Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/book3s64/hash_utils.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PowerPC64 port by Mike Corrigan and Dave Engebretsen
4
* {mikejc|engebret}@us.ibm.com
5
*
6
* Copyright (c) 2000 Mike Corrigan <[email protected]>
7
*
8
* SMP scalability work:
9
* Copyright (C) 2001 Anton Blanchard <[email protected]>, IBM
10
*
11
* Module name: htab.c
12
*
13
* Description:
14
* PowerPC Hashed Page Table functions
15
*/
16
17
#undef DEBUG
18
#undef DEBUG_LOW
19
20
#define pr_fmt(fmt) "hash-mmu: " fmt
21
#include <linux/spinlock.h>
22
#include <linux/errno.h>
23
#include <linux/sched/mm.h>
24
#include <linux/proc_fs.h>
25
#include <linux/stat.h>
26
#include <linux/sysctl.h>
27
#include <linux/export.h>
28
#include <linux/ctype.h>
29
#include <linux/cache.h>
30
#include <linux/init.h>
31
#include <linux/signal.h>
32
#include <linux/memblock.h>
33
#include <linux/context_tracking.h>
34
#include <linux/libfdt.h>
35
#include <linux/pkeys.h>
36
#include <linux/hugetlb.h>
37
#include <linux/cpu.h>
38
#include <linux/pgtable.h>
39
#include <linux/debugfs.h>
40
#include <linux/random.h>
41
#include <linux/elf-randomize.h>
42
#include <linux/of_fdt.h>
43
#include <linux/kfence.h>
44
45
#include <asm/interrupt.h>
46
#include <asm/processor.h>
47
#include <asm/mmu.h>
48
#include <asm/mmu_context.h>
49
#include <asm/page.h>
50
#include <asm/types.h>
51
#include <linux/uaccess.h>
52
#include <asm/machdep.h>
53
#include <asm/io.h>
54
#include <asm/eeh.h>
55
#include <asm/tlb.h>
56
#include <asm/cacheflush.h>
57
#include <asm/cputable.h>
58
#include <asm/sections.h>
59
#include <asm/spu.h>
60
#include <asm/udbg.h>
61
#include <asm/text-patching.h>
62
#include <asm/fadump.h>
63
#include <asm/firmware.h>
64
#include <asm/tm.h>
65
#include <asm/trace.h>
66
#include <asm/ps3.h>
67
#include <asm/pte-walk.h>
68
#include <asm/asm-prototypes.h>
69
#include <asm/ultravisor.h>
70
#include <asm/kfence.h>
71
72
#include <mm/mmu_decl.h>
73
74
#include "internal.h"
75
76
77
#ifdef DEBUG
78
#define DBG(fmt...) udbg_printf(fmt)
79
#else
80
#define DBG(fmt...)
81
#endif
82
83
#ifdef DEBUG_LOW
84
#define DBG_LOW(fmt...) udbg_printf(fmt)
85
#else
86
#define DBG_LOW(fmt...)
87
#endif
88
89
#define KB (1024)
90
#define MB (1024*KB)
91
#define GB (1024L*MB)
92
93
/*
94
* Note: pte --> Linux PTE
95
* HPTE --> PowerPC Hashed Page Table Entry
96
*
97
* Execution context:
98
* htab_initialize is called with the MMU off (of course), but
99
* the kernel has been copied down to zero so it can directly
100
* reference global data. At this point it is very difficult
101
* to print debug info.
102
*
103
*/
104
105
static unsigned long _SDR1;
106
107
u8 hpte_page_sizes[1 << LP_BITS];
108
EXPORT_SYMBOL_GPL(hpte_page_sizes);
109
110
struct hash_pte *htab_address;
111
unsigned long htab_size_bytes;
112
unsigned long htab_hash_mask;
113
EXPORT_SYMBOL_GPL(htab_hash_mask);
114
int mmu_linear_psize = MMU_PAGE_4K;
115
EXPORT_SYMBOL_GPL(mmu_linear_psize);
116
int mmu_virtual_psize = MMU_PAGE_4K;
117
int mmu_vmalloc_psize = MMU_PAGE_4K;
118
EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
119
int mmu_io_psize = MMU_PAGE_4K;
120
int mmu_kernel_ssize = MMU_SEGSIZE_256M;
121
EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
122
int mmu_highuser_ssize = MMU_SEGSIZE_256M;
123
u16 mmu_slb_size = 64;
124
EXPORT_SYMBOL_GPL(mmu_slb_size);
125
#ifdef CONFIG_PPC_64K_PAGES
126
int mmu_ci_restrictions;
127
#endif
128
struct mmu_hash_ops mmu_hash_ops __ro_after_init;
129
EXPORT_SYMBOL(mmu_hash_ops);
130
131
/*
132
* These are definitions of page sizes arrays to be used when none
133
* is provided by the firmware.
