Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/kvm/book3s_xive.c
51913 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4
*/
5
6
#define pr_fmt(fmt) "xive-kvm: " fmt
7
8
#include <linux/kernel.h>
9
#include <linux/kvm_host.h>
10
#include <linux/err.h>
11
#include <linux/gfp.h>
12
#include <linux/spinlock.h>
13
#include <linux/delay.h>
14
#include <linux/percpu.h>
15
#include <linux/cpumask.h>
16
#include <linux/uaccess.h>
17
#include <linux/irqdomain.h>
18
#include <asm/kvm_book3s.h>
19
#include <asm/kvm_ppc.h>
20
#include <asm/hvcall.h>
21
#include <asm/xics.h>
22
#include <asm/xive.h>
23
#include <asm/xive-regs.h>
24
#include <asm/debug.h>
25
#include <asm/time.h>
26
#include <asm/opal.h>
27
28
#include <linux/debugfs.h>
29
#include <linux/seq_file.h>
30
31
#include "book3s_xive.h"
32
33
#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
34
#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
35
36
/* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */
37
#define XICS_DUMMY 1
38
39
static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc)
40
{
41
u8 cppr;
42
u16 ack;
43
44
/*
45
* Ensure any previous store to CPPR is ordered vs.
46
* the subsequent loads from PIPR or ACK.
47
*/
48
eieio();
49
50
/* Perform the acknowledge OS to register cycle. */
51
ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG));
52
53
/* Synchronize subsequent queue accesses */
54
mb();
55
56
/* XXX Check grouping level */
57
58
/* Anything ? */
59
if (!((ack >> 8) & TM_QW1_NSR_EO))
60
return;
61
62
/* Grab CPPR of the most favored pending interrupt */
63
cppr = ack & 0xff;
64
if (cppr < 8)
65
xc->pending |= 1 << cppr;
66
67
/* Check consistency */
68
if (cppr >= xc->hw_cppr)
69
pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
70
smp_processor_id(), cppr, xc->hw_cppr);
71
72
/*
73
* Update our image of the HW CPPR. We don't yet modify
74
* xc->cppr, this will be done as we scan for interrupts
75
* in the queues.
76
*/
77
xc->hw_cppr = cppr;
78
}
79
80
static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
81
{
82
u64 val;
83
84
if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
85
offset |= XIVE_ESB_LD_ST_MO;
86
87
val = __raw_readq(__x_eoi_page(xd) + offset);
88
#ifdef __LITTLE_ENDIAN__
89
val >>= 64-8;
90
#endif
91
return (u8)val;
92
}
93
94
95
static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
96
{
97
/* If the XIVE supports the new "store EOI facility, use it */
98
if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
99
__raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI);
100
else if (xd->flags & XIVE_IRQ_FLAG_LSI) {
101
/*
102
* For LSIs the HW EOI cycle is used rather than PQ bits,
103
* as they are automatically re-triggred in HW when still
104
* pending.
105
*/
106
__raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI);
107
} else {
108
uint64_t eoi_val;
109
110
/*
111
* Otherwise for EOI, we use the special MMIO that does
112
* a clear of both P and Q and returns the old Q,
113
* except for LSIs where we use the "EOI cycle" special
114
* load.
115
*
116
* This allows us to then do a re-trigger if Q was set
117
* rather than synthetizing an interrupt in software
118
*/
119
eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00);
120
121
/* Re-trigger if needed */
122
if ((eoi_val & 1) && __x_trig_page(xd))
123
__raw_writeq(0, __x_trig_page(xd));
124
}
125
}
126
127
enum {
128
scan_fetch,
129
scan_poll,
130
scan_eoi,
131
};
132
133
static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc,
134
u8 pending, int scan_type)
135
{
136
u32 hirq = 0;
137
u8 prio = 0xff;
138
139
/* Find highest pending priority */
140
while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
141
struct xive_q *q;
142
u32 idx, toggle;
143
__be32 *qpage;
144
145
/*
146
* If pending is 0 this will return 0xff which is what
147
* we want
148
*/
149
prio = ffs(pending) - 1;
150
151
/* Don't scan past the guest cppr */
152
if (prio >= xc->cppr || prio > 7) {
153
if (xc->mfrr < xc->cppr) {
154
prio = xc->mfrr;
155
hirq = XICS_IPI;
156
}
157
break;
158
}
159
160
/* Grab queue and pointers */
161
q = &xc->queues[prio];
162
idx = q->idx;
163
toggle = q->toggle;
164
165
/*
166
* Snapshot the queue page. The test further down for EOI
167
* must use the same "copy" that was used by __xive_read_eq
168
* since qpage can be set concurrently and we don't want
169
* to miss an EOI.
170
*/
171
qpage = READ_ONCE(q->qpage);
172
173
skip_ipi:
174
/*
175
* Try to fetch from the queue. Will return 0 for a
176
* non-queueing priority (ie, qpage = 0).
177
*/
178
hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
179
180
/*
181
* If this was a signal for an MFFR change done by
182
* H_IPI we skip it. Additionally, if we were fetching
183
* we EOI it now, thus re-enabling reception of a new
184
* such signal.
185
*
186
* We also need to do that if prio is 0 and we had no
187
* page for the queue. In this case, we have non-queued
188
* IPI that needs to be EOId.
189
*
190
* This is safe because if we have another pending MFRR
191
* change that wasn't observed above, the Q bit will have
192
* been set and another occurrence of the IPI will trigger.
193
*/
194
if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
195
if (scan_type == scan_fetch) {
196
xive_vm_source_eoi(xc->vp_ipi,
197
&xc->vp_ipi_data);
198
q->idx = idx;
199
q->toggle = toggle;
200
}
201
/* Loop back on same queue with updated idx/toggle */
202
WARN_ON(hirq && hirq != XICS_IPI);
203
if (hirq)
204
goto skip_ipi;
205
}
206
207
/* If it's the dummy interrupt, continue searching */
208
if (hirq == XICS_DUMMY)
209
goto skip_ipi;
210
211
/* Clear the pending bit if the queue is now empty */
212
if (!hirq) {
213
pending &= ~(1 << prio);
214
215
/*
216
* Check if the queue count needs adjusting due to
217
* interrupts being moved away.
218
*/
219
if (atomic_read(&q->pending_count)) {
220
int p = atomic_xchg(&q->pending_count, 0);
221
222
if (p) {
223
WARN_ON(p > atomic_read(&q->count));
224
atomic_sub(p, &q->count);
225
}
226
}
227
}
228
229
/*
230
* If the most favoured prio we found pending is less
231
* favored (or equal) than a pending IPI, we return
232
* the IPI instead.
233
*/
234
if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
235
prio = xc->mfrr;
236
hirq = XICS_IPI;
237
break;
238
}
239
240
/* If fetching, update queue pointers */
241
if (scan_type == scan_fetch) {
242
q->idx = idx;
243
q->toggle = toggle;
244
}
245
}
246
247
/* If we are just taking a "peek", do nothing else */
248
if (scan_type == scan_poll)
249
return hirq;
250
251
/* Update the pending bits */
252
xc->pending = pending;
253
254
/*
255
* If this is an EOI that's it, no CPPR adjustment done here,
256
* all we needed was cleanup the stale pending bits and check
257
* if there's anything left.
258
*/
259
if (scan_type == scan_eoi)
260
return hirq;
261
262
/*
263
* If we found an interrupt, adjust what the guest CPPR should
264
* be as if we had just fetched that interrupt from HW.
265
*
266
* Note: This can only make xc->cppr smaller as the previous
267
* loop will only exit with hirq != 0 if prio is lower than
268
* the current xc->cppr. Thus we don't need to re-check xc->mfrr
269
* for pending IPIs.
270
*/
271
if (hirq)
272
xc->cppr = prio;
273
/*
274
* If it was an IPI the HW CPPR might have been lowered too much
275
* as the HW interrupt we use for IPIs is routed to priority 0.
276
*
277
* We re-sync it here.
278
*/
279
if (xc->cppr != xc->hw_cppr) {
280
xc->hw_cppr = xc->cppr;
281
__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
282
}
283
284
return hirq;
285
}
286
287
static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu)
288
{
289
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
290
u8 old_cppr;
291
u32 hirq;
292
293
pr_devel("H_XIRR\n");
294
295
xc->stat_vm_h_xirr++;
296
297
/* First collect pending bits from HW */
298
xive_vm_ack_pending(xc);
299
300
pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
301
xc->pending, xc->hw_cppr, xc->cppr);
302
303
/* Grab previous CPPR and reverse map it */
304
old_cppr = xive_prio_to_guest(xc->cppr);
305
306
/* Scan for actual interrupts */
307
hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch);
308
309
pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
310
hirq, xc->hw_cppr, xc->cppr);
311
312
/* That should never hit */
313
if (hirq & 0xff000000)
314
pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
315
316
/*
317
* XXX We could check if the interrupt is masked here and
318
* filter it. If we chose to do so, we would need to do:
319
*
320
* if (masked) {
321
* lock();
322
* if (masked) {
323
* old_Q = true;
324
* hirq = 0;
325
* }
326
* unlock();
327
* }
328
*/
329
330
/* Return interrupt and old CPPR in GPR4 */
331
kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24));
332
333
return H_SUCCESS;
334
}
335
336
static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
337
{
338
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
339
u8 pending = xc->pending;
340
u32 hirq;
341
342
pr_devel("H_IPOLL(server=%ld)\n", server);
343
344
xc->stat_vm_h_ipoll++;
345
346
/* Grab the target VCPU if not the current one */
347
if (xc->server_num != server) {
348
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
349
if (!vcpu)
350
return H_PARAMETER;
351
xc = vcpu->arch.xive_vcpu;
352
353
/* Scan all priorities */
354
pending = 0xff;
355
} else {
356
/* Grab pending interrupt if any */
357
__be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS);
358
u8 pipr = be64_to_cpu(qw1) & 0xff;
359
360
if (pipr < 8)
361
pending |= 1 << pipr;
362
}
363
364
hirq = xive_vm_scan_interrupts(xc, pending, scan_poll);
365
366
/* Return interrupt and old CPPR in GPR4 */
367
kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24));
368
369
return H_SUCCESS;
370
}
371
372
static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc)
373
{
374
u8 pending, prio;
375
376
pending = xc->pending;
377
if (xc->mfrr != 0xff) {
378
if (xc->mfrr < 8)
379
pending |= 1 << xc->mfrr;
380
else
381
pending |= 0x80;
382
}
383
if (!pending)
384
return;
385
prio = ffs(pending) - 1;
386
387
__raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING);
388
}
389
390
static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive,
391
struct kvmppc_xive_vcpu *xc)
392
{
393
unsigned int prio;
394
395
/* For each priority that is now masked */
396
for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
397
struct xive_q *q = &xc->queues[prio];
398
struct kvmppc_xive_irq_state *state;
399
struct kvmppc_xive_src_block *sb;
400
u32 idx, toggle, entry, irq, hw_num;
401
struct xive_irq_data *xd;
402
__be32 *qpage;
403
u16 src;
404
405
idx = q->idx;
406
toggle = q->toggle;
407
qpage = READ_ONCE(q->qpage);
408
if (!qpage)
409
continue;
410
411
/* For each interrupt in the queue */
412
for (;;) {
413
entry = be32_to_cpup(qpage + idx);
414
415
/* No more ? */
416
if ((entry >> 31) == toggle)
417
break;
418
irq = entry & 0x7fffffff;
419
420
/* Skip dummies and IPIs */
421
if (irq == XICS_DUMMY || irq == XICS_IPI)
422
goto next;
423
sb = kvmppc_xive_find_source(xive, irq, &src);
424
if (!sb)
425
goto next;
426
state = &sb->irq_state[src];
427
428
/* Has it been rerouted ? */
429
if (xc->server_num == state->act_server)
430
goto next;
431
432
/*
433
* Allright, it *has* been re-routed, kill it from
434
* the queue.
