072
if (rc == 0) {
1073
*server = vcpu->arch.xive_vcpu->server_num;
1074
pr_devel(" found on 0x%x/%d\n", *server, prio);
1075
return rc;
1076
}
1077
}
1078
pr_devel(" no available target !\n");
1079
1080
/* No available target ! */
1081
return -EBUSY;
1082
}
1083
1084
static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
1085
struct kvmppc_xive_src_block *sb,
1086
struct kvmppc_xive_irq_state *state)
1087
{
1088
struct xive_irq_data *xd;
1089
u32 hw_num;
1090
u8 old_prio;
1091
u64 val;
1092
1093
/*
1094
* Take the lock, set masked, try again if racing
1095
* with H_EOI
1096
*/
1097
for (;;) {
1098
arch_spin_lock(&sb->lock);
1099
old_prio = state->guest_priority;
1100
state->guest_priority = MASKED;
1101
mb();
1102
if (!state->in_eoi)
1103
break;
1104
state->guest_priority = old_prio;
1105
arch_spin_unlock(&sb->lock);
1106
}
1107
1108
/* No change ? Bail */
1109
if (old_prio == MASKED)
1110
return old_prio;
1111
1112
/* Get the right irq */
1113
kvmppc_xive_select_irq(state, &hw_num, &xd);
1114
1115
/* Set PQ to 10, return old P and old Q and remember them */
1116
val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
1117
state->old_p = !!(val & 2);
1118
state->old_q = !!(val & 1);
1119
1120
/*
1121
* Synchronize hardware to sensure the queues are updated when
1122
* masking
1123
*/
1124
xive_native_sync_source(hw_num);
1125
1126
return old_prio;
1127
}
1128
1129
static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
1130
struct kvmppc_xive_irq_state *state)
1131
{
1132
/*
1133
* Take the lock try again if racing with H_EOI
1134
*/
1135
for (;;) {
1136
arch_spin_lock(&sb->lock);
1137
if (!state->in_eoi)
1138
break;
1139
arch_spin_unlock(&sb->lock);
1140
}
1141
}
1142
1143
static void xive_finish_unmask(struct kvmppc_xive *xive,
1144
struct kvmppc_xive_src_block *sb,
1145
struct kvmppc_xive_irq_state *state,
1146
u8 prio)
1147
{
1148
struct xive_irq_data *xd;
1149
u32 hw_num;
1150
1151
/* If we aren't changing a thing, move on */
1152
if (state->guest_priority != MASKED)
1153
goto bail;
1154
1155
/* Get the right irq */
1156
kvmppc_xive_select_irq(state, &hw_num, &xd);
1157
1158
/* Old Q set, set PQ to 11 */
1159
if (state->old_q)
1160
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
1161
1162
/*
1163
* If not old P, then perform an "effective" EOI,
1164
* on the source. This will handle the cases where
1165
* FW EOI is needed.
1166
*/
1167
if (!state->old_p)
1168
xive_vm_source_eoi(hw_num, xd);
1169
1170
/* Synchronize ordering and mark unmasked */
1171
mb();
1172
bail:
1173
state->guest_priority = prio;
1174
}
1175
1176
/*
1177
* Target an interrupt to a given server/prio, this will fallback
1178
* to another server if necessary and perform the HW targetting
1179
* updates as needed
1180
*
1181
* NOTE: Must be called with the state lock held
1182
*/
1183
static int xive_target_interrupt(struct kvm *kvm,
1184
struct kvmppc_xive_irq_state *state,
1185
u32 server, u8 prio)
1186
{
1187
struct kvmppc_xive *xive = kvm->arch.xive;
1188
u32 hw_num;
1189
int rc;
1190
1191
/*
1192
* This will return a tentative server and actual
1193
* priority. The count for that new target will have
1194
* already been incremented.
1195
*/
1196
rc = kvmppc_xive_select_target(kvm, &server, prio);
1197
1198
/*
1199
* We failed to find a target ? Not much we can do
1200
* at least until we support the GIQ.
1201
*/
1202
if (rc)
1203
return rc;
1204
1205
/*
1206
* Increment the old queue pending count if there
1207
* was one so that the old queue count gets adjusted later
1208
* when observed to be empty.
1209
*/
1210
if (state->act_priority != MASKED)
1211
xive_inc_q_pending(kvm,
1212
state->act_server,
1213
state->act_priority);
1214
/*
1215
* Update state and HW
1216
*/
1217
state->act_priority = prio;
1218
state->act_server = server;
1219
1220
/* Get the right irq */
1221
kvmppc_xive_select_irq(state, &hw_num, NULL);
1222
1223
return xive_native_configure_irq(hw_num,
1224
kvmppc_xive_vp(xive, server),
1225
prio, state->number);
1226
}
1227
1228
/*
1229
* Targetting rules: In order to avoid losing track of
1230
* pending interrupts across mask and unmask, which would
1231
* allow queue overflows, we implement the following rules:
1232
*
1233
* - Unless it was never enabled (or we run out of capacity)
1234
* an interrupt is always targetted at a valid server/queue
1235
* pair even when "masked" by the guest. This pair tends to
1236
* be the last one used but it can be changed under some
1237
* circumstances. That allows us to separate targetting
1238
* from masking, we only handle accounting during (re)targetting,
1239
* this also allows us to let an interrupt drain into its target
1240
* queue after masking, avoiding complex schemes to remove
1241
* interrupts out of remote processor queues.
1242
*
1243
* - When masking, we set PQ to 10 and save the previous value
1244
* of P and Q.
1245
*
1246
* - When unmasking, if saved Q was set, we set PQ to 11
1247
* otherwise we leave PQ to the HW state which will be either
1248
* 10 if nothing happened or 11 if the interrupt fired while
1249
* masked. Effectively we are OR'ing the previous Q into the
1250
* HW Q.
1251
*
1252
* Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
1253
* which will unmask the interrupt and shoot a new one if Q was
1254
* set.
1255
*
1256
* Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
1257
* effectively meaning an H_EOI from the guest is still expected
1258
* for that interrupt).
1259
*
1260
* - If H_EOI occurs while masked, we clear the saved P.
1261
*
1262
* - When changing target, we account on the new target and
1263
* increment a separate "pending" counter on the old one.
1264
* This pending counter will be used to decrement the old
1265
* target's count when its queue has been observed empty.
1266
*/
1267
1268
int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
1269
u32 priority)
1270
{
1271
struct kvmppc_xive *xive = kvm->arch.xive;
1272
struct kvmppc_xive_src_block *sb;
1273
struct kvmppc_xive_irq_state *state;
1274
u8 new_act_prio;
1275
int rc = 0;
1276
u16 idx;
1277
1278
if (!xive)
1279
return -ENODEV;
1280
1281
pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
1282
irq, server, priority);
1283
1284
/* First, check provisioning of queues */
1285
if (priority != MASKED) {
1286
mutex_lock(&xive->lock);
1287
rc = xive_check_provisioning(xive->kvm,
1288
xive_prio_from_guest(priority));
1289
mutex_unlock(&xive->lock);
1290
}
1291
if (rc) {
1292
pr_devel(" provisioning failure %d !\n", rc);
1293
return rc;
1294
}
1295
1296
sb = kvmppc_xive_find_source(xive, irq, &idx);
1297
if (!sb)
1298
return -EINVAL;
1299
state = &sb->irq_state[idx];
1300
1301
/*
1302
* We first handle masking/unmasking since the locking
1303
* might need to be retried due to EOIs, we'll handle
1304
* targetting changes later. These functions will return
1305
* with the SB lock held.