134
*/
135
136
/*
137
* Fallback (4k pages only)
138
*/
139
static struct mmu_psize_def mmu_psize_defaults[] = {
140
[MMU_PAGE_4K] = {
141
.shift = 12,
142
.sllp = 0,
143
.penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144
.avpnm = 0,
145
.tlbiel = 0,
146
},
147
};
148
149
/*
150
* POWER4, GPUL, POWER5
151
*
152
* Support for 16Mb large pages
153
*/
154
static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155
[MMU_PAGE_4K] = {
156
.shift = 12,
157
.sllp = 0,
158
.penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159
.avpnm = 0,
160
.tlbiel = 1,
161
},
162
[MMU_PAGE_16M] = {
163
.shift = 24,
164
.sllp = SLB_VSID_L,
165
.penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166
[MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167
.avpnm = 0x1UL,
168
.tlbiel = 0,
169
},
170
};
171
172
static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173
{
174
unsigned long rb;
175
176
rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177
178
asm volatile("tlbiel %0" : : "r" (rb));
179
}
180
181
/*
182
* tlbiel instruction for hash, set invalidation
183
* i.e., r=1 and is=01 or is=10 or is=11
184
*/
185
static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186
unsigned int pid,
187
unsigned int ric, unsigned int prs)
188
{
189
unsigned long rb;
190
unsigned long rs;
191
unsigned int r = 0; /* hash format */
192
193
rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194
rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195
196
asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197
: : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198
: "memory");
199
}
200
201
202
static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203
{
204
unsigned int set;
205
206
asm volatile("ptesync": : :"memory");
207
208
for (set = 0; set < num_sets; set++)
209
tlbiel_hash_set_isa206(set, is);
210
211
ppc_after_tlbiel_barrier();
212
}
213
214
static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215
{
216
unsigned int set;
217
218
asm volatile("ptesync": : :"memory");
219
220
/*
221
* Flush the partition table cache if this is HV mode.
222
*/
223
if (early_cpu_has_feature(CPU_FTR_HVMODE))
224
tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225
226
/*
227
* Now invalidate the process table cache. UPRT=0 HPT modes (what
228
* current hardware implements) do not use the process table, but
229
* add the flushes anyway.
230
*
231
* From ISA v3.0B p. 1078:
232
* The following forms are invalid.
233
* * PRS=1, R=0, and RIC!=2 (The only process-scoped
234
* HPT caching is of the Process Table.)
235
*/
236
tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237
238
/*
239
* Then flush the sets of the TLB proper. Hash mode uses
240
* partition scoped TLB translations, which may be flushed
241
* in !HV mode.
242
*/
243
for (set = 0; set < num_sets; set++)
244
tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245
246
ppc_after_tlbiel_barrier();
247
248
asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249
}
250
251
void hash__tlbiel_all(unsigned int action)
252
{
253
unsigned int is;
254
255
switch (action) {
256
case TLB_INVAL_SCOPE_GLOBAL:
257
is = 3;
258
break;
259
case TLB_INVAL_SCOPE_LPID:
260
is = 2;
261
break;
262
default:
263
BUG();
264
}
265
266
if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267
tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268
else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269
tlbiel_all_isa206(POWER8_TLB_SETS, is);
270
else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271
tlbiel_all_isa206(POWER7_TLB_SETS, is);
272
else
273
WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274
}
275
276
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
277
static void kernel_map_linear_page(unsigned long vaddr, unsigned long idx,
278
u8 *slots, raw_spinlock_t *lock)
279
{
280
unsigned long hash;
281
unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
282
unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
283
unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
284
long ret;
285
286
hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
287
288
/* Don't create HPTE entries for bad address */
289
if (!vsid)
290
return;
291
292
if (slots[idx] & 0x80)