435
*/
436
qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY);
437
438
/* Find the HW interrupt */
439
kvmppc_xive_select_irq(state, &hw_num, &xd);
440
441
/* If it's not an LSI, set PQ to 11 the EOI will force a resend */
442
if (!(xd->flags & XIVE_IRQ_FLAG_LSI))
443
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
444
445
/* EOI the source */
446
xive_vm_source_eoi(hw_num, xd);
447
448
next:
449
idx = (idx + 1) & q->msk;
450
if (idx == 0)
451
toggle ^= 1;
452
}
453
}
454
}
455
456
static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
457
{
458
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
459
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
460
u8 old_cppr;
461
462
pr_devel("H_CPPR(cppr=%ld)\n", cppr);
463
464
xc->stat_vm_h_cppr++;
465
466
/* Map CPPR */
467
cppr = xive_prio_from_guest(cppr);
468
469
/* Remember old and update SW state */
470
old_cppr = xc->cppr;
471
xc->cppr = cppr;
472
473
/*
474
* Order the above update of xc->cppr with the subsequent
475
* read of xc->mfrr inside push_pending_to_hw()
476
*/
477
smp_mb();
478
479
if (cppr > old_cppr) {
480
/*
481
* We are masking less, we need to look for pending things
482
* to deliver and set VP pending bits accordingly to trigger
483
* a new interrupt otherwise we might miss MFRR changes for
484
* which we have optimized out sending an IPI signal.
485
*/
486
xive_vm_push_pending_to_hw(xc);
487
} else {
488
/*
489
* We are masking more, we need to check the queue for any
490
* interrupt that has been routed to another CPU, take
491
* it out (replace it with the dummy) and retrigger it.
492
*
493
* This is necessary since those interrupts may otherwise
494
* never be processed, at least not until this CPU restores
495
* its CPPR.
496
*
497
* This is in theory racy vs. HW adding new interrupts to
498
* the queue. In practice this works because the interesting
499
* cases are when the guest has done a set_xive() to move the
500
* interrupt away, which flushes the xive, followed by the
501
* target CPU doing a H_CPPR. So any new interrupt coming into
502
* the queue must still be routed to us and isn't a source
503
* of concern.
504
*/
505
xive_vm_scan_for_rerouted_irqs(xive, xc);
506
}
507
508
/* Apply new CPPR */
509
xc->hw_cppr = cppr;
510
__raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR);
511
512
return H_SUCCESS;
513
}
514
515
static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
516
{
517
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
518
struct kvmppc_xive_src_block *sb;
519
struct kvmppc_xive_irq_state *state;
520
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
521
struct xive_irq_data *xd;
522
u8 new_cppr = xirr >> 24;
523
u32 irq = xirr & 0x00ffffff, hw_num;
524
u16 src;
525
int rc = 0;
526
527
pr_devel("H_EOI(xirr=%08lx)\n", xirr);
528
529
xc->stat_vm_h_eoi++;
530
531
xc->cppr = xive_prio_from_guest(new_cppr);
532
533
/*
534
* IPIs are synthesized from MFRR and thus don't need
535
* any special EOI handling. The underlying interrupt
536
* used to signal MFRR changes is EOId when fetched from
537
* the queue.
538
*/
539
if (irq == XICS_IPI || irq == 0) {
540
/*
541
* This barrier orders the setting of xc->cppr vs.
542
* subsequent test of xc->mfrr done inside
543
* scan_interrupts and push_pending_to_hw
544
*/
545
smp_mb();
546
goto bail;
547
}
548
549
/* Find interrupt source */
550
sb = kvmppc_xive_find_source(xive, irq, &src);
551
if (!sb) {
552
pr_devel(" source not found !\n");
553
rc = H_PARAMETER;
554
/* Same as above */
555
smp_mb();
556
goto bail;
557
}
558
state = &sb->irq_state[src];
559
kvmppc_xive_select_irq(state, &hw_num, &xd);
560
561
state->in_eoi = true;
562
563
/*
564
* This barrier orders both setting of in_eoi above vs,
565
* subsequent test of guest_priority, and the setting
566
* of xc->cppr vs. subsequent test of xc->mfrr done inside
567
* scan_interrupts and push_pending_to_hw
568
*/
569
smp_mb();
570
571
again:
572
if (state->guest_priority == MASKED) {
573
arch_spin_lock(&sb->lock);
574
if (state->guest_priority != MASKED) {
575
arch_spin_unlock(&sb->lock);
576
goto again;
577
}
578
pr_devel(" EOI on saved P...\n");
579
580
/* Clear old_p, that will cause unmask to perform an EOI */
581
state->old_p = false;
582
583
arch_spin_unlock(&sb->lock);
584
} else {
585
pr_devel(" EOI on source...\n");
586
587
/* Perform EOI on the source */
588
xive_vm_source_eoi(hw_num, xd);
589
590
/* If it's an emulated LSI, check level and resend */
591
if (state->lsi && state->asserted)
592
__raw_writeq(0, __x_trig_page(xd));
593
594
}
595
596
/*
597
* This barrier orders the above guest_priority check
598
* and spin_lock/unlock with clearing in_eoi below.
599
*
600
* It also has to be a full mb() as it must ensure
601
* the MMIOs done in source_eoi() are completed before
602
* state->in_eoi is visible.
603
*/
604
mb();
605
state->in_eoi = false;
606
bail:
607
608
/* Re-evaluate pending IRQs and update HW */
609
xive_vm_scan_interrupts(xc, xc->pending, scan_eoi);
610
xive_vm_push_pending_to_hw(xc);
611
pr_devel(" after scan pending=%02x\n", xc->pending);
612
613
/* Apply new CPPR */
614
xc->hw_cppr = xc->cppr;
615
__raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
616
617
return rc;
618
}
619
620
static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
621
unsigned long mfrr)
622
{
623
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
624
625
pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
626
627
xc->stat_vm_h_ipi++;
628
629
/* Find target */
630
vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
631
if (!vcpu)
632
return H_PARAMETER;
633
xc = vcpu->arch.xive_vcpu;
634
635
/* Locklessly write over MFRR */
636
xc->mfrr = mfrr;
637
638
/*
639
* The load of xc->cppr below and the subsequent MMIO store
640
* to the IPI must happen after the above mfrr update is
641
* globally visible so that:
642
*
643
* - Synchronize with another CPU doing an H_EOI or a H_CPPR
644
* updating xc->cppr then reading xc->mfrr.
645
*
646
* - The target of the IPI sees the xc->mfrr update
647
*/
648
mb();
649
650
/* Shoot the IPI if most favored than target cppr */
651
if (mfrr < xc->cppr)
652
__raw_writeq(0, __x_trig_page(&xc->vp_ipi_data));
653
654
return H_SUCCESS;
655
}
656
657
/*
658
* We leave a gap of a couple of interrupts in the queue to
659
* account for the IPI and additional safety guard.
660
*/
661
#define XIVE_Q_GAP 2
662
663
static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
664
{
665
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
666
667
/* Check enablement at VP level */
668
return xc->vp_cam & TM_QW1W2_HO;
669
}
670
671
bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
672
{
673
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
674
struct kvmppc_xive *xive = xc->xive;
675
676
if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
677
return kvmppc_xive_vcpu_has_save_restore(vcpu);
678
679
return true;
680
}
681
682
/*
683
* Push a vcpu's context to the XIVE on guest entry.
684
* This assumes we are in virtual mode (MMU on)
685
*/
686
void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
687
{
688
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
689
u64 pq;
690
691
/*
692
* Nothing to do if the platform doesn't have a XIVE
693
* or this vCPU doesn't have its own XIVE context
694
* (e.g. because it's not using an in-kernel interrupt controller).
695
*/
696
if (!tima || !vcpu->arch.xive_cam_word)
697
return;
698
699
eieio();
700
if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
701
__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
702
__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
703
vcpu->arch.xive_pushed = 1;
704
eieio();
705
706
/*
707
* We clear the irq_pending flag. There is a small chance of a
708
* race vs. the escalation interrupt happening on another
709
* processor setting it again, but the only consequence is to
710
* cause a spurious wakeup on the next H_CEDE, which is not an
711
* issue.
712
*/
713
vcpu->arch.irq_pending = 0;
714
715
/*
716
* In single escalation mode, if the escalation interrupt is
717
* on, we mask it.
718
*/
719
if (vcpu->arch.xive_esc_on) {
720
pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
721
XIVE_ESB_SET_PQ_01));
722
mb();
723
724
/*
725
* We have a possible subtle race here: The escalation
726
* interrupt might have fired and be on its way to the
727
* host queue while we mask it, and if we unmask it
728
* early enough (re-cede right away), there is a
729
* theoretical possibility that it fires again, thus
730
* landing in the target queue more than once which is
731
* a big no-no.
732
*
733
* Fortunately, solving this is rather easy. If the
734
* above load setting PQ to 01 returns a previous
735
* value where P is set, then we know the escalation
736
* interrupt is somewhere on its way to the host. In
737
* that case we simply don't clear the xive_esc_on
738
* flag below. It will be eventually cleared by the
739
* handler for the escalation interrupt.
740
*
741
* Then, when doing a cede, we check that flag again
742
* before re-enabling the escalation interrupt, and if
743
* set, we abort the cede.
744
*/
745
if (!(pq & XIVE_ESB_VAL_P))
746
/* Now P is 0, we can clear the flag */
747
vcpu->arch.xive_esc_on = 0;
748
}
749
}
750
EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
751
752
/*
753
* Pull a vcpu's context from the XIVE on guest exit.
754
* This assumes we are in virtual mode (MMU on)
755
*/
756
void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
757
{
758
void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
759
760
if (!vcpu->arch.xive_pushed)
761
return;
762
763
/*
764
* Should not have been pushed if there is no tima
765
*/
766
if (WARN_ON(!tima))
767
return;
768
769
eieio();
770
/* First load to pull the context, we ignore the value */
771
__raw_readl(tima + TM_SPC_PULL_OS_CTX);
772
/* Second load to recover the context state (Words 0 and 1) */
773
if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
774
vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
775
776
/* Fixup some of the state for the next load */
777
vcpu->arch.xive_saved_state.lsmfb = 0;
778
vcpu->arch.xive_saved_state.ack = 0xff;
779
vcpu->arch.xive_pushed = 0;
780
eieio();
781
}
782
EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
783
784
bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
785
{
786
void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
787
bool ret = true;
788
789
if (!esc_vaddr)
790
return ret;
791
792
/* we are using XIVE with single escalation */
793
794
if (vcpu->arch.xive_esc_on) {
795
/*
796
* If we still have a pending escalation, abort the cede,
797
* and we must set PQ to 10 rather than 00 so that we don't
798
* potentially end up with two entries for the escalation
799
* interrupt in the XIVE interrupt queue. In that case
800
* we also don't want to set xive_esc_on to 1 here in
801
* case we race with xive_esc_irq().