1306
*
1307
* xive_lock_and_mask() will also set state->guest_priority
1308
* but won't otherwise change other fields of the state.
1309
*
1310
* xive_lock_for_unmask will not actually unmask, this will
1311
* be done later by xive_finish_unmask() once the targetting
1312
* has been done, so we don't try to unmask an interrupt
1313
* that hasn't yet been targetted.
1314
*/
1315
if (priority == MASKED)
1316
xive_lock_and_mask(xive, sb, state);
1317
else
1318
xive_lock_for_unmask(sb, state);
1319
1320
1321
/*
1322
* Then we handle targetting.
1323
*
1324
* First calculate a new "actual priority"
1325
*/
1326
new_act_prio = state->act_priority;
1327
if (priority != MASKED)
1328
new_act_prio = xive_prio_from_guest(priority);
1329
1330
pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
1331
new_act_prio, state->act_server, state->act_priority);
1332
1333
/*
1334
* Then check if we actually need to change anything,
1335
*
1336
* The condition for re-targetting the interrupt is that
1337
* we have a valid new priority (new_act_prio is not 0xff)
1338
* and either the server or the priority changed.
1339
*
1340
* Note: If act_priority was ff and the new priority is
1341
* also ff, we don't do anything and leave the interrupt
1342
* untargetted. An attempt of doing an int_on on an
1343
* untargetted interrupt will fail. If that is a problem
1344
* we could initialize interrupts with valid default
1345
*/
1346
1347
if (new_act_prio != MASKED &&
1348
(state->act_server != server ||
1349
state->act_priority != new_act_prio))
1350
rc = xive_target_interrupt(kvm, state, server, new_act_prio);
1351
1352
/*
1353
* Perform the final unmasking of the interrupt source
1354
* if necessary
1355
*/
1356
if (priority != MASKED)
1357
xive_finish_unmask(xive, sb, state, priority);
1358
1359
/*
1360
* Finally Update saved_priority to match. Only int_on/off
1361
* set this field to a different value.
1362
*/
1363
state->saved_priority = priority;
1364
1365
arch_spin_unlock(&sb->lock);
1366
return rc;
1367
}
1368
1369
int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
1370
u32 *priority)
1371
{
1372
struct kvmppc_xive *xive = kvm->arch.xive;
1373
struct kvmppc_xive_src_block *sb;
1374
struct kvmppc_xive_irq_state *state;
1375
u16 idx;
1376
1377
if (!xive)
1378
return -ENODEV;
1379
1380
sb = kvmppc_xive_find_source(xive, irq, &idx);
1381
if (!sb)
1382
return -EINVAL;
1383
state = &sb->irq_state[idx];
1384
arch_spin_lock(&sb->lock);
1385
*server = state->act_server;
1386
*priority = state->guest_priority;
1387
arch_spin_unlock(&sb->lock);
1388
1389
return 0;
1390
}
1391
1392
int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
1393
{
1394
struct kvmppc_xive *xive = kvm->arch.xive;
1395
struct kvmppc_xive_src_block *sb;
1396
struct kvmppc_xive_irq_state *state;
1397
u16 idx;
1398
1399
if (!xive)
1400
return -ENODEV;
1401
1402
sb = kvmppc_xive_find_source(xive, irq, &idx);
1403
if (!sb)
1404
return -EINVAL;
1405
state = &sb->irq_state[idx];
1406
1407
pr_devel("int_on(irq=0x%x)\n", irq);
1408
1409
/*
1410
* Check if interrupt was not targetted
1411
*/
1412
if (state->act_priority == MASKED) {
1413
pr_devel("int_on on untargetted interrupt\n");
1414
return -EINVAL;
1415
}
1416
1417
/* If saved_priority is 0xff, do nothing */
1418
if (state->saved_priority == MASKED)
1419
return 0;
1420
1421
/*
1422
* Lock and unmask it.
1423
*/
1424
xive_lock_for_unmask(sb, state);
1425
xive_finish_unmask(xive, sb, state, state->saved_priority);
1426
arch_spin_unlock(&sb->lock);
1427
1428
return 0;
1429
}
1430
1431
int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
1432
{
1433
struct kvmppc_xive *xive = kvm->arch.xive;
1434
struct kvmppc_xive_src_block *sb;
1435
struct kvmppc_xive_irq_state *state;
1436
u16 idx;
1437
1438
if (!xive)
1439
return -ENODEV;
1440
1441
sb = kvmppc_xive_find_source(xive, irq, &idx);
1442
if (!sb)
1443
return -EINVAL;
1444
state = &sb->irq_state[idx];
1445
1446
pr_devel("int_off(irq=0x%x)\n", irq);
1447
1448
/*
1449
* Lock and mask
1450
*/
1451
state->saved_priority = xive_lock_and_mask(xive, sb, state);
1452
arch_spin_unlock(&sb->lock);
1453
1454
return 0;
1455
}
1456
1457
static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
1458
{
1459
struct kvmppc_xive_src_block *sb;
1460
struct kvmppc_xive_irq_state *state;
1461
u16 idx;
1462
1463
sb = kvmppc_xive_find_source(xive, irq, &idx);
1464
if (!sb)
1465
return false;
1466
state = &sb->irq_state[idx];
1467
if (!state->valid)
1468
return false;
1469
1470
/*
1471
* Trigger the IPI. This assumes we never restore a pass-through
1472
* interrupt which should be safe enough
1473
*/
1474
xive_irq_trigger(&state->ipi_data);
1475
1476
return true;
1477
}
1478
1479
u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
1480
{
1481
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1482
1483
if (!xc)
1484
return 0;
1485
1486
/* Return the per-cpu state for state saving/migration */
1487
return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
1488
(u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
1489
(u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
1490
}
1491
1492
int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
1493
{
1494
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1495
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1496
u8 cppr, mfrr;
1497
u32 xisr;
1498
1499
if (!xc || !xive)
1500
return -ENOENT;
1501
1502
/* Grab individual state fields. We don't use pending_pri */
1503
cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
1504
xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
1505
KVM_REG_PPC_ICP_XISR_MASK;
1506
mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
1507
1508
pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
1509
xc->server_num, cppr, mfrr, xisr);
1510
1511
/*
1512
* We can't update the state of a "pushed" VCPU, but that
1513
* shouldn't happen because the vcpu->mutex makes running a
1514
* vcpu mutually exclusive with doing one_reg get/set on it.
1515
*/
1516
if (WARN_ON(vcpu->arch.xive_pushed))
1517
return -EIO;
1518
1519
/* Update VCPU HW saved state */
1520
vcpu->arch.xive_saved_state.cppr = cppr;
1521
xc->hw_cppr = xc->cppr = cppr;
1522
1523
/*
1524
* Update MFRR state. If it's not 0xff, we mark the VCPU as
1525
* having a pending MFRR change, which will re-evaluate the
1526
* target. The VCPU will thus potentially get a spurious
1527
* interrupt but that's not a big deal.
1528
*/
1529
xc->mfrr = mfrr;
1530
if (mfrr < cppr)
1531
xive_irq_trigger(&xc->vp_ipi_data);
1532
1533
/*
1534
* Now saved XIRR is "interesting". It means there's something in
1535
* the legacy "1 element" queue... for an IPI we simply ignore it,
1536
* as the MFRR restore will handle that. For anything else we need
1537
* to force a resend of the source.