293
return;
294
295
ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
296
HPTE_V_BOLTED,
297
mmu_linear_psize, mmu_kernel_ssize);
298
299
BUG_ON (ret < 0);
300
raw_spin_lock(lock);
301
BUG_ON(slots[idx] & 0x80);
302
slots[idx] = ret | 0x80;
303
raw_spin_unlock(lock);
304
}
305
306
static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long idx,
307
u8 *slots, raw_spinlock_t *lock)
308
{
309
unsigned long hash, hslot, slot;
310
unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
311
unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
312
313
hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
314
raw_spin_lock(lock);
315
if (!(slots[idx] & 0x80)) {
316
raw_spin_unlock(lock);
317
return;
318
}
319
hslot = slots[idx] & 0x7f;
320
slots[idx] = 0;
321
raw_spin_unlock(lock);
322
if (hslot & _PTEIDX_SECONDARY)
323
hash = ~hash;
324
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
325
slot += hslot & _PTEIDX_GROUP_IX;
326
mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
327
mmu_linear_psize,
328
mmu_kernel_ssize, 0);
329
}
330
#endif
331
332
static inline bool hash_supports_debug_pagealloc(void)
333
{
334
unsigned long max_hash_count = ppc64_rma_size / 4;
335
unsigned long linear_map_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
336
337
if (!debug_pagealloc_enabled() || linear_map_count > max_hash_count)
338
return false;
339
return true;
340
}
341
342
#ifdef CONFIG_DEBUG_PAGEALLOC
343
static u8 *linear_map_hash_slots;
344
static unsigned long linear_map_hash_count;
345
static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
346
static __init void hash_debug_pagealloc_alloc_slots(void)
347
{
348
if (!hash_supports_debug_pagealloc())
349
return;
350
351
linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
352
linear_map_hash_slots = memblock_alloc_try_nid(
353
linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
354
ppc64_rma_size, NUMA_NO_NODE);
355
if (!linear_map_hash_slots)
356
panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
357
__func__, linear_map_hash_count, &ppc64_rma_size);
358
}
359
360
static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr,
361
int slot)
362
{
363
if (!debug_pagealloc_enabled() || !linear_map_hash_count)
364
return;
365
if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
366
linear_map_hash_slots[paddr >> PAGE_SHIFT] = slot | 0x80;
367
}
368
369
static int hash_debug_pagealloc_map_pages(struct page *page, int numpages,
370
int enable)
371
{
372
unsigned long flags, vaddr, lmi;
373
int i;
374
375
if (!debug_pagealloc_enabled() || !linear_map_hash_count)
376
return 0;
377
378
local_irq_save(flags);
379
for (i = 0; i < numpages; i++, page++) {
380
vaddr = (unsigned long)page_address(page);
381
lmi = __pa(vaddr) >> PAGE_SHIFT;
382
if (lmi >= linear_map_hash_count)
383
continue;
384
if (enable)
385
kernel_map_linear_page(vaddr, lmi,
386
linear_map_hash_slots, &linear_map_hash_lock);
387
else
388
kernel_unmap_linear_page(vaddr, lmi,
389
linear_map_hash_slots, &linear_map_hash_lock);
390
}
391
local_irq_restore(flags);
392
return 0;
393
}
394
395
#else /* CONFIG_DEBUG_PAGEALLOC */
396
static inline void hash_debug_pagealloc_alloc_slots(void) {}
397
static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr, int slot) {}
398
static int __maybe_unused
399
hash_debug_pagealloc_map_pages(struct page *page, int numpages, int enable)
400
{
401
return 0;
402
}
403
#endif /* CONFIG_DEBUG_PAGEALLOC */
404
405
#ifdef CONFIG_KFENCE
406
static u8 *linear_map_kf_hash_slots;
407
static unsigned long linear_map_kf_hash_count;
408
static DEFINE_RAW_SPINLOCK(linear_map_kf_hash_lock);
409
410
static phys_addr_t kfence_pool;
411
412
static __init void hash_kfence_alloc_pool(void)
413
{
414
if (!kfence_early_init_enabled())
415
goto err;
416
417
/* allocate linear map for kfence within RMA region */
418
linear_map_kf_hash_count = KFENCE_POOL_SIZE >> PAGE_SHIFT;
419
linear_map_kf_hash_slots = memblock_alloc_try_nid(
420
linear_map_kf_hash_count, 1,
421
MEMBLOCK_LOW_LIMIT, ppc64_rma_size,
422
NUMA_NO_NODE);
423
if (!linear_map_kf_hash_slots) {
424
pr_err("%s: memblock for linear map (%lu) failed\n", __func__,
425
linear_map_kf_hash_count);
426
goto err;
427
}
428
429
/* allocate kfence pool early */