802
*/
803
ret = false;
804
/*
805
* The escalation interrupts are special as we don't EOI them.
806
* There is no need to use the load-after-store ordering offset
807
* to set PQ to 10 as we won't use StoreEOI.
808
*/
809
__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
810
} else {
811
vcpu->arch.xive_esc_on = true;
812
mb();
813
__raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
814
}
815
mb();
816
817
return ret;
818
}
819
EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
820
821
/*
822
* This is a simple trigger for a generic XIVE IRQ. This must
823
* only be called for interrupts that support a trigger page
824
*/
825
static bool xive_irq_trigger(struct xive_irq_data *xd)
826
{
827
/* This should be only for MSIs */
828
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
829
return false;
830
831
/* Those interrupts should always have a trigger page */
832
if (WARN_ON(!xd->trig_mmio))
833
return false;
834
835
out_be64(xd->trig_mmio, 0);
836
837
return true;
838
}
839
840
static irqreturn_t xive_esc_irq(int irq, void *data)
841
{
842
struct kvm_vcpu *vcpu = data;
843
844
vcpu->arch.irq_pending = 1;
845
smp_mb();
846
if (vcpu->arch.ceded || vcpu->arch.nested)
847
kvmppc_fast_vcpu_kick(vcpu);
848
849
/* Since we have the no-EOI flag, the interrupt is effectively
850
* disabled now. Clearing xive_esc_on means we won't bother
851
* doing so on the next entry.
852
*
853
* This also allows the entry code to know that if a PQ combination
854
* of 10 is observed while xive_esc_on is true, it means the queue
855
* contains an unprocessed escalation interrupt. We don't make use of
856
* that knowledge today but might (see comment in book3s_hv_rmhandler.S)
857
*/
858
vcpu->arch.xive_esc_on = false;
859
860
/* This orders xive_esc_on = false vs. subsequent stale_p = true */
861
smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
862
863
return IRQ_HANDLED;
864
}
865
866
int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
867
bool single_escalation)
868
{
869
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
870
struct xive_q *q = &xc->queues[prio];
871
char *name = NULL;
872
int rc;
873
874
/* Already there ? */
875
if (xc->esc_virq[prio])
876
return 0;
877
878
/* Hook up the escalation interrupt */
879
xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
880
if (!xc->esc_virq[prio]) {
881
pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
882
prio, xc->server_num);
883
return -EIO;
884
}
885
886
if (single_escalation)
887
name = kasprintf(GFP_KERNEL, "kvm-%lld-%d",
888
vcpu->kvm->arch.lpid, xc->server_num);
889
else
890
name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d",
891
vcpu->kvm->arch.lpid, xc->server_num, prio);
892
if (!name) {
893
pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
894
prio, xc->server_num);
895
rc = -ENOMEM;
896
goto error;
897
}
898
899
pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
900
901
rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
902
IRQF_NO_THREAD, name, vcpu);
903
if (rc) {
904
pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
905
prio, xc->server_num);
906
goto error;
907
}
908
xc->esc_virq_names[prio] = name;
909
910
/* In single escalation mode, we grab the ESB MMIO of the
911
* interrupt and mask it. Also populate the VCPU v/raddr
912
* of the ESB page for use by asm entry/exit code. Finally
913
* set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
914
* core code from performing an EOI on the escalation
915
* interrupt, thus leaving it effectively masked after
916
* it fires once.
917
*/
918
if (single_escalation) {
919
struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[prio]);
920
921
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
922
vcpu->arch.xive_esc_raddr = xd->eoi_page;
923
vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
924
xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
925
}
926
927
return 0;
928
error:
929
irq_dispose_mapping(xc->esc_virq[prio]);
930
xc->esc_virq[prio] = 0;
931
kfree(name);
932
return rc;
933
}
934
935
static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
936
{
937
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
938
struct kvmppc_xive *xive = xc->xive;
939
struct xive_q *q = &xc->queues[prio];
940
void *qpage;
941
int rc;
942
943
if (WARN_ON(q->qpage))
944
return 0;
945
946
/* Allocate the queue and retrieve infos on current node for now */
947
qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
948
if (!qpage) {
949
pr_err("Failed to allocate queue %d for VCPU %d\n",
950
prio, xc->server_num);
951
return -ENOMEM;
952
}
953
memset(qpage, 0, 1 << xive->q_order);
954
955
/*
956
* Reconfigure the queue. This will set q->qpage only once the
957
* queue is fully configured. This is a requirement for prio 0
958
* as we will stop doing EOIs for every IPI as soon as we observe
959
* qpage being non-NULL, and instead will only EOI when we receive
960
* corresponding queue 0 entries
961
*/
962
rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
963
xive->q_order, true);
964
if (rc)
965
pr_err("Failed to configure queue %d for VCPU %d\n",
966
prio, xc->server_num);
967
return rc;
968
}
969
970
/* Called with xive->lock held */
971
static int xive_check_provisioning(struct kvm *kvm, u8 prio)
972
{
973
struct kvmppc_xive *xive = kvm->arch.xive;
974
struct kvm_vcpu *vcpu;
975
unsigned long i;
976
int rc;
977
978
lockdep_assert_held(&xive->lock);
979
980
/* Already provisioned ? */
981
if (xive->qmap & (1 << prio))
982
return 0;
983
984
pr_devel("Provisioning prio... %d\n", prio);
985
986
/* Provision each VCPU and enable escalations if needed */
987
kvm_for_each_vcpu(i, vcpu, kvm) {
988
if (!vcpu->arch.xive_vcpu)
989
continue;
990
rc = xive_provision_queue(vcpu, prio);
991
if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
992
kvmppc_xive_attach_escalation(vcpu, prio,
993
kvmppc_xive_has_single_escalation(xive));
994
if (rc)
995
return rc;
996
}
997
998
/* Order previous stores and mark it as provisioned */
999
mb();
1000
xive->qmap |= (1 << prio);
1001
return 0;
1002
}
1003
1004
static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
1005
{
1006
struct kvm_vcpu *vcpu;
1007
struct kvmppc_xive_vcpu *xc;
1008
struct xive_q *q;
1009
1010
/* Locate target server */
1011
vcpu = kvmppc_xive_find_server(kvm, server);
1012
if (!vcpu) {
1013
pr_warn("%s: Can't find server %d\n", __func__, server);
1014
return;
1015
}
1016
xc = vcpu->arch.xive_vcpu;
1017
if (WARN_ON(!xc))
1018
return;
1019
1020
q = &xc->queues[prio];
1021
atomic_inc(&q->pending_count);
1022
}
1023
1024
static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
1025
{
1026
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1027
struct xive_q *q;
1028
u32 max;
1029
1030
if (WARN_ON(!xc))
1031
return -ENXIO;
1032
if (!xc->valid)
1033
return -ENXIO;
1034
1035
q = &xc->queues[prio];
1036
if (WARN_ON(!q->qpage))
1037
return -ENXIO;
1038
1039
/* Calculate max number of interrupts in that queue. */
1040
max = (q->msk + 1) - XIVE_Q_GAP;
1041
return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
1042
}
1043
1044
int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
1045
{
1046
struct kvm_vcpu *vcpu;
1047
unsigned long i;
1048
int rc;
1049
1050
/* Locate target server */
1051
vcpu = kvmppc_xive_find_server(kvm, *server);
1052
if (!vcpu) {
1053
pr_devel("Can't find server %d\n", *server);
1054
return -EINVAL;
1055
}
1056
1057
pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
1058
1059
/* Try pick it */
1060
rc = xive_try_pick_queue(vcpu, prio);
1061
if (rc == 0)
1062
return rc;
1063
1064
pr_devel(" .. failed, looking up candidate...\n");
1065
1066
/* Failed, pick another VCPU */
1067
kvm_for_each_vcpu(i, vcpu, kvm) {
1068
if (!vcpu->arch.xive_vcpu)
1069
continue;
1070
rc = xive_try_pick_queue(vcpu, prio);
1071
if (rc == 0) {
1072
*server = vcpu->arch.xive_vcpu->server_num;
1073
pr_devel(" found on 0x%x/%d\n", *server, prio);
1074
return rc;
1075
}
1076
}
1077
pr_devel(" no available target !\n");
1078
1079
/* No available target ! */
1080
return -EBUSY;
1081
}
1082
1083
static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
1084
struct kvmppc_xive_src_block *sb,
1085
struct kvmppc_xive_irq_state *state)
1086
{
1087
struct xive_irq_data *xd;
1088
u32 hw_num;
1089
u8 old_prio;
1090
u64 val;
1091
1092
/*
1093
* Take the lock, set masked, try again if racing
1094
* with H_EOI
1095
*/
1096
for (;;) {
1097
arch_spin_lock(&sb->lock);
1098
old_prio = state->guest_priority;
1099
state->guest_priority = MASKED;
1100
mb();
1101
if (!state->in_eoi)
1102
break;
1103
state->guest_priority = old_prio;
1104
arch_spin_unlock(&sb->lock);
1105
}
1106
1107
/* No change ? Bail */
1108
if (old_prio == MASKED)
1109
return old_prio;
1110
1111
/* Get the right irq */
1112
kvmppc_xive_select_irq(state, &hw_num, &xd);
1113
1114
/* Set PQ to 10, return old P and old Q and remember them */
1115
val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
1116
state->old_p = !!(val & 2);
1117
state->old_q = !!(val & 1);
1118
1119
/*
1120
* Synchronize hardware to sensure the queues are updated when
1121
* masking
1122
*/
1123
xive_native_sync_source(hw_num);
1124
1125
return old_prio;
1126
}
1127
1128
static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
1129
struct kvmppc_xive_irq_state *state)
1130
{
1131
/*
1132
* Take the lock try again if racing with H_EOI
1133
*/
1134
for (;;) {
1135
arch_spin_lock(&sb->lock);
1136
if (!state->in_eoi)
1137
break;
1138
arch_spin_unlock(&sb->lock);
1139
}
1140
}
1141
1142
static void xive_finish_unmask(struct kvmppc_xive *xive,
1143
struct kvmppc_xive_src_block *sb,
1144
struct kvmppc_xive_irq_state *state,
1145
u8 prio)
1146
{
1147
struct xive_irq_data *xd;
1148
u32 hw_num;
1149
1150
/* If we aren't changing a thing, move on */
1151
if (state->guest_priority != MASKED)
1152
goto bail;
1153
1154
/* Get the right irq */
1155
kvmppc_xive_select_irq(state, &hw_num, &xd);
1156
1157
/* Old Q set, set PQ to 11 */
1158
if (state->old_q)
1159
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
1160
1161
/*
1162
* If not old P, then perform an "effective" EOI,
1163
* on the source. This will handle the cases where
1164
* FW EOI is needed.