1538
* However the source may not have been setup yet. If that's the
1539
* case, we keep that info and increment a counter in the xive to
1540
* tell subsequent xive_set_source() to go look.
1541
*/
1542
if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
1543
xc->delayed_irq = xisr;
1544
xive->delayed_irqs++;
1545
pr_devel(" xisr restore delayed\n");
1546
}
1547
1548
return 0;
1549
}
1550
1551
int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
1552
unsigned long host_irq)
1553
{
1554
struct kvmppc_xive *xive = kvm->arch.xive;
1555
struct kvmppc_xive_src_block *sb;
1556
struct kvmppc_xive_irq_state *state;
1557
struct irq_data *host_data =
1558
irq_domain_get_irq_data(irq_get_default_domain(), host_irq);
1559
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
1560
u16 idx;
1561
u8 prio;
1562
int rc;
1563
1564
if (!xive)
1565
return -ENODEV;
1566
1567
pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
1568
__func__, guest_irq, host_irq, hw_irq);
1569
1570
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1571
if (!sb)
1572
return -EINVAL;
1573
state = &sb->irq_state[idx];
1574
1575
/*
1576
* Mark the passed-through interrupt as going to a VCPU,
1577
* this will prevent further EOIs and similar operations
1578
* from the XIVE code. It will also mask the interrupt
1579
* to either PQ=10 or 11 state, the latter if the interrupt
1580
* is pending. This will allow us to unmask or retrigger it
1581
* after routing it to the guest with a simple EOI.
1582
*
1583
* The "state" argument is a "token", all it needs is to be
1584
* non-NULL to switch to passed-through or NULL for the
1585
* other way around. We may not yet have an actual VCPU
1586
* target here and we don't really care.
1587
*/
1588
rc = irq_set_vcpu_affinity(host_irq, state);
1589
if (rc) {
1590
pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
1591
return rc;
1592
}
1593
1594
/*
1595
* Mask and read state of IPI. We need to know if its P bit
1596
* is set as that means it's potentially already using a
1597
* queue entry in the target
1598
*/
1599
prio = xive_lock_and_mask(xive, sb, state);
1600
pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
1601
state->old_p, state->old_q);
1602
1603
/* Turn the IPI hard off */
1604
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1605
1606
/*
1607
* Reset ESB guest mapping. Needed when ESB pages are exposed
1608
* to the guest in XIVE native mode
1609
*/
1610
if (xive->ops && xive->ops->reset_mapped)
1611
xive->ops->reset_mapped(kvm, guest_irq);
1612
1613
/* Grab info about irq */
1614
state->pt_number = hw_irq;
1615
state->pt_data = irq_data_get_irq_handler_data(host_data);
1616
1617
/*
1618
* Configure the IRQ to match the existing configuration of
1619
* the IPI if it was already targetted. Otherwise this will
1620
* mask the interrupt in a lossy way (act_priority is 0xff)
1621
* which is fine for a never started interrupt.
1622
*/
1623
xive_native_configure_irq(hw_irq,
1624
kvmppc_xive_vp(xive, state->act_server),
1625
state->act_priority, state->number);
1626
1627
/*
1628
* We do an EOI to enable the interrupt (and retrigger if needed)
1629
* if the guest has the interrupt unmasked and the P bit was *not*
1630
* set in the IPI. If it was set, we know a slot may still be in
1631
* use in the target queue thus we have to wait for a guest
1632
* originated EOI
1633
*/
1634
if (prio != MASKED && !state->old_p)
1635
xive_vm_source_eoi(hw_irq, state->pt_data);
1636
1637
/* Clear old_p/old_q as they are no longer relevant */
1638
state->old_p = state->old_q = false;
1639
1640
/* Restore guest prio (unlocks EOI) */
1641
mb();
1642
state->guest_priority = prio;
1643
arch_spin_unlock(&sb->lock);
1644
1645
return 0;
1646
}
1647
EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1648
1649
int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1650
unsigned long host_irq)
1651
{
1652
struct kvmppc_xive *xive = kvm->arch.xive;
1653
struct kvmppc_xive_src_block *sb;
1654
struct kvmppc_xive_irq_state *state;
1655
u16 idx;
1656
u8 prio;
1657
int rc;
1658
1659
if (!xive)
1660
return -ENODEV;
1661
1662
pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1663
1664
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1665
if (!sb)
1666
return -EINVAL;
1667
state = &sb->irq_state[idx];
1668
1669
/*
1670
* Mask and read state of IRQ. We need to know if its P bit
1671
* is set as that means it's potentially already using a
1672
* queue entry in the target
1673
*/
1674
prio = xive_lock_and_mask(xive, sb, state);
1675
pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1676
state->old_p, state->old_q);
1677
1678
/*
1679
* If old_p is set, the interrupt is pending, we switch it to
1680
* PQ=11. This will force a resend in the host so the interrupt
1681
* isn't lost to whatever host driver may pick it up
1682
*/
1683
if (state->old_p)
1684
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1685
1686
/* Release the passed-through interrupt to the host */
1687
rc = irq_set_vcpu_affinity(host_irq, NULL);
1688
if (rc) {
1689
pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1690
return rc;
1691
}
1692
1693
/* Forget about the IRQ */
1694
state->pt_number = 0;
1695
state->pt_data = NULL;
1696
1697
/*
1698
* Reset ESB guest mapping. Needed when ESB pages are exposed
1699
* to the guest in XIVE native mode
1700
*/
1701
if (xive->ops && xive->ops->reset_mapped) {
1702
xive->ops->reset_mapped(kvm, guest_irq);
1703
}
1704
1705
/* Reconfigure the IPI */
1706
xive_native_configure_irq(state->ipi_number,
1707
kvmppc_xive_vp(xive, state->act_server),
1708
state->act_priority, state->number);
1709
1710
/*
1711
* If old_p is set (we have a queue entry potentially
1712
* occupied) or the interrupt is masked, we set the IPI
1713
* to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1714
*/
1715
if (prio == MASKED || state->old_p)
1716
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1717
else
1718
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1719
1720
/* Restore guest prio (unlocks EOI) */
1721
mb();
1722
state->guest_priority = prio;
1723
arch_spin_unlock(&sb->lock);
1724
1725
return 0;
1726
}
1727
EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1728
1729
void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1730
{
1731
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1732
struct kvm *kvm = vcpu->kvm;
1733
struct kvmppc_xive *xive = kvm->arch.xive;
1734
int i, j;
1735
1736
for (i = 0; i <= xive->max_sbid; i++) {
1737
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1738
1739
if (!sb)
1740
continue;
1741
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1742
struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1743
1744
if (!state->valid)
1745
continue;
1746
if (state->act_priority == MASKED)
1747
continue;
1748
if (state->act_server != xc->server_num)
1749
continue;
1750
1751
/* Clean it up */
1752
arch_spin_lock(&sb->lock);
1753
state->act_priority = MASKED;
1754
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1755
xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1756
if (state->pt_number) {
1757
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1758
xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1759
}
1760
arch_spin_unlock(&sb->lock);
1761
}
1762
}
1763
1764
/* Disable vcpu's escalation interrupt */
1765
if (vcpu->arch.xive_esc_on) {
1766
__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1767
XIVE_ESB_SET_PQ_01));
1768
vcpu->arch.xive_esc_on = false;
1769
}
1770
1771
/*
1772
* Clear pointers to escalation interrupt ESB.
1773
* This is safe because the vcpu->mutex is held, preventing
1774
* any other CPU from concurrently executing a KVM_RUN ioctl.