430
kfence_pool = memblock_phys_alloc_range(KFENCE_POOL_SIZE, PAGE_SIZE,
431
MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ANYWHERE);
432
if (!kfence_pool) {
433
pr_err("%s: memblock for kfence pool (%lu) failed\n", __func__,
434
KFENCE_POOL_SIZE);
435
memblock_free(linear_map_kf_hash_slots,
436
linear_map_kf_hash_count);
437
linear_map_kf_hash_count = 0;
438
goto err;
439
}
440
memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
441
442
return;
443
err:
444
pr_info("Disabling kfence\n");
445
disable_kfence();
446
}
447
448
static __init void hash_kfence_map_pool(void)
449
{
450
unsigned long kfence_pool_start, kfence_pool_end;
451
unsigned long prot = pgprot_val(PAGE_KERNEL);
452
453
if (!kfence_pool)
454
return;
455
456
kfence_pool_start = (unsigned long) __va(kfence_pool);
457
kfence_pool_end = kfence_pool_start + KFENCE_POOL_SIZE;
458
__kfence_pool = (char *) kfence_pool_start;
459
BUG_ON(htab_bolt_mapping(kfence_pool_start, kfence_pool_end,
460
kfence_pool, prot, mmu_linear_psize,
461
mmu_kernel_ssize));
462
memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
463
}
464
465
static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot)
466
{
467
unsigned long vaddr = (unsigned long) __va(paddr);
468
unsigned long lmi = (vaddr - (unsigned long)__kfence_pool)
469
>> PAGE_SHIFT;
470
471
if (!kfence_pool)
472
return;
473
BUG_ON(!is_kfence_address((void *)vaddr));
474
BUG_ON(lmi >= linear_map_kf_hash_count);
475
linear_map_kf_hash_slots[lmi] = slot | 0x80;
476
}
477
478
static int hash_kfence_map_pages(struct page *page, int numpages, int enable)
479
{
480
unsigned long flags, vaddr, lmi;
481
int i;
482
483
WARN_ON_ONCE(!linear_map_kf_hash_count);
484
local_irq_save(flags);
485
for (i = 0; i < numpages; i++, page++) {
486
vaddr = (unsigned long)page_address(page);
487
lmi = (vaddr - (unsigned long)__kfence_pool) >> PAGE_SHIFT;
488
489
/* Ideally this should never happen */
490
if (lmi >= linear_map_kf_hash_count) {
491
WARN_ON_ONCE(1);
492
continue;
493
}
494
495
if (enable)
496
kernel_map_linear_page(vaddr, lmi,
497
linear_map_kf_hash_slots,
498
&linear_map_kf_hash_lock);
499
else
500
kernel_unmap_linear_page(vaddr, lmi,
501
linear_map_kf_hash_slots,
502
&linear_map_kf_hash_lock);
503
}
504
local_irq_restore(flags);
505
return 0;
506
}
507
#else
508
static inline void hash_kfence_alloc_pool(void) {}
509
static inline void hash_kfence_map_pool(void) {}
510
static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot) {}
511
static int __maybe_unused
512
hash_kfence_map_pages(struct page *page, int numpages, int enable)
513
{
514
return 0;
515
}
516
#endif
517
518
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
519
int hash__kernel_map_pages(struct page *page, int numpages, int enable)
520
{
521
void *vaddr = page_address(page);
522
523
if (is_kfence_address(vaddr))
524
return hash_kfence_map_pages(page, numpages, enable);
525
else
526
return hash_debug_pagealloc_map_pages(page, numpages, enable);
527
}
528
529
static void hash_linear_map_add_slot(phys_addr_t paddr, int slot)
530
{
531
if (is_kfence_address(__va(paddr)))
532
hash_kfence_add_slot(paddr, slot);
533
else
534
hash_debug_pagealloc_add_slot(paddr, slot);
535
}
536
#else
537
static void hash_linear_map_add_slot(phys_addr_t paddr, int slot) {}
538
#endif
539
540
/*
541
* 'R' and 'C' update notes:
542
* - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
543
* create writeable HPTEs without C set, because the hcall H_PROTECT
544
* that we use in that case will not update C
545
* - The above is however not a problem, because we also don't do that
546
* fancy "no flush" variant of eviction and we use H_REMOVE which will
547
* do the right thing and thus we don't have the race I described earlier
548
*
549
* - Under bare metal, we do have the race, so we need R and C set
550
* - We make sure R is always set and never lost
551
* - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
552
*/
553
unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
554
{
555
unsigned long rflags = 0;
556
557
/* _PAGE_EXEC -> NOEXEC */
558
if ((pteflags & _PAGE_EXEC) == 0)
559
rflags |= HPTE_R_N;
560
/*
561
* PPP bits:
562
* Linux uses slb key 0 for kernel and 1 for user.