1165
*/
1166
if (!state->old_p)
1167
xive_vm_source_eoi(hw_num, xd);
1168
1169
/* Synchronize ordering and mark unmasked */
1170
mb();
1171
bail:
1172
state->guest_priority = prio;
1173
}
1174
1175
/*
1176
* Target an interrupt to a given server/prio, this will fallback
1177
* to another server if necessary and perform the HW targetting
1178
* updates as needed
1179
*
1180
* NOTE: Must be called with the state lock held
1181
*/
1182
static int xive_target_interrupt(struct kvm *kvm,
1183
struct kvmppc_xive_irq_state *state,
1184
u32 server, u8 prio)
1185
{
1186
struct kvmppc_xive *xive = kvm->arch.xive;
1187
u32 hw_num;
1188
int rc;
1189
1190
/*
1191
* This will return a tentative server and actual
1192
* priority. The count for that new target will have
1193
* already been incremented.
1194
*/
1195
rc = kvmppc_xive_select_target(kvm, &server, prio);
1196
1197
/*
1198
* We failed to find a target ? Not much we can do
1199
* at least until we support the GIQ.
1200
*/
1201
if (rc)
1202
return rc;
1203
1204
/*
1205
* Increment the old queue pending count if there
1206
* was one so that the old queue count gets adjusted later
1207
* when observed to be empty.
1208
*/
1209
if (state->act_priority != MASKED)
1210
xive_inc_q_pending(kvm,
1211
state->act_server,
1212
state->act_priority);
1213
/*
1214
* Update state and HW
1215
*/
1216
state->act_priority = prio;
1217
state->act_server = server;
1218
1219
/* Get the right irq */
1220
kvmppc_xive_select_irq(state, &hw_num, NULL);
1221
1222
return xive_native_configure_irq(hw_num,
1223
kvmppc_xive_vp(xive, server),
1224
prio, state->number);
1225
}
1226
1227
/*
1228
* Targetting rules: In order to avoid losing track of
1229
* pending interrupts across mask and unmask, which would
1230
* allow queue overflows, we implement the following rules:
1231
*
1232
* - Unless it was never enabled (or we run out of capacity)
1233
* an interrupt is always targetted at a valid server/queue
1234
* pair even when "masked" by the guest. This pair tends to
1235
* be the last one used but it can be changed under some
1236
* circumstances. That allows us to separate targetting
1237
* from masking, we only handle accounting during (re)targetting,
1238
* this also allows us to let an interrupt drain into its target
1239
* queue after masking, avoiding complex schemes to remove
1240
* interrupts out of remote processor queues.
1241
*
1242
* - When masking, we set PQ to 10 and save the previous value
1243
* of P and Q.
1244
*
1245
* - When unmasking, if saved Q was set, we set PQ to 11
1246
* otherwise we leave PQ to the HW state which will be either
1247
* 10 if nothing happened or 11 if the interrupt fired while
1248
* masked. Effectively we are OR'ing the previous Q into the
1249
* HW Q.
1250
*
1251
* Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
1252
* which will unmask the interrupt and shoot a new one if Q was
1253
* set.
1254
*
1255
* Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
1256
* effectively meaning an H_EOI from the guest is still expected
1257
* for that interrupt).
1258
*
1259
* - If H_EOI occurs while masked, we clear the saved P.
1260
*
1261
* - When changing target, we account on the new target and
1262
* increment a separate "pending" counter on the old one.
1263
* This pending counter will be used to decrement the old
1264
* target's count when its queue has been observed empty.
1265
*/
1266
1267
int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
1268
u32 priority)
1269
{
1270
struct kvmppc_xive *xive = kvm->arch.xive;
1271
struct kvmppc_xive_src_block *sb;
1272
struct kvmppc_xive_irq_state *state;
1273
u8 new_act_prio;
1274
int rc = 0;
1275
u16 idx;
1276
1277
if (!xive)
1278
return -ENODEV;
1279
1280
pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
1281
irq, server, priority);
1282
1283
/* First, check provisioning of queues */
1284
if (priority != MASKED) {
1285
mutex_lock(&xive->lock);
1286
rc = xive_check_provisioning(xive->kvm,
1287
xive_prio_from_guest(priority));
1288
mutex_unlock(&xive->lock);
1289
}
1290
if (rc) {
1291
pr_devel(" provisioning failure %d !\n", rc);
1292
return rc;
1293
}
1294
1295
sb = kvmppc_xive_find_source(xive, irq, &idx);
1296
if (!sb)
1297
return -EINVAL;
1298
state = &sb->irq_state[idx];
1299
1300
/*
1301
* We first handle masking/unmasking since the locking
1302
* might need to be retried due to EOIs, we'll handle
1303
* targetting changes later. These functions will return
1304
* with the SB lock held.
1305
*
1306
* xive_lock_and_mask() will also set state->guest_priority
1307
* but won't otherwise change other fields of the state.
1308
*
1309
* xive_lock_for_unmask will not actually unmask, this will
1310
* be done later by xive_finish_unmask() once the targetting
1311
* has been done, so we don't try to unmask an interrupt
1312
* that hasn't yet been targetted.
1313
*/
1314
if (priority == MASKED)
1315
xive_lock_and_mask(xive, sb, state);
1316
else
1317
xive_lock_for_unmask(sb, state);
1318
1319
1320
/*
1321
* Then we handle targetting.
1322
*
1323
* First calculate a new "actual priority"
1324
*/
1325
new_act_prio = state->act_priority;
1326
if (priority != MASKED)
1327
new_act_prio = xive_prio_from_guest(priority);
1328
1329
pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
1330
new_act_prio, state->act_server, state->act_priority);
1331
1332
/*
1333
* Then check if we actually need to change anything,
1334
*
1335
* The condition for re-targetting the interrupt is that
1336
* we have a valid new priority (new_act_prio is not 0xff)
1337
* and either the server or the priority changed.
1338
*
1339
* Note: If act_priority was ff and the new priority is
1340
* also ff, we don't do anything and leave the interrupt
1341
* untargetted. An attempt of doing an int_on on an
1342
* untargetted interrupt will fail. If that is a problem
1343
* we could initialize interrupts with valid default
1344
*/
1345
1346
if (new_act_prio != MASKED &&
1347
(state->act_server != server ||
1348
state->act_priority != new_act_prio))
1349
rc = xive_target_interrupt(kvm, state, server, new_act_prio);
1350
1351
/*
1352
* Perform the final unmasking of the interrupt source
1353
* if necessary
1354
*/
1355
if (priority != MASKED)
1356
xive_finish_unmask(xive, sb, state, priority);
1357
1358
/*
1359
* Finally Update saved_priority to match. Only int_on/off
1360
* set this field to a different value.
1361
*/
1362
state->saved_priority = priority;
1363
1364
arch_spin_unlock(&sb->lock);
1365
return rc;
1366
}
1367
1368
int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
1369
u32 *priority)
1370
{
1371
struct kvmppc_xive *xive = kvm->arch.xive;
1372
struct kvmppc_xive_src_block *sb;
1373
struct kvmppc_xive_irq_state *state;
1374
u16 idx;
1375
1376
if (!xive)
1377
return -ENODEV;
1378
1379
sb = kvmppc_xive_find_source(xive, irq, &idx);
1380
if (!sb)
1381
return -EINVAL;
1382
state = &sb->irq_state[idx];
1383
arch_spin_lock(&sb->lock);
1384
*server = state->act_server;
1385
*priority = state->guest_priority;
1386
arch_spin_unlock(&sb->lock);
1387
1388
return 0;
1389
}
1390
1391
int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
1392
{
1393
struct kvmppc_xive *xive = kvm->arch.xive;
1394
struct kvmppc_xive_src_block *sb;
1395
struct kvmppc_xive_irq_state *state;
1396
u16 idx;
1397
1398
if (!xive)
1399
return -ENODEV;
1400
1401
sb = kvmppc_xive_find_source(xive, irq, &idx);
1402
if (!sb)
1403
return -EINVAL;
1404
state = &sb->irq_state[idx];
1405
1406
pr_devel("int_on(irq=0x%x)\n", irq);
1407
1408
/*
1409
* Check if interrupt was not targetted
1410
*/
1411
if (state->act_priority == MASKED) {
1412
pr_devel("int_on on untargetted interrupt\n");
1413
return -EINVAL;
1414
}
1415
1416
/* If saved_priority is 0xff, do nothing */
1417
if (state->saved_priority == MASKED)
1418
return 0;
1419
1420
/*
1421
* Lock and unmask it.
1422
*/
1423
xive_lock_for_unmask(sb, state);
1424
xive_finish_unmask(xive, sb, state, state->saved_priority);
1425
arch_spin_unlock(&sb->lock);
1426
1427
return 0;
1428
}
1429
1430
int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
1431
{
1432
struct kvmppc_xive *xive = kvm->arch.xive;
1433
struct kvmppc_xive_src_block *sb;
1434
struct kvmppc_xive_irq_state *state;
1435
u16 idx;
1436
1437
if (!xive)
1438
return -ENODEV;
1439
1440
sb = kvmppc_xive_find_source(xive, irq, &idx);
1441
if (!sb)
1442
return -EINVAL;
1443
state = &sb->irq_state[idx];
1444
1445
pr_devel("int_off(irq=0x%x)\n", irq);
1446
1447
/*
1448
* Lock and mask
1449
*/
1450
state->saved_priority = xive_lock_and_mask(xive, sb, state);
1451
arch_spin_unlock(&sb->lock);
1452
1453
return 0;
1454
}
1455
1456
static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
1457
{
1458
struct kvmppc_xive_src_block *sb;
1459
struct kvmppc_xive_irq_state *state;
1460
u16 idx;
1461
1462
sb = kvmppc_xive_find_source(xive, irq, &idx);
1463
if (!sb)
1464
return false;
1465
state = &sb->irq_state[idx];
1466
if (!state->valid)
1467
return false;
1468
1469
/*
1470
* Trigger the IPI. This assumes we never restore a pass-through
1471
* interrupt which should be safe enough
1472
*/
1473
xive_irq_trigger(&state->ipi_data);
1474
1475
return true;
1476
}
1477
1478
u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
1479
{
1480
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1481
1482
if (!xc)
1483
return 0;
1484
1485
/* Return the per-cpu state for state saving/migration */
1486
return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
1487
(u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
1488
(u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
1489
}
1490
1491
int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
1492
{
1493
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1494
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1495
u8 cppr, mfrr;
1496
u32 xisr;
1497
1498
if (!xc || !xive)
1499
return -ENOENT;
1500
1501
/* Grab individual state fields. We don't use pending_pri */
1502
cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
1503
xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
1504
KVM_REG_PPC_ICP_XISR_MASK;
1505
mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
1506
1507
pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
1508
xc->server_num, cppr, mfrr, xisr);
1509
1510
/*
1511
* We can't update the state of a "pushed" VCPU, but that
1512
* shouldn't happen because the vcpu->mutex makes running a
1513
* vcpu mutually exclusive with doing one_reg get/set on it.
1514
*/
1515
if (WARN_ON(vcpu->arch.xive_pushed))
1516
return -EIO;
1517
1518
/* Update VCPU HW saved state */
1519
vcpu->arch.xive_saved_state.cppr = cppr;
1520
xc->hw_cppr = xc->cppr = cppr;
1521
1522
/*
1523
* Update MFRR state. If it's not 0xff, we mark the VCPU as
1524
* having a pending MFRR change, which will re-evaluate the
1525
* target. The VCPU will thus potentially get a spurious
1526
* interrupt but that's not a big deal.