1775
*/
1776
vcpu->arch.xive_esc_vaddr = 0;
1777
vcpu->arch.xive_esc_raddr = 0;
1778
}
1779
1780
/*
1781
* In single escalation mode, the escalation interrupt is marked so
1782
* that EOI doesn't re-enable it, but just sets the stale_p flag to
1783
* indicate that the P bit has already been dealt with. However, the
1784
* assembly code that enters the guest sets PQ to 00 without clearing
1785
* stale_p (because it has no easy way to address it). Hence we have
1786
* to adjust stale_p before shutting down the interrupt.
1787
*/
1788
void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq)
1789
{
1790
struct irq_data *d = irq_get_irq_data(irq);
1791
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1792
1793
/*
1794
* This slightly odd sequence gives the right result
1795
* (i.e. stale_p set if xive_esc_on is false) even if
1796
* we race with xive_esc_irq() and xive_irq_eoi().
1797
*/
1798
xd->stale_p = false;
1799
smp_mb(); /* paired with smb_wmb in xive_esc_irq */
1800
if (!vcpu->arch.xive_esc_on)
1801
xd->stale_p = true;
1802
}
1803
1804
void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1805
{
1806
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1807
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1808
int i;
1809
1810
if (!kvmppc_xics_enabled(vcpu))
1811
return;
1812
1813
if (!xc)
1814
return;
1815
1816
pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1817
1818
/* Ensure no interrupt is still routed to that VP */
1819
xc->valid = false;
1820
kvmppc_xive_disable_vcpu_interrupts(vcpu);
1821
1822
/* Mask the VP IPI */
1823
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1824
1825
/* Free escalations */
1826
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1827
if (xc->esc_virq[i]) {
1828
if (kvmppc_xive_has_single_escalation(xc->xive))
1829
xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]);
1830
free_irq(xc->esc_virq[i], vcpu);
1831
irq_dispose_mapping(xc->esc_virq[i]);
1832
kfree(xc->esc_virq_names[i]);
1833
}
1834
}
1835
1836
/* Disable the VP */
1837
xive_native_disable_vp(xc->vp_id);
1838
1839
/* Clear the cam word so guest entry won't try to push context */
1840
vcpu->arch.xive_cam_word = 0;
1841
1842
/* Free the queues */
1843
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1844
struct xive_q *q = &xc->queues[i];
1845
1846
xive_native_disable_queue(xc->vp_id, q, i);
1847
if (q->qpage) {
1848
free_pages((unsigned long)q->qpage,
1849
xive->q_page_order);
1850
q->qpage = NULL;
1851
}
1852
}
1853
1854
/* Free the IPI */
1855
if (xc->vp_ipi) {
1856
xive_cleanup_irq_data(&xc->vp_ipi_data);
1857
xive_native_free_irq(xc->vp_ipi);
1858
}
1859
/* Free the VP */
1860
kfree(xc);
1861
1862
/* Cleanup the vcpu */
1863
vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1864
vcpu->arch.xive_vcpu = NULL;
1865
}
1866
1867
static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1868
{
1869
/* We have a block of xive->nr_servers VPs. We just need to check
1870
* packed vCPU ids are below that.
1871
*/
1872
return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1873
}
1874
1875
int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1876
{
1877
u32 vp_id;
1878
1879
if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1880
pr_devel("Out of bounds !\n");
1881
return -EINVAL;
1882
}
1883
1884
if (xive->vp_base == XIVE_INVALID_VP) {
1885
xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1886
pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1887
1888
if (xive->vp_base == XIVE_INVALID_VP)
1889
return -ENOSPC;
1890
}
1891
1892
vp_id = kvmppc_xive_vp(xive, cpu);
1893
if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1894
pr_devel("Duplicate !\n");
1895
return -EEXIST;
1896
}
1897
1898
*vp = vp_id;
1899
1900
return 0;
1901
}
1902
1903
int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1904
struct kvm_vcpu *vcpu, u32 cpu)
1905
{
1906
struct kvmppc_xive *xive = dev->private;
1907
struct kvmppc_xive_vcpu *xc;
1908
int i, r = -EBUSY;
1909
u32 vp_id;
1910
1911
pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1912
1913
if (dev->ops != &kvm_xive_ops) {
1914
pr_devel("Wrong ops !\n");
1915
return -EPERM;
1916
}
1917
if (xive->kvm != vcpu->kvm)
1918
return -EPERM;
1919
if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1920
return -EBUSY;
1921
1922
/* We need to synchronize with queue provisioning */
1923
mutex_lock(&xive->lock);
1924
1925
r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1926
if (r)
1927
goto bail;
1928
1929
xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1930
if (!xc) {
1931
r = -ENOMEM;
1932
goto bail;
1933
}
1934
1935
vcpu->arch.xive_vcpu = xc;
1936
xc->xive = xive;
1937
xc->vcpu = vcpu;
1938
xc->server_num = cpu;
1939
xc->vp_id = vp_id;
1940
xc->mfrr = 0xff;
1941
xc->valid = true;
1942
1943
r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1944
if (r)
1945
goto bail;
1946
1947
if (!kvmppc_xive_check_save_restore(vcpu)) {
1948
pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1949
r = -EIO;
1950
goto bail;
1951
}
1952
1953
/* Configure VCPU fields for use by assembly push/pull */
1954
vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1955
vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1956
1957
/* Allocate IPI */
1958
xc->vp_ipi = xive_native_alloc_irq();
1959
if (!xc->vp_ipi) {
1960
pr_err("Failed to allocate xive irq for VCPU IPI\n");
1961
r = -EIO;
1962
goto bail;
1963
}
1964
pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1965
1966
r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1967
if (r)
1968
goto bail;
1969
1970
/*
1971
* Enable the VP first as the single escalation mode will
1972
* affect escalation interrupts numbering
1973
*/
1974
r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1975
if (r) {
1976
pr_err("Failed to enable VP in OPAL, err %d\n", r);
1977
goto bail;
1978
}
1979
1980
/*
1981
* Initialize queues. Initially we set them all for no queueing
1982
* and we enable escalation for queue 0 only which we'll use for
1983
* our mfrr change notifications. If the VCPU is hot-plugged, we
1984
* do handle provisioning however based on the existing "map"
1985
* of enabled queues.
1986
*/
1987
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1988
struct xive_q *q = &xc->queues[i];
1989
1990
/* Single escalation, no queue 7 */
1991
if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1992
break;
1993
1994
/* Is queue already enabled ? Provision it */
1995
if (xive->qmap & (1 << i)) {
1996
r = xive_provision_queue(vcpu, i);
1997
if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1998
kvmppc_xive_attach_escalation(
1999
vcpu, i, kvmppc_xive_has_single_escalation(xive));
2000
if (r)
2001
goto bail;
2002
} else {
2003
r = xive_native_configure_queue(xc->vp_id,
2004
q, i, NULL, 0, true);
2005
if (r) {
2006
pr_err("Failed to configure queue %d for VCPU %d\n",
2007
i, cpu);
2008
goto bail;
2009
}
2010
}
2011
}
2012
2013
/* If not done above, attach priority 0 escalation */
2014
r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
2015
if (r)
2016
goto bail;
2017
2018
/* Route the IPI */
2019
r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
2020
if (!r)
2021
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
2022
2023
bail:
2024
mutex_unlock(&xive->lock);
2025
if (r) {
2026
kvmppc_xive_cleanup_vcpu(vcpu);
2027
return r;
2028
}
2029
2030
vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
2031
return 0;
2032
}
2033
2034
/*
2035
* Scanning of queues before/after migration save
2036
*/
2037
static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
2038
{
2039
struct kvmppc_xive_src_block *sb;
2040
struct kvmppc_xive_irq_state *state;
2041
u16 idx;
2042
2043
sb = kvmppc_xive_find_source(xive, irq, &idx);
2044
if (!sb)
2045
return;
2046
2047
state = &sb->irq_state[idx];
2048
2049
/* Some sanity checking */
2050
if (!state->valid) {
2051
pr_err("invalid irq 0x%x in cpu queue!\n", irq);
2052
return;
2053
}
2054
2055
/*
2056
* If the interrupt is in a queue it should have P set.
