Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/book3s64/hash_pgtable.c
52395 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright 2005, Paul Mackerras, IBM Corporation.
4
* Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6
*/
7
8
#include <linux/sched.h>
9
#include <linux/mm_types.h>
10
#include <linux/mm.h>
11
#include <linux/page_table_check.h>
12
#include <linux/stop_machine.h>
13
14
#include <asm/sections.h>
15
#include <asm/mmu.h>
16
#include <asm/tlb.h>
17
#include <asm/firmware.h>
18
19
#include <mm/mmu_decl.h>
20
21
#include <trace/events/thp.h>
22
23
#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
24
#warning Limited user VSID range means pagetable space is wasted
25
#endif
26
27
#ifdef CONFIG_SPARSEMEM_VMEMMAP
28
/*
29
* vmemmap is the starting address of the virtual address space where
30
* struct pages are allocated for all possible PFNs present on the system
31
* including holes and bad memory (hence sparse). These virtual struct
32
* pages are stored in sequence in this virtual address space irrespective
33
* of the fact whether the corresponding PFN is valid or not. This achieves
34
* constant relationship between address of struct page and its PFN.
35
*
36
* During boot or memory hotplug operation when a new memory section is
37
* added, physical memory allocation (including hash table bolting) will
38
* be performed for the set of struct pages which are part of the memory
39
* section. This saves memory by not allocating struct pages for PFNs
40
* which are not valid.
41
*
42
* ----------------------------------------------
43
* | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44
* ----------------------------------------------
45
*
46
* f000000000000000 c000000000000000
47
* vmemmap +--------------+ +--------------+
48
* + | page struct | +--------------> | page struct |
49
* | +--------------+ +--------------+
50
* | | page struct | +--------------> | page struct |
51
* | +--------------+ | +--------------+
52
* | | page struct | + +------> | page struct |
53
* | +--------------+ | +--------------+
54
* | | page struct | | +--> | page struct |
55
* | +--------------+ | | +--------------+
56
* | | page struct | | |
57
* | +--------------+ | |
58
* | | page struct | | |
59
* | +--------------+ | |
60
* | | page struct | | |
61
* | +--------------+ | |
62
* | | page struct | | |
63
* | +--------------+ | |
64
* | | page struct | +-------+ |
65
* | +--------------+ |
66
* | | page struct | +-----------+
67
* | +--------------+
68
* | | page struct | No mapping
69
* | +--------------+
70
* | | page struct | No mapping
71
* v +--------------+
72
*
73
* -----------------------------------------
74
* | RELATION BETWEEN STRUCT PAGES AND PFNS|
75
* -----------------------------------------
76
*
77
* vmemmap +--------------+ +---------------+
78
* + | page struct | +-------------> | PFN |
79
* | +--------------+ +---------------+
80
* | | page struct | +-------------> | PFN |
81
* | +--------------+ +---------------+
82
* | | page struct | +-------------> | PFN |
83
* | +--------------+ +---------------+
84
* | | page struct | +-------------> | PFN |
85
* | +--------------+ +---------------+
86
* | | |
87
* | +--------------+
88
* | | |
89
* | +--------------+
90
* | | |
91
* | +--------------+ +---------------+
92
* | | page struct | +-------------> | PFN |
93
* | +--------------+ +---------------+
94
* | | |
95
* | +--------------+
96
* | | |
97
* | +--------------+ +---------------+
98
* | | page struct | +-------------> | PFN |
99
* | +--------------+ +---------------+
100
* | | page struct | +-------------> | PFN |
101
* v +--------------+ +---------------+
102
*/
103
/*
104
* On hash-based CPUs, the vmemmap is bolted in the hash table.