1527
*/
1528
xc->mfrr = mfrr;
1529
if (mfrr < cppr)
1530
xive_irq_trigger(&xc->vp_ipi_data);
1531
1532
/*
1533
* Now saved XIRR is "interesting". It means there's something in
1534
* the legacy "1 element" queue... for an IPI we simply ignore it,
1535
* as the MFRR restore will handle that. For anything else we need
1536
* to force a resend of the source.
1537
* However the source may not have been setup yet. If that's the
1538
* case, we keep that info and increment a counter in the xive to
1539
* tell subsequent xive_set_source() to go look.
1540
*/
1541
if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
1542
xc->delayed_irq = xisr;
1543
xive->delayed_irqs++;
1544
pr_devel(" xisr restore delayed\n");
1545
}
1546
1547
return 0;
1548
}
1549
1550
int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
1551
unsigned long host_irq)
1552
{
1553
struct kvmppc_xive *xive = kvm->arch.xive;
1554
struct kvmppc_xive_src_block *sb;
1555
struct kvmppc_xive_irq_state *state;
1556
struct irq_data *host_data =
1557
irq_domain_get_irq_data(irq_get_default_domain(), host_irq);
1558
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
1559
u16 idx;
1560
u8 prio;
1561
int rc;
1562
1563
if (!xive)
1564
return -ENODEV;
1565
1566
pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
1567
__func__, guest_irq, host_irq, hw_irq);
1568
1569
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1570
if (!sb)
1571
return -EINVAL;
1572
state = &sb->irq_state[idx];
1573
1574
/*
1575
* Mark the passed-through interrupt as going to a VCPU,
1576
* this will prevent further EOIs and similar operations
1577
* from the XIVE code. It will also mask the interrupt
1578
* to either PQ=10 or 11 state, the latter if the interrupt
1579
* is pending. This will allow us to unmask or retrigger it
1580
* after routing it to the guest with a simple EOI.
1581
*
1582
* The "state" argument is a "token", all it needs is to be
1583
* non-NULL to switch to passed-through or NULL for the
1584
* other way around. We may not yet have an actual VCPU
1585
* target here and we don't really care.
1586
*/
1587
rc = irq_set_vcpu_affinity(host_irq, state);
1588
if (rc) {
1589
pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
1590
return rc;
1591
}
1592
1593
/*
1594
* Mask and read state of IPI. We need to know if its P bit
1595
* is set as that means it's potentially already using a
1596
* queue entry in the target
1597
*/
1598
prio = xive_lock_and_mask(xive, sb, state);
1599
pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
1600
state->old_p, state->old_q);
1601
1602
/* Turn the IPI hard off */
1603
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1604
1605
/*
1606
* Reset ESB guest mapping. Needed when ESB pages are exposed
1607
* to the guest in XIVE native mode
1608
*/
1609
if (xive->ops && xive->ops->reset_mapped)
1610
xive->ops->reset_mapped(kvm, guest_irq);
1611
1612
/* Grab info about irq */
1613
state->pt_number = hw_irq;
1614
state->pt_data = irq_data_get_irq_chip_data(host_data);
1615
1616
/*
1617
* Configure the IRQ to match the existing configuration of
1618
* the IPI if it was already targetted. Otherwise this will
1619
* mask the interrupt in a lossy way (act_priority is 0xff)
1620
* which is fine for a never started interrupt.
1621
*/
1622
xive_native_configure_irq(hw_irq,
1623
kvmppc_xive_vp(xive, state->act_server),
1624
state->act_priority, state->number);
1625
1626
/*
1627
* We do an EOI to enable the interrupt (and retrigger if needed)
1628
* if the guest has the interrupt unmasked and the P bit was *not*
1629
* set in the IPI. If it was set, we know a slot may still be in
1630
* use in the target queue thus we have to wait for a guest
1631
* originated EOI
1632
*/
1633
if (prio != MASKED && !state->old_p)
1634
xive_vm_source_eoi(hw_irq, state->pt_data);
1635
1636
/* Clear old_p/old_q as they are no longer relevant */
1637
state->old_p = state->old_q = false;
1638
1639
/* Restore guest prio (unlocks EOI) */
1640
mb();
1641
state->guest_priority = prio;
1642
arch_spin_unlock(&sb->lock);
1643
1644
return 0;
1645
}
1646
EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
1647
1648
int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
1649
unsigned long host_irq)
1650
{
1651
struct kvmppc_xive *xive = kvm->arch.xive;
1652
struct kvmppc_xive_src_block *sb;
1653
struct kvmppc_xive_irq_state *state;
1654
u16 idx;
1655
u8 prio;
1656
int rc;
1657
1658
if (!xive)
1659
return -ENODEV;
1660
1661
pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
1662
1663
sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1664
if (!sb)
1665
return -EINVAL;
1666
state = &sb->irq_state[idx];
1667
1668
/*
1669
* Mask and read state of IRQ. We need to know if its P bit
1670
* is set as that means it's potentially already using a
1671
* queue entry in the target
1672
*/
1673
prio = xive_lock_and_mask(xive, sb, state);
1674
pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1675
state->old_p, state->old_q);
1676
1677
/*
1678
* If old_p is set, the interrupt is pending, we switch it to
1679
* PQ=11. This will force a resend in the host so the interrupt
1680
* isn't lost to whatever host driver may pick it up
1681
*/
1682
if (state->old_p)
1683
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1684
1685
/* Release the passed-through interrupt to the host */
1686
rc = irq_set_vcpu_affinity(host_irq, NULL);
1687
if (rc) {
1688
pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
1689
return rc;
1690
}
1691
1692
/* Forget about the IRQ */
1693
state->pt_number = 0;
1694
state->pt_data = NULL;
1695
1696
/*
1697
* Reset ESB guest mapping. Needed when ESB pages are exposed
1698
* to the guest in XIVE native mode
1699
*/
1700
if (xive->ops && xive->ops->reset_mapped) {
1701
xive->ops->reset_mapped(kvm, guest_irq);
1702
}
1703
1704
/* Reconfigure the IPI */
1705
xive_native_configure_irq(state->ipi_number,
1706
kvmppc_xive_vp(xive, state->act_server),
1707
state->act_priority, state->number);
1708
1709
/*
1710
* If old_p is set (we have a queue entry potentially
1711
* occupied) or the interrupt is masked, we set the IPI
1712
* to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1713
*/
1714
if (prio == MASKED || state->old_p)
1715
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1716
else
1717
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1718
1719
/* Restore guest prio (unlocks EOI) */
1720
mb();
1721
state->guest_priority = prio;
1722
arch_spin_unlock(&sb->lock);
1723
1724
return 0;
1725
}
1726
EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1727
1728
void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1729
{
1730
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1731
struct kvm *kvm = vcpu->kvm;
1732
struct kvmppc_xive *xive = kvm->arch.xive;
1733
int i, j;
1734
1735
for (i = 0; i <= xive->max_sbid; i++) {
1736
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1737
1738
if (!sb)
1739
continue;
1740
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1741
struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1742
1743
if (!state->valid)
1744
continue;
1745
if (state->act_priority == MASKED)
1746
continue;
1747
if (state->act_server != xc->server_num)
1748
continue;
1749
1750
/* Clean it up */
1751
arch_spin_lock(&sb->lock);
1752
state->act_priority = MASKED;
1753
xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1754
xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1755
if (state->pt_number) {
1756
xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1757
xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1758
}
1759
arch_spin_unlock(&sb->lock);
1760
}
1761
}
1762
1763
/* Disable vcpu's escalation interrupt */
1764
if (vcpu->arch.xive_esc_on) {
1765
__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1766
XIVE_ESB_SET_PQ_01));
1767
vcpu->arch.xive_esc_on = false;
1768
}
1769
1770
/*
1771
* Clear pointers to escalation interrupt ESB.
1772
* This is safe because the vcpu->mutex is held, preventing
1773
* any other CPU from concurrently executing a KVM_RUN ioctl.
1774
*/
1775
vcpu->arch.xive_esc_vaddr = 0;
1776
vcpu->arch.xive_esc_raddr = 0;
1777
}
1778
1779
/*
1780
* In single escalation mode, the escalation interrupt is marked so
1781
* that EOI doesn't re-enable it, but just sets the stale_p flag to
1782
* indicate that the P bit has already been dealt with. However, the
1783
* assembly code that enters the guest sets PQ to 00 without clearing
1784
* stale_p (because it has no easy way to address it). Hence we have
1785
* to adjust stale_p before shutting down the interrupt.
1786
*/
1787
void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq)
1788
{
1789
struct xive_irq_data *xd = irq_get_chip_data(irq);
1790
1791
/*
1792
* This slightly odd sequence gives the right result
1793
* (i.e. stale_p set if xive_esc_on is false) even if
1794
* we race with xive_esc_irq() and xive_irq_eoi().
1795
*/
1796
xd->stale_p = false;
1797
smp_mb(); /* paired with smb_wmb in xive_esc_irq */
1798
if (!vcpu->arch.xive_esc_on)
1799
xd->stale_p = true;
1800
}
1801
1802
void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1803
{
1804
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1805
struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1806
int i;
1807
1808
if (!kvmppc_xics_enabled(vcpu))
1809
return;
1810
1811
if (!xc)
1812
return;
1813
1814
pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1815
1816
/* Ensure no interrupt is still routed to that VP */
1817
xc->valid = false;
1818
kvmppc_xive_disable_vcpu_interrupts(vcpu);
1819
1820
/* Mask the VP IPI */
1821
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1822
1823
/* Free escalations */
1824
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1825
if (xc->esc_virq[i]) {
1826
if (kvmppc_xive_has_single_escalation(xc->xive))
1827
xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]);
1828
free_irq(xc->esc_virq[i], vcpu);
1829
irq_dispose_mapping(xc->esc_virq[i]);
1830
kfree(xc->esc_virq_names[i]);
1831
}
1832
}
1833
1834
/* Disable the VP */
1835
xive_native_disable_vp(xc->vp_id);
1836
1837
/* Clear the cam word so guest entry won't try to push context */
1838
vcpu->arch.xive_cam_word = 0;
1839
1840
/* Free the queues */
1841
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1842
struct xive_q *q = &xc->queues[i];
1843
1844
xive_native_disable_queue(xc->vp_id, q, i);
1845
if (q->qpage) {
1846
free_pages((unsigned long)q->qpage,
1847
xive->q_page_order);
1848
q->qpage = NULL;
1849
}
1850
}
1851
1852
/* Free the IPI */
1853
if (xc->vp_ipi) {
1854
xive_cleanup_irq_data(&xc->vp_ipi_data);
1855
xive_native_free_irq(xc->vp_ipi);
1856
}
1857
/* Free the VP */
1858
kfree(xc);
1859
1860
/* Cleanup the vcpu */
1861
vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1862
vcpu->arch.xive_vcpu = NULL;
1863
}
1864
1865
static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1866
{
1867
/* We have a block of xive->nr_servers VPs. We just need to check
1868
* packed vCPU ids are below that.