2057
* We warn so that gets reported. A backtrace isn't useful
2058
* so no need to use a WARN_ON.
2059
*/
2060
if (!state->saved_p)
2061
pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
2062
2063
/* Set flag */
2064
state->in_queue = true;
2065
}
2066
2067
static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
2068
struct kvmppc_xive_src_block *sb,
2069
u32 irq)
2070
{
2071
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2072
2073
if (!state->valid)
2074
return;
2075
2076
/* Mask and save state, this will also sync HW queues */
2077
state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
2078
2079
/* Transfer P and Q */
2080
state->saved_p = state->old_p;
2081
state->saved_q = state->old_q;
2082
2083
/* Unlock */
2084
arch_spin_unlock(&sb->lock);
2085
}
2086
2087
static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
2088
struct kvmppc_xive_src_block *sb,
2089
u32 irq)
2090
{
2091
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2092
2093
if (!state->valid)
2094
return;
2095
2096
/*
2097
* Lock / exclude EOI (not technically necessary if the
2098
* guest isn't running concurrently. If this becomes a
2099
* performance issue we can probably remove the lock.
2100
*/
2101
xive_lock_for_unmask(sb, state);
2102
2103
/* Restore mask/prio if it wasn't masked */
2104
if (state->saved_scan_prio != MASKED)
2105
xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
2106
2107
/* Unlock */
2108
arch_spin_unlock(&sb->lock);
2109
}
2110
2111
static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
2112
{
2113
u32 idx = q->idx;
2114
u32 toggle = q->toggle;
2115
u32 irq;
2116
2117
do {
2118
irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
2119
if (irq > XICS_IPI)
2120
xive_pre_save_set_queued(xive, irq);
2121
} while(irq);
2122
}
2123
2124
static void xive_pre_save_scan(struct kvmppc_xive *xive)
2125
{
2126
struct kvm_vcpu *vcpu = NULL;
2127
unsigned long i;
2128
int j;
2129
2130
/*
2131
* See comment in xive_get_source() about how this
2132
* work. Collect a stable state for all interrupts
2133
*/
2134
for (i = 0; i <= xive->max_sbid; i++) {
2135
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2136
if (!sb)
2137
continue;
2138
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2139
xive_pre_save_mask_irq(xive, sb, j);
2140
}
2141
2142
/* Then scan the queues and update the "in_queue" flag */
2143
kvm_for_each_vcpu(i, vcpu, xive->kvm) {
2144
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2145
if (!xc)
2146
continue;
2147
for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
2148
if (xc->queues[j].qpage)
2149
xive_pre_save_queue(xive, &xc->queues[j]);
2150
}
2151
}
2152
2153
/* Finally restore interrupt states */
2154
for (i = 0; i <= xive->max_sbid; i++) {
2155
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2156
if (!sb)
2157
continue;
2158
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2159
xive_pre_save_unmask_irq(xive, sb, j);
2160
}
2161
}
2162
2163
static void xive_post_save_scan(struct kvmppc_xive *xive)
2164
{
2165
u32 i, j;
2166
2167
/* Clear all the in_queue flags */
2168
for (i = 0; i <= xive->max_sbid; i++) {
2169
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2170
if (!sb)
2171
continue;
2172
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2173
sb->irq_state[j].in_queue = false;
2174
}
2175
2176
/* Next get_source() will do a new scan */
2177
xive->saved_src_count = 0;
2178
}
2179
2180
/*
2181
* This returns the source configuration and state to user space.
2182
*/
2183
static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
2184
{
2185
struct kvmppc_xive_src_block *sb;
2186
struct kvmppc_xive_irq_state *state;
2187
u64 __user *ubufp = (u64 __user *) addr;
2188
u64 val, prio;
2189
u16 idx;
2190
2191
sb = kvmppc_xive_find_source(xive, irq, &idx);
2192
if (!sb)
2193
return -ENOENT;
2194
2195
state = &sb->irq_state[idx];
2196
2197
if (!state->valid)
2198
return -ENOENT;
2199
2200
pr_devel("get_source(%ld)...\n", irq);
2201
2202
/*
2203
* So to properly save the state into something that looks like a
2204
* XICS migration stream we cannot treat interrupts individually.
2205
*
2206
* We need, instead, mask them all (& save their previous PQ state)
2207
* to get a stable state in the HW, then sync them to ensure that
2208
* any interrupt that had already fired hits its queue, and finally
2209
* scan all the queues to collect which interrupts are still present
2210
* in the queues, so we can set the "pending" flag on them and
2211
* they can be resent on restore.
2212
*
2213
* So we do it all when the "first" interrupt gets saved, all the
2214
* state is collected at that point, the rest of xive_get_source()
2215
* will merely collect and convert that state to the expected
2216
* userspace bit mask.