105
*
106
*/
107
int __meminit hash__vmemmap_create_mapping(unsigned long start,
108
unsigned long page_size,
109
unsigned long phys)
110
{
111
int rc;
112
113
if ((start + page_size) >= H_VMEMMAP_END) {
114
pr_warn("Outside the supported range\n");
115
return -1;
116
}
117
118
rc = htab_bolt_mapping(start, start + page_size, phys,
119
pgprot_val(PAGE_KERNEL),
120
mmu_vmemmap_psize, mmu_kernel_ssize);
121
if (rc < 0) {
122
int rc2 = htab_remove_mapping(start, start + page_size,
123
mmu_vmemmap_psize,
124
mmu_kernel_ssize);
125
BUG_ON(rc2 && (rc2 != -ENOENT));
126
}
127
return rc;
128
}
129
130
#ifdef CONFIG_MEMORY_HOTPLUG
131
void hash__vmemmap_remove_mapping(unsigned long start,
132
unsigned long page_size)
133
{
134
int rc = htab_remove_mapping(start, start + page_size,
135
mmu_vmemmap_psize,
136
mmu_kernel_ssize);
137
BUG_ON((rc < 0) && (rc != -ENOENT));
138
WARN_ON(rc == -ENOENT);
139
}
140
#endif
141
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
142
143
/*
144
* map_kernel_page currently only called by __ioremap
145
* map_kernel_page adds an entry to the ioremap page table
146
* and adds an entry to the HPT, possibly bolting it
147
*/
148
int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
149
{
150
pgd_t *pgdp;
151
p4d_t *p4dp;
152
pud_t *pudp;
153
pmd_t *pmdp;
154
pte_t *ptep;
155
156
BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
157
if (slab_is_available()) {
158
pgdp = pgd_offset_k(ea);
159
p4dp = p4d_offset(pgdp, ea);
160
pudp = pud_alloc(&init_mm, p4dp, ea);
161
if (!pudp)
162
return -ENOMEM;
163
pmdp = pmd_alloc(&init_mm, pudp, ea);
164
if (!pmdp)
165
return -ENOMEM;
166
ptep = pte_alloc_kernel(pmdp, ea);
167
if (!ptep)
168
return -ENOMEM;
169
set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
170
} else {
171
/*
172
* If the mm subsystem is not fully up, we cannot create a
173
* linux page table entry for this mapping. Simply bolt an
174
* entry in the hardware page table.
175
*
176
*/
177
if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
178
mmu_io_psize, mmu_kernel_ssize)) {
179
printk(KERN_ERR "Failed to do bolted mapping IO "
180
"memory at %016lx !\n", pa);
181
return -ENOMEM;
182
}
183
}
184
185
smp_wmb();
186
return 0;
187
}
188
189
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
190
191
unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
192
pmd_t *pmdp, unsigned long clr,
193
unsigned long set)
194
{
195
__be64 old_be, tmp;
196
unsigned long old;
197
198
#ifdef CONFIG_DEBUG_VM
199
WARN_ON(!hash__pmd_trans_huge(*pmdp));
200
assert_spin_locked(pmd_lockptr(mm, pmdp));
201
#endif
202
203
__asm__ __volatile__(
204
"1: ldarx %0,0,%3\n\
205
and. %1,%0,%6\n\
206
bne- 1b \n\
207
andc %1,%0,%4 \n\
208
or %1,%1,%7\n\
209
stdcx. %1,0,%3 \n\
210
bne- 1b"
211
: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
212
: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
213
"r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
214
: "cc" );
215
216
old = be64_to_cpu(old_be);
217
218
trace_hugepage_update_pmd(addr, old, clr, set);
219
if (old & H_PAGE_HASHPTE)
220
hpte_do_hugepage_flush(mm, addr, pmdp, old);
221
return old;
222
}
223
224
pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
225
pmd_t *pmdp)
226
{
227
pmd_t pmd;
228
229
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
230
VM_BUG_ON(pmd_trans_huge(*pmdp));
231
232
pmd = *pmdp;
233
pmd_clear(pmdp);
234
235
page_table_check_pmd_clear(vma->vm_mm, address, pmd);
236
237
/*
238
* Wait for all pending hash_page to finish. This is needed
239
* in case of subpage collapse. When we collapse normal pages
240
* to hugepage, we first clear the pmd, then invalidate all
241
* the PTE entries. The assumption here is that any low level
242
* page fault will see a none pmd and take the slow path that
243
* will wait on mmap_lock. But we could very well be in a
244
* hash_page with local ptep pointer value. Such a hash page
245
* can result in adding new HPTE entries for normal subpages.
246
* That means we could be modifying the page content as we
247
* copy them to a huge page. So wait for parallel hash_page
248
* to finish before invalidating HPTE entries. We can do this
249
* by sending an IPI to all the cpus and executing a dummy
250
* function there.