1869
*/
1870
return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1871
}
1872
1873
int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1874
{
1875
u32 vp_id;
1876
1877
if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1878
pr_devel("Out of bounds !\n");
1879
return -EINVAL;
1880
}
1881
1882
if (xive->vp_base == XIVE_INVALID_VP) {
1883
xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1884
pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1885
1886
if (xive->vp_base == XIVE_INVALID_VP)
1887
return -ENOSPC;
1888
}
1889
1890
vp_id = kvmppc_xive_vp(xive, cpu);
1891
if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1892
pr_devel("Duplicate !\n");
1893
return -EEXIST;
1894
}
1895
1896
*vp = vp_id;
1897
1898
return 0;
1899
}
1900
1901
int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1902
struct kvm_vcpu *vcpu, u32 cpu)
1903
{
1904
struct kvmppc_xive *xive = dev->private;
1905
struct kvmppc_xive_vcpu *xc;
1906
int i, r = -EBUSY;
1907
u32 vp_id;
1908
1909
pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1910
1911
if (dev->ops != &kvm_xive_ops) {
1912
pr_devel("Wrong ops !\n");
1913
return -EPERM;
1914
}
1915
if (xive->kvm != vcpu->kvm)
1916
return -EPERM;
1917
if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1918
return -EBUSY;
1919
1920
/* We need to synchronize with queue provisioning */
1921
mutex_lock(&xive->lock);
1922
1923
r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1924
if (r)
1925
goto bail;
1926
1927
xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1928
if (!xc) {
1929
r = -ENOMEM;
1930
goto bail;
1931
}
1932
1933
vcpu->arch.xive_vcpu = xc;
1934
xc->xive = xive;
1935
xc->vcpu = vcpu;
1936
xc->server_num = cpu;
1937
xc->vp_id = vp_id;
1938
xc->mfrr = 0xff;
1939
xc->valid = true;
1940
1941
r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1942
if (r)
1943
goto bail;
1944
1945
if (!kvmppc_xive_check_save_restore(vcpu)) {
1946
pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
1947
r = -EIO;
1948
goto bail;
1949
}
1950
1951
/* Configure VCPU fields for use by assembly push/pull */
1952
vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1953
vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1954
1955
/* Allocate IPI */
1956
xc->vp_ipi = xive_native_alloc_irq();
1957
if (!xc->vp_ipi) {
1958
pr_err("Failed to allocate xive irq for VCPU IPI\n");
1959
r = -EIO;
1960
goto bail;
1961
}
1962
pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1963
1964
r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1965
if (r)
1966
goto bail;
1967
1968
/*
1969
* Enable the VP first as the single escalation mode will
1970
* affect escalation interrupts numbering
1971
*/
1972
r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
1973
if (r) {
1974
pr_err("Failed to enable VP in OPAL, err %d\n", r);
1975
goto bail;
1976
}
1977
1978
/*
1979
* Initialize queues. Initially we set them all for no queueing
1980
* and we enable escalation for queue 0 only which we'll use for
1981
* our mfrr change notifications. If the VCPU is hot-plugged, we
1982
* do handle provisioning however based on the existing "map"
1983
* of enabled queues.
1984
*/
1985
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1986
struct xive_q *q = &xc->queues[i];
1987
1988
/* Single escalation, no queue 7 */
1989
if (i == 7 && kvmppc_xive_has_single_escalation(xive))
1990
break;
1991
1992
/* Is queue already enabled ? Provision it */
1993
if (xive->qmap & (1 << i)) {
1994
r = xive_provision_queue(vcpu, i);
1995
if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
1996
kvmppc_xive_attach_escalation(
1997
vcpu, i, kvmppc_xive_has_single_escalation(xive));
1998
if (r)
1999
goto bail;
2000
} else {
2001
r = xive_native_configure_queue(xc->vp_id,
2002
q, i, NULL, 0, true);
2003
if (r) {
2004
pr_err("Failed to configure queue %d for VCPU %d\n",
2005
i, cpu);
2006
goto bail;
2007
}
2008
}
2009
}
2010
2011
/* If not done above, attach priority 0 escalation */
2012
r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
2013
if (r)
2014
goto bail;
2015
2016
/* Route the IPI */
2017
r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
2018
if (!r)
2019
xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
2020
2021
bail:
2022
mutex_unlock(&xive->lock);
2023
if (r) {
2024
kvmppc_xive_cleanup_vcpu(vcpu);
2025
return r;
2026
}
2027
2028
vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
2029
return 0;
2030
}
2031
2032
/*
2033
* Scanning of queues before/after migration save
2034
*/
2035
static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
2036
{
2037
struct kvmppc_xive_src_block *sb;
2038
struct kvmppc_xive_irq_state *state;
2039
u16 idx;
2040
2041
sb = kvmppc_xive_find_source(xive, irq, &idx);
2042
if (!sb)
2043
return;
2044
2045
state = &sb->irq_state[idx];
2046
2047
/* Some sanity checking */
2048
if (!state->valid) {
2049
pr_err("invalid irq 0x%x in cpu queue!\n", irq);
2050
return;
2051
}
2052
2053
/*
2054
* If the interrupt is in a queue it should have P set.
2055
* We warn so that gets reported. A backtrace isn't useful
2056
* so no need to use a WARN_ON.
2057
*/
2058
if (!state->saved_p)
2059
pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
2060
2061
/* Set flag */
2062
state->in_queue = true;
2063
}
2064
2065
static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
2066
struct kvmppc_xive_src_block *sb,
2067
u32 irq)
2068
{
2069
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2070
2071
if (!state->valid)
2072
return;
2073
2074
/* Mask and save state, this will also sync HW queues */
2075
state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
2076
2077
/* Transfer P and Q */
2078
state->saved_p = state->old_p;
2079
state->saved_q = state->old_q;
2080
2081
/* Unlock */
2082
arch_spin_unlock(&sb->lock);
2083
}
2084
2085
static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
2086
struct kvmppc_xive_src_block *sb,
2087
u32 irq)
2088
{
2089
struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
2090
2091
if (!state->valid)
2092
return;
2093
2094
/*
2095
* Lock / exclude EOI (not technically necessary if the
2096
* guest isn't running concurrently. If this becomes a
2097
* performance issue we can probably remove the lock.
2098
*/
2099
xive_lock_for_unmask(sb, state);
2100
2101
/* Restore mask/prio if it wasn't masked */
2102
if (state->saved_scan_prio != MASKED)
2103
xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
2104
2105
/* Unlock */
2106
arch_spin_unlock(&sb->lock);
2107
}
2108
2109
static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
2110
{
2111
u32 idx = q->idx;
2112
u32 toggle = q->toggle;
2113
u32 irq;
2114
2115
do {
2116
irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
2117
if (irq > XICS_IPI)
2118
xive_pre_save_set_queued(xive, irq);
2119
} while(irq);
2120
}
2121
2122
static void xive_pre_save_scan(struct kvmppc_xive *xive)
2123
{
2124
struct kvm_vcpu *vcpu = NULL;
2125
unsigned long i;
2126
int j;
2127
2128
/*
2129
* See comment in xive_get_source() about how this
2130
* work. Collect a stable state for all interrupts
2131
*/
2132
for (i = 0; i <= xive->max_sbid; i++) {
2133
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2134
if (!sb)
2135
continue;
2136
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2137
xive_pre_save_mask_irq(xive, sb, j);
2138
}
2139
2140
/* Then scan the queues and update the "in_queue" flag */
2141
kvm_for_each_vcpu(i, vcpu, xive->kvm) {
2142
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2143
if (!xc)
2144
continue;
2145
for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
2146
if (xc->queues[j].qpage)
2147
xive_pre_save_queue(xive, &xc->queues[j]);
2148
}
2149
}
2150
2151
/* Finally restore interrupt states */
2152
for (i = 0; i <= xive->max_sbid; i++) {
2153
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2154
if (!sb)
2155
continue;
2156
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2157
xive_pre_save_unmask_irq(xive, sb, j);
2158
}
2159
}
2160
2161
static void xive_post_save_scan(struct kvmppc_xive *xive)
2162
{
2163
u32 i, j;
2164
2165
/* Clear all the in_queue flags */
2166
for (i = 0; i <= xive->max_sbid; i++) {
2167
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2168
if (!sb)
2169
continue;
2170
for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
2171
sb->irq_state[j].in_queue = false;
2172
}
2173
2174
/* Next get_source() will do a new scan */
2175
xive->saved_src_count = 0;
2176
}
2177
2178
/*
2179
* This returns the source configuration and state to user space.
2180
*/
2181
static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
2182
{
2183
struct kvmppc_xive_src_block *sb;
2184
struct kvmppc_xive_irq_state *state;
2185
u64 __user *ubufp = (u64 __user *) addr;
2186
u64 val, prio;
2187
u16 idx;
2188
2189
sb = kvmppc_xive_find_source(xive, irq, &idx);
2190
if (!sb)
2191
return -ENOENT;
2192
2193
state = &sb->irq_state[idx];
2194
2195
if (!state->valid)
2196
return -ENOENT;
2197
2198
pr_devel("get_source(%ld)...\n", irq);
2199
2200
/*
2201
* So to properly save the state into something that looks like a
2202
* XICS migration stream we cannot treat interrupts individually.
2203
*
2204
* We need, instead, mask them all (& save their previous PQ state)
2205
* to get a stable state in the HW, then sync them to ensure that
2206
* any interrupt that had already fired hits its queue, and finally
2207
* scan all the queues to collect which interrupts are still present
2208
* in the queues, so we can set the "pending" flag on them and
2209
* they can be resent on restore.
2210
*
2211
* So we do it all when the "first" interrupt gets saved, all the
2212
* state is collected at that point, the rest of xive_get_source()
2213
* will merely collect and convert that state to the expected
2214
* userspace bit mask.