2217
*/
2218
if (xive->saved_src_count == 0)
2219
xive_pre_save_scan(xive);
2220
xive->saved_src_count++;
2221
2222
/* Convert saved state into something compatible with xics */
2223
val = state->act_server;
2224
prio = state->saved_scan_prio;
2225
2226
if (prio == MASKED) {
2227
val |= KVM_XICS_MASKED;
2228
prio = state->saved_priority;
2229
}
2230
val |= prio << KVM_XICS_PRIORITY_SHIFT;
2231
if (state->lsi) {
2232
val |= KVM_XICS_LEVEL_SENSITIVE;
2233
if (state->saved_p)
2234
val |= KVM_XICS_PENDING;
2235
} else {
2236
if (state->saved_p)
2237
val |= KVM_XICS_PRESENTED;
2238
2239
if (state->saved_q)
2240
val |= KVM_XICS_QUEUED;
2241
2242
/*
2243
* We mark it pending (which will attempt a re-delivery)
2244
* if we are in a queue *or* we were masked and had
2245
* Q set which is equivalent to the XICS "masked pending"
2246
* state
2247
*/
2248
if (state->in_queue || (prio == MASKED && state->saved_q))
2249
val |= KVM_XICS_PENDING;
2250
}
2251
2252
/*
2253
* If that was the last interrupt saved, reset the
2254
* in_queue flags
2255
*/
2256
if (xive->saved_src_count == xive->src_count)
2257
xive_post_save_scan(xive);
2258
2259
/* Copy the result to userspace */
2260
if (put_user(val, ubufp))
2261
return -EFAULT;
2262
2263
return 0;
2264
}
2265
2266
struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
2267
struct kvmppc_xive *xive, int irq)
2268
{
2269
struct kvmppc_xive_src_block *sb;
2270
int i, bid;
2271
2272
bid = irq >> KVMPPC_XICS_ICS_SHIFT;
2273
2274
mutex_lock(&xive->lock);
2275
2276
/* block already exists - somebody else got here first */
2277
if (xive->src_blocks[bid])
2278
goto out;
2279
2280
/* Create the ICS */
2281
sb = kzalloc(sizeof(*sb), GFP_KERNEL);
2282
if (!sb)
2283
goto out;
2284
2285
sb->id = bid;
2286
2287
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2288
sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
2289
sb->irq_state[i].eisn = 0;
2290
sb->irq_state[i].guest_priority = MASKED;
2291
sb->irq_state[i].saved_priority = MASKED;
2292
sb->irq_state[i].act_priority = MASKED;
2293
}
2294
smp_wmb();
2295
xive->src_blocks[bid] = sb;
2296
2297
if (bid > xive->max_sbid)
2298
xive->max_sbid = bid;
2299
2300
out:
2301
mutex_unlock(&xive->lock);
2302
return xive->src_blocks[bid];
2303
}
2304
2305
static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
2306
{
2307
struct kvm *kvm = xive->kvm;
2308
struct kvm_vcpu *vcpu = NULL;
2309
unsigned long i;
2310
2311
kvm_for_each_vcpu(i, vcpu, kvm) {
2312
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2313
2314
if (!xc)
2315
continue;
2316
2317
if (xc->delayed_irq == irq) {
2318
xc->delayed_irq = 0;
2319
xive->delayed_irqs--;
2320
return true;
2321
}
2322
}
2323
return false;
2324
}
2325
2326
static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
2327
{
2328
struct kvmppc_xive_src_block *sb;
2329
struct kvmppc_xive_irq_state *state;
2330
u64 __user *ubufp = (u64 __user *) addr;
2331
u16 idx;
2332
u64 val;
2333
u8 act_prio, guest_prio;
2334
u32 server;
2335
int rc = 0;
2336
2337
if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
2338
return -ENOENT;
2339
2340
pr_devel("set_source(irq=0x%lx)\n", irq);
2341
2342
/* Find the source */
2343
sb = kvmppc_xive_find_source(xive, irq, &idx);
2344
if (!sb) {
2345
pr_devel("No source, creating source block...\n");
2346
sb = kvmppc_xive_create_src_block(xive, irq);
2347
if (!sb) {
2348
pr_devel("Failed to create block...\n");
2349
return -ENOMEM;
2350
}
2351
}
2352
state = &sb->irq_state[idx];
2353
2354
/* Read user passed data */
2355
if (get_user(val, ubufp)) {
2356
pr_devel("fault getting user info !\n");
2357
return -EFAULT;
2358
}
2359
2360
server = val & KVM_XICS_DESTINATION_MASK;
2361
guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
2362
2363
pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
2364
val, server, guest_prio);
2365
2366
/*
2367
* If the source doesn't already have an IPI, allocate
2368
* one and get the corresponding data
2369
*/
2370
if (!state->ipi_number) {
2371
state->ipi_number = xive_native_alloc_irq();
2372
if (state->ipi_number == 0) {
2373
pr_devel("Failed to allocate IPI !\n");
2374
return -ENOMEM;
2375
}
2376
xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
2377
pr_devel(" src_ipi=0x%x\n", state->ipi_number);
2378
}
2379
2380
/*
2381
* We use lock_and_mask() to set us in the right masked
2382
* state. We will override that state from the saved state
2383
* further down, but this will handle the cases of interrupts
2384
* that need FW masking. We set the initial guest_priority to
2385
* 0 before calling it to ensure it actually performs the masking.
2386
*/
2387
state->guest_priority = 0;
2388
xive_lock_and_mask(xive, sb, state);
2389
2390
/*
2391
* Now, we select a target if we have one. If we don't we
2392
* leave the interrupt untargetted. It means that an interrupt
2393
* can become "untargetted" across migration if it was masked
2394
* by set_xive() but there is little we can do about it.
2395
*/
2396
2397
/* First convert prio and mark interrupt as untargetted */
2398
act_prio = xive_prio_from_guest(guest_prio);
2399
state->act_priority = MASKED;
2400
2401
/*
2402
* We need to drop the lock due to the mutex below. Hopefully
2403
* nothing is touching that interrupt yet since it hasn't been
2404
* advertized to a running guest yet
2405
*/
2406
arch_spin_unlock(&sb->lock);
2407
2408
/* If we have a priority target the interrupt */
2409
if (act_prio != MASKED) {
2410
/* First, check provisioning of queues */
2411
mutex_lock(&xive->lock);
2412
rc = xive_check_provisioning(xive->kvm, act_prio);
2413
mutex_unlock(&xive->lock);
2414
2415
/* Target interrupt */
2416
if (rc == 0)
2417
rc = xive_target_interrupt(xive->kvm, state,
2418
server, act_prio);
2419
/*
2420
* If provisioning or targetting failed, leave it
2421
* alone and masked. It will remain disabled until
2422
* the guest re-targets it.
2423
*/
2424
}
2425
2426
/*
2427
* Find out if this was a delayed irq stashed in an ICP,
2428
* in which case, treat it as pending
2429
*/
2430
if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
2431
val |= KVM_XICS_PENDING;
2432
pr_devel(" Found delayed ! forcing PENDING !\n");
2433
}
2434
2435
/* Cleanup the SW state */
2436
state->old_p = false;
2437
state->old_q = false;
2438
state->lsi = false;
2439
state->asserted = false;
2440
2441
/* Restore LSI state */
2442
if (val & KVM_XICS_LEVEL_SENSITIVE) {
2443
state->lsi = true;
2444
if (val & KVM_XICS_PENDING)
2445
state->asserted = true;
2446
pr_devel(" LSI ! Asserted=%d\n", state->asserted);
2447
}
2448
2449
/*
2450
* Restore P and Q. If the interrupt was pending, we
2451
* force Q and !P, which will trigger a resend.
2452
*
2453
* That means that a guest that had both an interrupt
2454
* pending (queued) and Q set will restore with only
2455
* one instance of that interrupt instead of 2, but that
2456
* is perfectly fine as coalescing interrupts that haven't
2457
* been presented yet is always allowed.
2458
*/
2459
if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
2460
state->old_p = true;
2461
if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
2462
state->old_q = true;
2463
2464
pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
2465
2466
/*
2467
* If the interrupt was unmasked, update guest priority and
2468
* perform the appropriate state transition and do a
2469
* re-trigger if necessary.
2470
*/
2471
if (val & KVM_XICS_MASKED) {
2472
pr_devel(" masked, saving prio\n");
2473
state->guest_priority = MASKED;
2474
state->saved_priority = guest_prio;
2475
} else {
2476
pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
2477
xive_finish_unmask(xive, sb, state, guest_prio);
2478
state->saved_priority = guest_prio;
2479
}
2480
2481
/* Increment the number of valid sources and mark this one valid */
2482
if (!state->valid)
2483
xive->src_count++;
2484
state->valid = true;
2485
2486
return 0;
2487
}
2488
2489
int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
2490
bool line_status)
2491
{
2492
struct kvmppc_xive *xive = kvm->arch.xive;
2493
struct kvmppc_xive_src_block *sb;
2494
struct kvmppc_xive_irq_state *state;
2495
u16 idx;
2496
2497
if (!xive)
2498
return -ENODEV;
2499
2500
sb = kvmppc_xive_find_source(xive, irq, &idx);
2501
if (!sb)
2502
return -EINVAL;
2503
2504
/* Perform locklessly .... (we need to do some RCUisms here...) */
2505
state = &sb->irq_state[idx];
2506
if (!state->valid)
2507
return -EINVAL;
2508
2509
/* We don't allow a trigger on a passed-through interrupt */
2510
if (state->pt_number)
2511
return -EINVAL;
2512
2513
if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
2514
state->asserted = true;
2515
else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
2516
state->asserted = false;
2517
return 0;
2518
}
2519
2520
/* Trigger the IPI */
2521
xive_irq_trigger(&state->ipi_data);
2522
2523
return 0;
2524
}
2525
2526
int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
2527
{
2528
u32 __user *ubufp = (u32 __user *) addr;
2529
u32 nr_servers;
2530
int rc = 0;
2531
2532
if (get_user(nr_servers, ubufp))
2533
return -EFAULT;
2534
2535
pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
2536
2537
if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
2538
return -EINVAL;
2539
2540
mutex_lock(&xive->lock);
2541
if (xive->vp_base != XIVE_INVALID_VP)
2542
/* The VP block is allocated once and freed when the device
2543
* is released. Better not allow to change its size since its
2544
* used by connect_vcpu to validate vCPU ids are valid (eg,
2545
* setting it back to a higher value could allow connect_vcpu
2546
* to come up with a VP id that goes beyond the VP block, which
2547
* is likely to cause a crash in OPAL).