251
*/
252
serialize_against_pte_lookup(vma->vm_mm);
253
/*
254
* Now invalidate the hpte entries in the range
255
* covered by pmd. This make sure we take a
256
* fault and will find the pmd as none, which will
257
* result in a major fault which takes mmap_lock and
258
* hence wait for collapse to complete. Without this
259
* the __collapse_huge_page_copy can result in copying
260
* the old content.
261
*/
262
flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
263
return pmd;
264
}
265
266
/*
267
* We want to put the pgtable in pmd and use pgtable for tracking
268
* the base page size hptes
269
*/
270
void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
271
pgtable_t pgtable)
272
{
273
pgtable_t *pgtable_slot;
274
275
assert_spin_locked(pmd_lockptr(mm, pmdp));
276
/*
277
* we store the pgtable in the second half of PMD
278
*/
279
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
280
*pgtable_slot = pgtable;
281
/*
282
* expose the deposited pgtable to other cpus.
283
* before we set the hugepage PTE at pmd level
284
* hash fault code looks at the deposted pgtable
285
* to store hash index values.
286
*/
287
smp_wmb();
288
}
289
290
pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
291
{
292
pgtable_t pgtable;
293
pgtable_t *pgtable_slot;
294
295
assert_spin_locked(pmd_lockptr(mm, pmdp));
296
297
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
298
pgtable = *pgtable_slot;
299
/*
300
* Once we withdraw, mark the entry NULL.
301
*/
302
*pgtable_slot = NULL;
303
/*
304
* We store HPTE information in the deposited PTE fragment.
305
* zero out the content on withdraw.
306
*/
307
memset(pgtable, 0, PTE_FRAG_SIZE);
308
return pgtable;
309
}
310
311
/*
312
* A linux hugepage PMD was changed and the corresponding hash table entries
313
* neesd to be flushed.
314
*/
315
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
316
pmd_t *pmdp, unsigned long old_pmd)
317
{
318
int ssize;
319
unsigned int psize;
320
unsigned long vsid;
321
unsigned long flags = 0;
322
323
/* get the base page size,vsid and segment size */
324
#ifdef CONFIG_DEBUG_VM
325
psize = get_slice_psize(mm, addr);
326
BUG_ON(psize == MMU_PAGE_16M);
327
#endif
328
if (old_pmd & H_PAGE_COMBO)
329
psize = MMU_PAGE_4K;
330
else
331
psize = MMU_PAGE_64K;
332
333
if (!is_kernel_addr(addr)) {
334
ssize = user_segment_size(addr);
335
vsid = get_user_vsid(&mm->context, addr, ssize);
336
WARN_ON(vsid == 0);
337
} else {
338
vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
339
ssize = mmu_kernel_ssize;
340
}
341
342
if (mm_is_thread_local(mm))
343
flags |= HPTE_LOCAL_UPDATE;
344
345
return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
346
}
347
348
pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
349
unsigned long addr, pmd_t *pmdp)
350
{
351
pmd_t old_pmd;
352
pgtable_t pgtable;
353
unsigned long old;
354
pgtable_t *pgtable_slot;
355
356
old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
357
old_pmd = __pmd(old);
358
/*
359
* We have pmd == none and we are holding page_table_lock.
360
* So we can safely go and clear the pgtable hash
361
* index info.
362
*/
363
pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
364
pgtable = *pgtable_slot;
365
/*
366
* Let's zero out old valid and hash index details
367
* hash fault look at them.
368
*/
369
memset(pgtable, 0, PTE_FRAG_SIZE);
370
return old_pmd;
371
}
372
373
int hash__has_transparent_hugepage(void)
374
{
375
376
if (!mmu_has_feature(MMU_FTR_16M_PAGE))
377
return 0;
378
/*
379
* We support THP only if PMD_SIZE is 16MB.
380
*/
381
if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
382
return 0;
383
/*
384
* We need to make sure that we support 16MB hugepage in a segment
385
* with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
386
* of 64K.