2215
*/
2216
if (xive->saved_src_count == 0)
2217
xive_pre_save_scan(xive);
2218
xive->saved_src_count++;
2219
2220
/* Convert saved state into something compatible with xics */
2221
val = state->act_server;
2222
prio = state->saved_scan_prio;
2223
2224
if (prio == MASKED) {
2225
val |= KVM_XICS_MASKED;
2226
prio = state->saved_priority;
2227
}
2228
val |= prio << KVM_XICS_PRIORITY_SHIFT;
2229
if (state->lsi) {
2230
val |= KVM_XICS_LEVEL_SENSITIVE;
2231
if (state->saved_p)
2232
val |= KVM_XICS_PENDING;
2233
} else {
2234
if (state->saved_p)
2235
val |= KVM_XICS_PRESENTED;
2236
2237
if (state->saved_q)
2238
val |= KVM_XICS_QUEUED;
2239
2240
/*
2241
* We mark it pending (which will attempt a re-delivery)
2242
* if we are in a queue *or* we were masked and had
2243
* Q set which is equivalent to the XICS "masked pending"
2244
* state
2245
*/
2246
if (state->in_queue || (prio == MASKED && state->saved_q))
2247
val |= KVM_XICS_PENDING;
2248
}
2249
2250
/*
2251
* If that was the last interrupt saved, reset the
2252
* in_queue flags
2253
*/
2254
if (xive->saved_src_count == xive->src_count)
2255
xive_post_save_scan(xive);
2256
2257
/* Copy the result to userspace */
2258
if (put_user(val, ubufp))
2259
return -EFAULT;
2260
2261
return 0;
2262
}
2263
2264
struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
2265
struct kvmppc_xive *xive, int irq)
2266
{
2267
struct kvmppc_xive_src_block *sb;
2268
int i, bid;
2269
2270
bid = irq >> KVMPPC_XICS_ICS_SHIFT;
2271
2272
mutex_lock(&xive->lock);
2273
2274
/* block already exists - somebody else got here first */
2275
if (xive->src_blocks[bid])
2276
goto out;
2277
2278
/* Create the ICS */
2279
sb = kzalloc(sizeof(*sb), GFP_KERNEL);
2280
if (!sb)
2281
goto out;
2282
2283
sb->id = bid;
2284
2285
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2286
sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
2287
sb->irq_state[i].eisn = 0;
2288
sb->irq_state[i].guest_priority = MASKED;
2289
sb->irq_state[i].saved_priority = MASKED;
2290
sb->irq_state[i].act_priority = MASKED;
2291
}
2292
smp_wmb();
2293
xive->src_blocks[bid] = sb;
2294
2295
if (bid > xive->max_sbid)
2296
xive->max_sbid = bid;
2297
2298
out:
2299
mutex_unlock(&xive->lock);
2300
return xive->src_blocks[bid];
2301
}
2302
2303
static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
2304
{
2305
struct kvm *kvm = xive->kvm;
2306
struct kvm_vcpu *vcpu = NULL;
2307
unsigned long i;
2308
2309
kvm_for_each_vcpu(i, vcpu, kvm) {
2310
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2311
2312
if (!xc)
2313
continue;
2314
2315
if (xc->delayed_irq == irq) {
2316
xc->delayed_irq = 0;
2317
xive->delayed_irqs--;
2318
return true;
2319
}
2320
}
2321
return false;
2322
}
2323
2324
static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
2325
{
2326
struct kvmppc_xive_src_block *sb;
2327
struct kvmppc_xive_irq_state *state;
2328
u64 __user *ubufp = (u64 __user *) addr;
2329
u16 idx;
2330
u64 val;
2331
u8 act_prio, guest_prio;
2332
u32 server;
2333
int rc = 0;
2334
2335
if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
2336
return -ENOENT;
2337
2338
pr_devel("set_source(irq=0x%lx)\n", irq);
2339
2340
/* Find the source */
2341
sb = kvmppc_xive_find_source(xive, irq, &idx);
2342
if (!sb) {
2343
pr_devel("No source, creating source block...\n");
2344
sb = kvmppc_xive_create_src_block(xive, irq);
2345
if (!sb) {
2346
pr_devel("Failed to create block...\n");
2347
return -ENOMEM;
2348
}
2349
}
2350
state = &sb->irq_state[idx];
2351
2352
/* Read user passed data */
2353
if (get_user(val, ubufp)) {
2354
pr_devel("fault getting user info !\n");
2355
return -EFAULT;
2356
}
2357
2358
server = val & KVM_XICS_DESTINATION_MASK;
2359
guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
2360
2361
pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
2362
val, server, guest_prio);
2363
2364
/*
2365
* If the source doesn't already have an IPI, allocate
2366
* one and get the corresponding data
2367
*/
2368
if (!state->ipi_number) {
2369
state->ipi_number = xive_native_alloc_irq();
2370
if (state->ipi_number == 0) {
2371
pr_devel("Failed to allocate IPI !\n");
2372
return -ENOMEM;
2373
}
2374
xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
2375
pr_devel(" src_ipi=0x%x\n", state->ipi_number);
2376
}
2377
2378
/*
2379
* We use lock_and_mask() to set us in the right masked
2380
* state. We will override that state from the saved state
2381
* further down, but this will handle the cases of interrupts
2382
* that need FW masking. We set the initial guest_priority to
2383
* 0 before calling it to ensure it actually performs the masking.
2384
*/
2385
state->guest_priority = 0;
2386
xive_lock_and_mask(xive, sb, state);
2387
2388
/*
2389
* Now, we select a target if we have one. If we don't we
2390
* leave the interrupt untargetted. It means that an interrupt
2391
* can become "untargetted" across migration if it was masked
2392
* by set_xive() but there is little we can do about it.
2393
*/
2394
2395
/* First convert prio and mark interrupt as untargetted */
2396
act_prio = xive_prio_from_guest(guest_prio);
2397
state->act_priority = MASKED;
2398
2399
/*
2400
* We need to drop the lock due to the mutex below. Hopefully
2401
* nothing is touching that interrupt yet since it hasn't been
2402
* advertized to a running guest yet
2403
*/
2404
arch_spin_unlock(&sb->lock);
2405
2406
/* If we have a priority target the interrupt */
2407
if (act_prio != MASKED) {
2408
/* First, check provisioning of queues */
2409
mutex_lock(&xive->lock);
2410
rc = xive_check_provisioning(xive->kvm, act_prio);
2411
mutex_unlock(&xive->lock);
2412
2413
/* Target interrupt */
2414
if (rc == 0)
2415
rc = xive_target_interrupt(xive->kvm, state,
2416
server, act_prio);
2417
/*
2418
* If provisioning or targetting failed, leave it
2419
* alone and masked. It will remain disabled until
2420
* the guest re-targets it.
2421
*/
2422
}
2423
2424
/*
2425
* Find out if this was a delayed irq stashed in an ICP,
2426
* in which case, treat it as pending
2427
*/
2428
if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
2429
val |= KVM_XICS_PENDING;
2430
pr_devel(" Found delayed ! forcing PENDING !\n");
2431
}
2432
2433
/* Cleanup the SW state */
2434
state->old_p = false;
2435
state->old_q = false;
2436
state->lsi = false;
2437
state->asserted = false;
2438
2439
/* Restore LSI state */
2440
if (val & KVM_XICS_LEVEL_SENSITIVE) {
2441
state->lsi = true;
2442
if (val & KVM_XICS_PENDING)
2443
state->asserted = true;
2444
pr_devel(" LSI ! Asserted=%d\n", state->asserted);
2445
}
2446
2447
/*
2448
* Restore P and Q. If the interrupt was pending, we
2449
* force Q and !P, which will trigger a resend.
2450
*
2451
* That means that a guest that had both an interrupt
2452
* pending (queued) and Q set will restore with only
2453
* one instance of that interrupt instead of 2, but that
2454
* is perfectly fine as coalescing interrupts that haven't
2455
* been presented yet is always allowed.
2456
*/
2457
if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
2458
state->old_p = true;
2459
if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
2460
state->old_q = true;
2461
2462
pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
2463
2464
/*
2465
* If the interrupt was unmasked, update guest priority and
2466
* perform the appropriate state transition and do a
2467
* re-trigger if necessary.
2468
*/
2469
if (val & KVM_XICS_MASKED) {
2470
pr_devel(" masked, saving prio\n");
2471
state->guest_priority = MASKED;
2472
state->saved_priority = guest_prio;
2473
} else {
2474
pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
2475
xive_finish_unmask(xive, sb, state, guest_prio);
2476
state->saved_priority = guest_prio;
2477
}
2478
2479
/* Increment the number of valid sources and mark this one valid */
2480
if (!state->valid)
2481
xive->src_count++;
2482
state->valid = true;
2483
2484
return 0;
2485
}
2486
2487
int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
2488
bool line_status)
2489
{
2490
struct kvmppc_xive *xive = kvm->arch.xive;
2491
struct kvmppc_xive_src_block *sb;
2492
struct kvmppc_xive_irq_state *state;
2493
u16 idx;
2494
2495
if (!xive)
2496
return -ENODEV;
2497
2498
sb = kvmppc_xive_find_source(xive, irq, &idx);
2499
if (!sb)
2500
return -EINVAL;
2501
2502
/* Perform locklessly .... (we need to do some RCUisms here...) */
2503
state = &sb->irq_state[idx];
2504
if (!state->valid)
2505
return -EINVAL;
2506
2507
/* We don't allow a trigger on a passed-through interrupt */
2508
if (state->pt_number)
2509
return -EINVAL;
2510
2511
if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
2512
state->asserted = true;
2513
else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
2514
state->asserted = false;
2515
return 0;
2516
}
2517
2518
/* Trigger the IPI */
2519
xive_irq_trigger(&state->ipi_data);
2520
2521
return 0;
2522
}
2523
2524
int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
2525
{
2526
u32 __user *ubufp = (u32 __user *) addr;
2527
u32 nr_servers;
2528
int rc = 0;
2529
2530
if (get_user(nr_servers, ubufp))
2531
return -EFAULT;
2532
2533
pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
2534
2535
if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
2536
return -EINVAL;
2537
2538
mutex_lock(&xive->lock);
2539
if (xive->vp_base != XIVE_INVALID_VP)
2540
/* The VP block is allocated once and freed when the device
2541
* is released. Better not allow to change its size since its
2542
* used by connect_vcpu to validate vCPU ids are valid (eg,
2543
* setting it back to a higher value could allow connect_vcpu
2544
* to come up with a VP id that goes beyond the VP block, which
2545
* is likely to cause a crash in OPAL).
2546
*/
2547
rc = -EBUSY;
2548
else if (nr_servers > KVM_MAX_VCPUS)
2549
/* We don't need more servers. Higher vCPU ids get packed
2550
* down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
2551
*/
2552
xive->nr_servers = KVM_MAX_VCPUS;
2553
else
2554
xive->nr_servers = nr_servers;
2555
2556
mutex_unlock(&xive->lock);
2557
2558
return rc;
2559
}
2560
2561
static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2562
{
2563
struct kvmppc_xive *xive = dev->private;
2564
2565
/* We honor the existing XICS ioctl */
2566
switch (attr->group) {
2567
case KVM_DEV_XICS_GRP_SOURCES:
2568
return xive_set_source(xive, attr->attr, attr->addr);
2569
case KVM_DEV_XICS_GRP_CTRL:
2570
switch (attr->attr) {
2571
case KVM_DEV_XICS_NR_SERVERS:
2572
return kvmppc_xive_set_nr_servers(xive, attr->addr);
2573
}
2574
}
2575
return -ENXIO;
2576
}
2577
2578
static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2579
{
2580
struct kvmppc_xive *xive = dev->private;
2581
2582
/* We honor the existing XICS ioctl */
2583
switch (attr->group) {
2584
case KVM_DEV_XICS_GRP_SOURCES:
2585
return xive_get_source(xive, attr->attr, attr->addr);
2586
}
2587
return -ENXIO;
2588
}
2589
2590
static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2591
{
2592
/* We honor the same limits as XICS, at least for now */
2593
switch (attr->group) {
2594
case KVM_DEV_XICS_GRP_SOURCES:
2595
if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
2596
attr->attr < KVMPPC_XICS_NR_IRQS)
2597
return 0;
2598
break;
2599
case KVM_DEV_XICS_GRP_CTRL:
2600
switch (attr->attr) {
2601
case KVM_DEV_XICS_NR_SERVERS:
2602
return 0;
2603
}
2604
}
2605
return -ENXIO;
2606
}
2607
2608
static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
2609
{
2610
xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
2611
xive_native_configure_irq(hw_num, 0, MASKED, 0);
2612
}
2613
2614
void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
2615
{
2616
int i;
2617
2618
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2619
struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2620
2621
if (!state->valid)
2622
continue;
2623
2624
kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
2625
xive_cleanup_irq_data(&state->ipi_data);
2626
xive_native_free_irq(state->ipi_number);
2627
2628
/* Pass-through, cleanup too but keep IRQ hw data */
2629
if (state->pt_number)
2630
kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
2631
2632
state->valid = false;
2633
}
2634
}
2635
2636
/*
2637
* Called when device fd is closed. kvm->lock is held.