2548
*/
2549
rc = -EBUSY;
2550
else if (nr_servers > KVM_MAX_VCPUS)
2551
/* We don't need more servers. Higher vCPU ids get packed
2552
* down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
2553
*/
2554
xive->nr_servers = KVM_MAX_VCPUS;
2555
else
2556
xive->nr_servers = nr_servers;
2557
2558
mutex_unlock(&xive->lock);
2559
2560
return rc;
2561
}
2562
2563
static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2564
{
2565
struct kvmppc_xive *xive = dev->private;
2566
2567
/* We honor the existing XICS ioctl */
2568
switch (attr->group) {
2569
case KVM_DEV_XICS_GRP_SOURCES:
2570
return xive_set_source(xive, attr->attr, attr->addr);
2571
case KVM_DEV_XICS_GRP_CTRL:
2572
switch (attr->attr) {
2573
case KVM_DEV_XICS_NR_SERVERS:
2574
return kvmppc_xive_set_nr_servers(xive, attr->addr);
2575
}
2576
}
2577
return -ENXIO;
2578
}
2579
2580
static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2581
{
2582
struct kvmppc_xive *xive = dev->private;
2583
2584
/* We honor the existing XICS ioctl */
2585
switch (attr->group) {
2586
case KVM_DEV_XICS_GRP_SOURCES:
2587
return xive_get_source(xive, attr->attr, attr->addr);
2588
}
2589
return -ENXIO;
2590
}
2591
2592
static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2593
{
2594
/* We honor the same limits as XICS, at least for now */
2595
switch (attr->group) {
2596
case KVM_DEV_XICS_GRP_SOURCES:
2597
if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
2598
attr->attr < KVMPPC_XICS_NR_IRQS)
2599
return 0;
2600
break;
2601
case KVM_DEV_XICS_GRP_CTRL:
2602
switch (attr->attr) {
2603
case KVM_DEV_XICS_NR_SERVERS:
2604
return 0;
2605
}
2606
}
2607
return -ENXIO;
2608
}
2609
2610
static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2611
{
2612
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2613
xive_native_configure_irq(hw_num, 0, MASKED, 0);
2614
}
2615
2616
void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2617
{
2618
int i;
2619
2620
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2621
struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2622
2623
if (!state->valid)
2624
continue;
2625
2626
kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2627
xive_cleanup_irq_data(&state->ipi_data);
2628
xive_native_free_irq(state->ipi_number);
2629
2630
/* Pass-through, cleanup too but keep IRQ hw data */
2631
if (state->pt_number)
2632
kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2633
2634
state->valid = false;
2635
}
2636
}
2637
2638
/*
2639
* Called when device fd is closed. kvm->lock is held.
2640
*/
2641
static void kvmppc_xive_release(struct kvm_device *dev)
2642
{
2643
struct kvmppc_xive *xive = dev->private;
2644
struct kvm *kvm = xive->kvm;
2645
struct kvm_vcpu *vcpu;
2646
unsigned long i;
2647
2648
pr_devel("Releasing xive device\n");
2649
2650
/*
2651
* Since this is the device release function, we know that
2652
* userspace does not have any open fd referring to the
2653
* device. Therefore there can not be any of the device
2654
* attribute set/get functions being executed concurrently,
2655
* and similarly, the connect_vcpu and set/clr_mapped
2656
* functions also cannot be being executed.
2657
*/
2658
2659
debugfs_remove(xive->dentry);
2660
2661
/*
2662
* We should clean up the vCPU interrupt presenters first.
2663
*/
2664
kvm_for_each_vcpu(i, vcpu, kvm) {
2665
/*
2666
* Take vcpu->mutex to ensure that no one_reg get/set ioctl
2667
* (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2668
* Holding the vcpu->mutex also means that the vcpu cannot
2669
* be executing the KVM_RUN ioctl, and therefore it cannot
2670
* be executing the XIVE push or pull code or accessing
2671
* the XIVE MMIO regions.
2672
*/
2673
mutex_lock(&vcpu->mutex);
2674
kvmppc_xive_cleanup_vcpu(vcpu);
2675
mutex_unlock(&vcpu->mutex);
2676
}
2677
2678
/*
2679
* Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2680
* and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2681
* against xive code getting called during vcpu execution or
2682
* set/get one_reg operations.
2683
*/
2684
kvm->arch.xive = NULL;
2685
2686
/* Mask and free interrupts */
2687
for (i = 0; i <= xive->max_sbid; i++) {
2688
if (xive->src_blocks[i])
2689
kvmppc_xive_free_sources(xive->src_blocks[i]);
2690
kfree(xive->src_blocks[i]);
2691
xive->src_blocks[i] = NULL;
2692
}
2693
2694
if (xive->vp_base != XIVE_INVALID_VP)
2695
xive_native_free_vp_block(xive->vp_base);
2696
2697
/*
2698
* A reference of the kvmppc_xive pointer is now kept under
2699
* the xive_devices struct of the machine for reuse. It is
2700
* freed when the VM is destroyed for now until we fix all the
2701
* execution paths.
2702
*/
2703
2704
kfree(dev);
2705
}
2706
2707
/*
2708
* When the guest chooses the interrupt mode (XICS legacy or XIVE
2709
* native), the VM will switch of KVM device. The previous device will
2710
* be "released" before the new one is created.
2711
*
2712
* Until we are sure all execution paths are well protected, provide a
2713
* fail safe (transitional) method for device destruction, in which
2714
* the XIVE device pointer is recycled and not directly freed.
2715
*/
2716
struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2717
{
2718
struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2719
&kvm->arch.xive_devices.native :
2720
&kvm->arch.xive_devices.xics_on_xive;
2721
struct kvmppc_xive *xive = *kvm_xive_device;
2722
2723
if (!xive) {
2724
xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2725
*kvm_xive_device = xive;
2726
} else {
2727
memset(xive, 0, sizeof(*xive));
2728
}
2729
2730
return xive;
2731
}
2732
2733
/*
2734
* Create a XICS device with XIVE backend. kvm->lock is held.