387
*/
388
/*
389
* If we have 64K HPTE, we will be using that by default
390
*/
391
if (mmu_psize_defs[MMU_PAGE_64K].shift &&
392
(mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
393
return 0;
394
/*
395
* Ok we only have 4K HPTE
396
*/
397
if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
398
return 0;
399
400
return 1;
401
}
402
EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
403
404
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
405
406
#ifdef CONFIG_STRICT_KERNEL_RWX
407
408
struct change_memory_parms {
409
unsigned long start, end, newpp;
410
unsigned int step, nr_cpus;
411
atomic_t master_cpu;
412
atomic_t cpu_counter;
413
};
414
415
// We'd rather this was on the stack but it has to be in the RMO
416
static struct change_memory_parms chmem_parms;
417
418
// And therefore we need a lock to protect it from concurrent use
419
static DEFINE_MUTEX(chmem_lock);
420
421
static void change_memory_range(unsigned long start, unsigned long end,
422
unsigned int step, unsigned long newpp)
423
{
424
unsigned long idx;
425
426
pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
427
start, end, newpp, step);
428
429
for (idx = start; idx < end; idx += step)
430
/* Not sure if we can do much with the return value */
431
mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
432
mmu_kernel_ssize);
433
}
434
435
static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
436
{
437
unsigned long msr, tmp, flags;
438
int *p;
439
440
p = &parms->cpu_counter.counter;
441
442
local_irq_save(flags);
443
hard_irq_disable();
444
445
asm volatile (
446
// Switch to real mode and leave interrupts off
447
"mfmsr %[msr] ;"
448
"li %[tmp], %[MSR_IR_DR] ;"
449
"andc %[tmp], %[msr], %[tmp] ;"
450
"mtmsrd %[tmp] ;"
451
452
// Tell the master we are in real mode
453
"1: "
454
"lwarx %[tmp], 0, %[p] ;"
455
"addic %[tmp], %[tmp], -1 ;"
456
"stwcx. %[tmp], 0, %[p] ;"
457
"bne- 1b ;"
458
459
// Spin until the counter goes to zero
460
"2: ;"
461
"lwz %[tmp], 0(%[p]) ;"
462
"cmpwi %[tmp], 0 ;"
463
"bne- 2b ;"
464
465
// Switch back to virtual mode
466
"mtmsrd %[msr] ;"
467
468
: // outputs
469
[msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
470
: // inputs
471
[p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
472
: // clobbers
473
"cc", "xer"
474
);
475
476
local_irq_restore(flags);
477
478
return 0;
479
}
480
481
static int change_memory_range_fn(void *data)
482
{
483
struct change_memory_parms *parms = data;
484
485
// First CPU goes through, all others wait.
486
if (atomic_xchg(&parms->master_cpu, 1) == 1)
487
return chmem_secondary_loop(parms);
488
489
// Wait for all but one CPU (this one) to call-in
490
while (atomic_read(&parms->cpu_counter) > 1)
491
barrier();
492
493
change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
494
495
mb();
496
497
// Signal the other CPUs that we're done
498
atomic_dec(&parms->cpu_counter);
499
500
return 0;
501
}
502
503
static bool hash__change_memory_range(unsigned long start, unsigned long end,
504
unsigned long newpp)
505
{
506
unsigned int step, shift;
507
508
shift = mmu_psize_defs[mmu_linear_psize].shift;
509
step = 1 << shift;
510
511
start = ALIGN_DOWN(start, step);
512
end = ALIGN(end, step); // aligns up
513
514
if (start >= end)
515
return false;
516
517
if (firmware_has_feature(FW_FEATURE_LPAR)) {
518
mutex_lock(&chmem_lock);
519
520
chmem_parms.start = start;
521
chmem_parms.end = end;
522
chmem_parms.step = step;
523
chmem_parms.newpp = newpp;
524
atomic_set(&chmem_parms.master_cpu, 0);
525
526
cpus_read_lock();
527
528
atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
529
530
// Ensure state is consistent before we call the other CPUs
531
mb();
532
533
stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
534
cpu_online_mask);
535
536
cpus_read_unlock();
537
mutex_unlock(&chmem_lock);
538
} else
539
change_memory_range(start, end, step, newpp);
540
541
return true;
542
}
543
544
void hash__mark_rodata_ro(void)
545
{
546
unsigned long start, end, pp;
547
548
start = (unsigned long)_stext;
549
end = (unsigned long)__end_rodata;
550
551
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
552
553
WARN_ON(!hash__change_memory_range(start, end, pp));
554
}
555
556
void hash__mark_initmem_nx(void)
557
{
558
unsigned long start, end, pp;
559
560
start = (unsigned long)__init_begin;
561
end = (unsigned long)__init_end;
562
563
pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
564
565
WARN_ON(!hash__change_memory_range(start, end, pp));
566
}
567
#endif
568
569