2638
*/
2639
static void kvmppc_xive_release(struct kvm_device *dev)
2640
{
2641
struct kvmppc_xive *xive = dev->private;
2642
struct kvm *kvm = xive->kvm;
2643
struct kvm_vcpu *vcpu;
2644
unsigned long i;
2645
2646
pr_devel("Releasing xive device\n");
2647
2648
/*
2649
* Since this is the device release function, we know that
2650
* userspace does not have any open fd referring to the
2651
* device. Therefore there can not be any of the device
2652
* attribute set/get functions being executed concurrently,
2653
* and similarly, the connect_vcpu and set/clr_mapped
2654
* functions also cannot be being executed.
2655
*/
2656
2657
debugfs_remove(xive->dentry);
2658
2659
/*
2660
* We should clean up the vCPU interrupt presenters first.
2661
*/
2662
kvm_for_each_vcpu(i, vcpu, kvm) {
2663
/*
2664
* Take vcpu->mutex to ensure that no one_reg get/set ioctl
2665
* (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2666
* Holding the vcpu->mutex also means that the vcpu cannot
2667
* be executing the KVM_RUN ioctl, and therefore it cannot
2668
* be executing the XIVE push or pull code or accessing
2669
* the XIVE MMIO regions.
2670
*/
2671
mutex_lock(&vcpu->mutex);
2672
kvmppc_xive_cleanup_vcpu(vcpu);
2673
mutex_unlock(&vcpu->mutex);
2674
}
2675
2676
/*
2677
* Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2678
* and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2679
* against xive code getting called during vcpu execution or
2680
* set/get one_reg operations.
2681
*/
2682
kvm->arch.xive = NULL;
2683
2684
/* Mask and free interrupts */
2685
for (i = 0; i <= xive->max_sbid; i++) {
2686
if (xive->src_blocks[i])
2687
kvmppc_xive_free_sources(xive->src_blocks[i]);
2688
kfree(xive->src_blocks[i]);
2689
xive->src_blocks[i] = NULL;
2690
}
2691
2692
if (xive->vp_base != XIVE_INVALID_VP)
2693
xive_native_free_vp_block(xive->vp_base);
2694
2695
/*
2696
* A reference of the kvmppc_xive pointer is now kept under
2697
* the xive_devices struct of the machine for reuse. It is
2698
* freed when the VM is destroyed for now until we fix all the
2699
* execution paths.
2700
*/
2701
2702
kfree(dev);
2703
}
2704
2705
/*
2706
* When the guest chooses the interrupt mode (XICS legacy or XIVE
2707
* native), the VM will switch of KVM device. The previous device will
2708
* be "released" before the new one is created.
2709
*
2710
* Until we are sure all execution paths are well protected, provide a
2711
* fail safe (transitional) method for device destruction, in which
2712
* the XIVE device pointer is recycled and not directly freed.
2713
*/
2714
struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2715
{
2716
struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2717
&kvm->arch.xive_devices.native :
2718
&kvm->arch.xive_devices.xics_on_xive;
2719
struct kvmppc_xive *xive = *kvm_xive_device;
2720
2721
if (!xive) {
2722
xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2723
*kvm_xive_device = xive;
2724
} else {
2725
memset(xive, 0, sizeof(*xive));
2726
}
2727
2728
return xive;
2729
}
2730
2731
/*
2732
* Create a XICS device with XIVE backend. kvm->lock is held.
2733
*/
2734
static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2735
{
2736
struct kvmppc_xive *xive;
2737
struct kvm *kvm = dev->kvm;
2738
2739
pr_devel("Creating xive for partition\n");
2740
2741
/* Already there ? */
2742
if (kvm->arch.xive)
2743
return -EEXIST;
2744
2745
xive = kvmppc_xive_get_device(kvm, type);
2746
if (!xive)
2747
return -ENOMEM;
2748
2749
dev->private = xive;
2750
xive->dev = dev;
2751
xive->kvm = kvm;
2752
mutex_init(&xive->lock);
2753
2754
/* We use the default queue size set by the host */
2755
xive->q_order = xive_native_default_eq_shift();
2756
if (xive->q_order < PAGE_SHIFT)
2757
xive->q_page_order = 0;
2758
else
2759
xive->q_page_order = xive->q_order - PAGE_SHIFT;
2760
2761
/* VP allocation is delayed to the first call to connect_vcpu */
2762
xive->vp_base = XIVE_INVALID_VP;
2763
/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2764
* on a POWER9 system.
2765
*/
2766
xive->nr_servers = KVM_MAX_VCPUS;
2767
2768
if (xive_native_has_single_escalation())
2769
xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
2770
2771
if (xive_native_has_save_restore())
2772
xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
2773
2774
kvm->arch.xive = xive;
2775
return 0;
2776
}
2777
2778
int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
2779
{
2780
/* The VM should have configured XICS mode before doing XICS hcalls. */
2781
if (!kvmppc_xics_enabled(vcpu))
2782
return H_TOO_HARD;
2783
2784
switch (req) {
2785
case H_XIRR:
2786
return xive_vm_h_xirr(vcpu);
2787
case H_CPPR:
2788
return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
2789
case H_EOI:
2790
return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
2791
case H_IPI:
2792
return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
2793
kvmppc_get_gpr(vcpu, 5));
2794
case H_IPOLL:
2795
return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
2796
case H_XIRR_X:
2797
xive_vm_h_xirr(vcpu);
2798
kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu));
2799
return H_SUCCESS;
2800
}
2801
2802
return H_UNSUPPORTED;
2803
}
2804
EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
2805
2806
int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2807
{
2808
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2809
unsigned int i;
2810
2811
for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2812
struct xive_q *q = &xc->queues[i];
2813
u32 i0, i1, idx;
2814
2815
if (!q->qpage && !xc->esc_virq[i])
2816
continue;
2817
2818
if (q->qpage) {
2819
seq_printf(m, " q[%d]: ", i);
2820
idx = q->idx;
2821
i0 = be32_to_cpup(q->qpage + idx);
2822
idx = (idx + 1) & q->msk;
2823
i1 = be32_to_cpup(q->qpage + idx);
2824
seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2825
i0, i1);
2826
}
2827
if (xc->esc_virq[i]) {
2828
struct xive_irq_data *xd = irq_get_chip_data(xc->esc_virq[i]);
2829
u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2830
2831
seq_printf(m, " ESC %d %c%c EOI @%llx",
2832
xc->esc_virq[i],
2833
(pq & XIVE_ESB_VAL_P) ? 'P' : '-',
2834
(pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
2835
xd->eoi_page);
2836
seq_puts(m, "\n");
2837
}
2838
}
2839
return 0;
2840
}
2841
2842
void kvmppc_xive_debug_show_sources(struct seq_file *m,
2843
struct kvmppc_xive_src_block *sb)
2844
{
2845
int i;
2846
2847
seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n");
2848
for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
2849
struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
2850
struct xive_irq_data *xd;
2851
u64 pq;
2852
u32 hw_num;
2853
2854
if (!state->valid)
2855
continue;
2856
2857
kvmppc_xive_select_irq(state, &hw_num, &xd);
2858
2859
pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2860
2861
seq_printf(m, "%08x %08x/%02x", state->number, hw_num,
2862
xd->src_chip);
2863
if (state->lsi)
2864
seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
2865
else
2866
seq_puts(m, " MSI");
2867
2868
seq_printf(m, " %s %c%c %08x % 4d/%d",
2869
state->ipi_number == hw_num ? "IPI" : " PT",
2870
pq & XIVE_ESB_VAL_P ? 'P' : '-',
2871
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
2872
state->eisn, state->act_server,
2873
state->act_priority);
2874
2875
seq_puts(m, "\n");
2876
}
2877
}
2878
2879
static int xive_debug_show(struct seq_file *m, void *private)
2880
{
2881
struct kvmppc_xive *xive = m->private;
2882
struct kvm *kvm = xive->kvm;
2883
struct kvm_vcpu *vcpu;
2884
u64 t_rm_h_xirr = 0;
2885
u64 t_rm_h_ipoll = 0;
2886
u64 t_rm_h_cppr = 0;
2887
u64 t_rm_h_eoi = 0;
2888
u64 t_rm_h_ipi = 0;
2889
u64 t_vm_h_xirr = 0;
2890
u64 t_vm_h_ipoll = 0;
2891
u64 t_vm_h_cppr = 0;
2892
u64 t_vm_h_eoi = 0;
2893
u64 t_vm_h_ipi = 0;
2894
unsigned long i;
2895
2896
if (!kvm)
2897
return 0;
2898
2899
seq_puts(m, "=========\nVCPU state\n=========\n");
2900
2901
kvm_for_each_vcpu(i, vcpu, kvm) {
2902
struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2903
2904
if (!xc)
2905
continue;
2906
2907
seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
2908
" CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2909
xc->server_num, xc->vp_id, xc->vp_chip_id,
2910
xc->cppr, xc->hw_cppr,
2911
xc->mfrr, xc->pending,
2912
xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2913
2914
kvmppc_xive_debug_show_queues(m, vcpu);
2915
2916
t_rm_h_xirr += xc->stat_rm_h_xirr;
2917
t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2918
t_rm_h_cppr += xc->stat_rm_h_cppr;
2919
t_rm_h_eoi += xc->stat_rm_h_eoi;
2920
t_rm_h_ipi += xc->stat_rm_h_ipi;
2921
t_vm_h_xirr += xc->stat_vm_h_xirr;
2922
t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2923
t_vm_h_cppr += xc->stat_vm_h_cppr;
2924
t_vm_h_eoi += xc->stat_vm_h_eoi;
2925
t_vm_h_ipi += xc->stat_vm_h_ipi;
2926
}
2927
2928
seq_puts(m, "Hcalls totals\n");
2929
seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2930
seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2931
seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2932
seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2933
seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2934
2935
seq_puts(m, "=========\nSources\n=========\n");
2936
2937
for (i = 0; i <= xive->max_sbid; i++) {
2938
struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
2939
2940
if (sb) {
2941
arch_spin_lock(&sb->lock);
2942
kvmppc_xive_debug_show_sources(m, sb);
2943
arch_spin_unlock(&sb->lock);
2944
}
2945
}
2946
2947
return 0;
2948
}
2949
2950
DEFINE_SHOW_ATTRIBUTE(xive_debug);
2951
2952
static void xive_debugfs_init(struct kvmppc_xive *xive)
2953
{
2954
xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
2955
xive, &xive_debug_fops);
2956
2957
pr_debug("%s: created\n", __func__);
2958
}
2959
2960
static void kvmppc_xive_init(struct kvm_device *dev)
2961
{
2962
struct kvmppc_xive *xive = dev->private;
2963
2964
/* Register some debug interfaces */
2965
xive_debugfs_init(xive);
2966
}
2967
2968
struct kvm_device_ops kvm_xive_ops = {
2969
.name = "kvm-xive",
2970
.create = kvmppc_xive_create,
2971
.init = kvmppc_xive_init,
2972
.release = kvmppc_xive_release,
2973
.set_attr = xive_set_attr,
2974
.get_attr = xive_get_attr,
2975
.has_attr = xive_has_attr,
2976
};
2977
2978