2735
*/
2736
static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2737
{
2738
struct kvmppc_xive *xive;
2739
struct kvm *kvm = dev->kvm;
2740
2741
pr_devel("Creating xive for partition\n");
2742
2743
/* Already there ? */
2744
if (kvm->arch.xive)
2745
return -EEXIST;
2746
2747
xive = kvmppc_xive_get_device(kvm, type);
2748
if (!xive)
2749
return -ENOMEM;
2750
2751
dev->private = xive;
2752
xive->dev = dev;
2753
xive->kvm = kvm;
2754
mutex_init(&xive->lock);
2755
2756
/* We use the default queue size set by the host */
2757
xive->q_order = xive_native_default_eq_shift();
2758
if (xive->q_order < PAGE_SHIFT)
2759
xive->q_page_order = 0;
2760
else
2761
xive->q_page_order = xive->q_order - PAGE_SHIFT;
2762
2763
/* VP allocation is delayed to the first call to connect_vcpu */
2764
xive->vp_base = XIVE_INVALID_VP;
2765
/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2766
* on a POWER9 system.
2767
*/
2768
xive->nr_servers = KVM_MAX_VCPUS;
2769
2770
if (xive_native_has_single_escalation())
2771
xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2772
2773
if (xive_native_has_save_restore())
2774
xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2775
2776
kvm->arch.xive = xive;
2777
return 0;
2778
}
2779
2780
int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2781
{
2782
/* The VM should have configured XICS mode before doing XICS hcalls. */
2783
if (!kvmppc_xics_enabled(vcpu))
2784
return H_TOO_HARD;
2785
2786
switch (req) {
2787
case H_XIRR:
2788
return xive_vm_h_xirr(vcpu);
2789
case H_CPPR:
2790
return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2791
case H_EOI:
2792
return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2793
case H_IPI:
2794
return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2795
kvmppc_get_gpr(vcpu, 5));
2796
case H_IPOLL:
2797
return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2798
case H_XIRR_X:
2799
xive_vm_h_xirr(vcpu);
2800
kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu));
2801
return H_SUCCESS;
2802
}
2803
2804
return H_UNSUPPORTED;
2805
}
2806
EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2807
2808
int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2809
{
2810
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2811
unsigned int i;
2812
2813
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2814
struct xive_q *q = &xc->queues[i];
2815
u32 i0, i1, idx;
2816
2817
if (!q->qpage && !xc->esc_virq[i])
2818
continue;
2819
2820
if (q->qpage) {
2821
seq_printf(m, " q[%d]: ", i);
2822
idx = q->idx;
2823
i0 = be32_to_cpup(q->qpage + idx);
2824
idx = (idx + 1) & q->msk;
2825
i1 = be32_to_cpup(q->qpage + idx);
2826
seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2827
i0, i1);
2828
}
2829
if (xc->esc_virq[i]) {
2830
struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2831
struct xive_irq_data *xd =
2832
irq_data_get_irq_handler_data(d);
2833
u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2834
2835
seq_printf(m, " ESC %d %c%c EOI @%llx",
2836
xc->esc_virq[i],
2837
(pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2838
(pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2839
xd->eoi_page);
2840
seq_puts(m, "\n");
2841
}
2842
}
2843
return 0;
2844
}
2845
2846
void kvmppc_xive_debug_show_sources(struct seq_file *m,
2847
struct kvmppc_xive_src_block *sb)
2848
{
2849
int i;
2850
2851
seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n");
2852
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2853
struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2854
struct xive_irq_data *xd;
2855
u64 pq;
2856
u32 hw_num;
2857
2858
if (!state->valid)
2859
continue;
2860
2861
kvmppc_xive_select_irq(state, &hw_num, &xd);
2862
2863
pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2864
2865
seq_printf(m, "%08x %08x/%02x", state->number, hw_num,
2866
xd->src_chip);
2867
if (state->lsi)
2868
seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2869
else
2870
seq_puts(m, " MSI");
2871
2872
seq_printf(m, " %s %c%c %08x % 4d/%d",
2873
state->ipi_number == hw_num ? "IPI" : " PT",
2874
pq & XIVE_ESB_VAL_P ? 'P' : '-',
2875
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2876
state->eisn, state->act_server,
2877
state->act_priority);
2878
2879
seq_puts(m, "\n");
2880
}
2881
}
2882
2883
static int xive_debug_show(struct seq_file *m, void *private)
2884
{
2885
struct kvmppc_xive *xive = m->private;
2886
struct kvm *kvm = xive->kvm;
2887
struct kvm_vcpu *vcpu;
2888
u64 t_rm_h_xirr = 0;
2889
u64 t_rm_h_ipoll = 0;
2890
u64 t_rm_h_cppr = 0;
2891
u64 t_rm_h_eoi = 0;
2892
u64 t_rm_h_ipi = 0;
2893
u64 t_vm_h_xirr = 0;
2894
u64 t_vm_h_ipoll = 0;
2895
u64 t_vm_h_cppr = 0;
2896
u64 t_vm_h_eoi = 0;
2897
u64 t_vm_h_ipi = 0;
2898
unsigned long i;
2899
2900
if (!kvm)
2901
return 0;
2902
2903
seq_puts(m, "=========\nVCPU state\n=========\n");
2904
2905
kvm_for_each_vcpu(i, vcpu, kvm) {
2906
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2907
2908
if (!xc)
2909
continue;
2910
2911
seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2912
" CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2913
xc->server_num, xc->vp_id, xc->vp_chip_id,
2914
xc->cppr, xc->hw_cppr,
2915
xc->mfrr, xc->pending,
2916
xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2917
2918
kvmppc_xive_debug_show_queues(m, vcpu);
2919
2920
t_rm_h_xirr += xc->stat_rm_h_xirr;
2921
t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2922
t_rm_h_cppr += xc->stat_rm_h_cppr;
2923
t_rm_h_eoi += xc->stat_rm_h_eoi;
2924
t_rm_h_ipi += xc->stat_rm_h_ipi;
2925
t_vm_h_xirr += xc->stat_vm_h_xirr;
2926
t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2927
t_vm_h_cppr += xc->stat_vm_h_cppr;
2928
t_vm_h_eoi += xc->stat_vm_h_eoi;
2929
t_vm_h_ipi += xc->stat_vm_h_ipi;
2930
}
2931
2932
seq_puts(m, "Hcalls totals\n");
2933
seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2934
seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2935
seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2936
seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2937
seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2938
2939
seq_puts(m, "=========\nSources\n=========\n");
2940
2941
for (i = 0; i <= xive->max_sbid; i++) {
2942
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2943
2944
if (sb) {
2945
arch_spin_lock(&sb->lock);
2946
kvmppc_xive_debug_show_sources(m, sb);
2947
arch_spin_unlock(&sb->lock);
2948
}
2949
}
2950
2951
return 0;
2952
}
2953
2954
DEFINE_SHOW_ATTRIBUTE(xive_debug);
2955
2956
static void xive_debugfs_init(struct kvmppc_xive *xive)
2957
{
2958
xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
2959
xive, &xive_debug_fops);
2960
2961
pr_debug("%s: created\n", __func__);
2962
}
2963
2964
static void kvmppc_xive_init(struct kvm_device *dev)
2965
{
2966
struct kvmppc_xive *xive = dev->private;
2967
2968
/* Register some debug interfaces */
2969
xive_debugfs_init(xive);
2970
}
2971
2972
struct kvm_device_ops kvm_xive_ops = {
2973
.name = "kvm-xive",
2974
.create = kvmppc_xive_create,
2975
.init = kvmppc_xive_init,
2976
.release = kvmppc_xive_release,
2977
.set_attr = xive_set_attr,
2978
.get_attr = xive_get_attr,
2979
.has_attr = xive_has_attr,
2980
};
2981
2982