563
* kernel RW areas are mapped with PPP=0b000
564
* User area is mapped with PPP=0b010 for read/write
565
* or PPP=0b011 for read-only (including writeable but clean pages).
566
*/
567
if (pteflags & _PAGE_PRIVILEGED) {
568
/*
569
* Kernel read only mapped with ppp bits 0b110
570
*/
571
if (!(pteflags & _PAGE_WRITE)) {
572
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
573
rflags |= (HPTE_R_PP0 | 0x2);
574
else
575
rflags |= 0x3;
576
}
577
VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
578
} else {
579
if (pteflags & _PAGE_RWX)
580
rflags |= 0x2;
581
/*
582
* We should never hit this in normal fault handling because
583
* a permission check (check_pte_access()) will bubble this
584
* to higher level linux handler even for PAGE_NONE.
585
*/
586
VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
587
if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
588
rflags |= 0x1;
589
}
590
/*
591
* We can't allow hardware to update hpte bits. Hence always
592
* set 'R' bit and set 'C' if it is a write fault
593
*/
594
rflags |= HPTE_R_R;
595
596
if (pteflags & _PAGE_DIRTY)
597
rflags |= HPTE_R_C;
598
/*
599
* Add in WIG bits
600
*/
601
602
if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
603
rflags |= HPTE_R_I;
604
else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
605
rflags |= (HPTE_R_I | HPTE_R_G);
606
else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
607
rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
608
else
609
/*
610
* Add memory coherence if cache inhibited is not set
611
*/
612
rflags |= HPTE_R_M;
613
614
rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
615
return rflags;
616
}
617
618
int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
619
unsigned long pstart, unsigned long prot,
620
int psize, int ssize)
621
{
622
unsigned long vaddr, paddr;
623
unsigned int step, shift;
624
int ret = 0;
625
626
shift = mmu_psize_defs[psize].shift;
627
step = 1 << shift;
628
629
prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
630
631
DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
632
vstart, vend, pstart, prot, psize, ssize);
633
634
/* Carefully map only the possible range */
635
vaddr = ALIGN(vstart, step);
636
paddr = ALIGN(pstart, step);
637
vend = ALIGN_DOWN(vend, step);
638
639
for (; vaddr < vend; vaddr += step, paddr += step) {
640
unsigned long hash, hpteg;
641
unsigned long vsid = get_kernel_vsid(vaddr, ssize);
642
unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
643
unsigned long tprot = prot;
644
bool secondary_hash = false;
645
646
/*
647
* If we hit a bad address return error.
648
*/
649
if (!vsid)
650
return -1;
651
/* Make kernel text executable */
652
if (overlaps_kernel_text(vaddr, vaddr + step))
653
tprot &= ~HPTE_R_N;
654
655
/*
656
* If relocatable, check if it overlaps interrupt vectors that
657
* are copied down to real 0. For relocatable kernel
658
* (e.g. kdump case) we copy interrupt vectors down to real
659
* address 0. Mark that region as executable. This is
660
* because on p8 system with relocation on exception feature
661
* enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
662
* in order to execute the interrupt handlers in virtual
663
* mode the vector region need to be marked as executable.
664
*/
665
if ((PHYSICAL_START > MEMORY_START) &&
666
overlaps_interrupt_vector_text(vaddr, vaddr + step))
667
tprot &= ~HPTE_R_N;
668
669
hash = hpt_hash(vpn, shift, ssize);
670
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
671
672
BUG_ON(!mmu_hash_ops.hpte_insert);
673
repeat:
674
ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
675
HPTE_V_BOLTED, psize, psize,
676
ssize);
677
if (ret == -1) {
678
/*
679
* Try to keep bolted entries in primary.
680
* Remove non bolted entries and try insert again
681
*/
682
ret = mmu_hash_ops.hpte_remove(hpteg);
683
if (ret != -1)
684
ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
685
HPTE_V_BOLTED, psize, psize,
686
ssize);
687
if (ret == -1 && !secondary_hash) {
688
secondary_hash = true;
689
hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
690
goto repeat;
691
}
692
}
693
694
if (ret < 0)
695
break;
696
697
cond_resched();
698
/* add slot info in debug_pagealloc / kfence linear map */
699
hash_linear_map_add_slot(paddr, ret);
700
}
701
return ret < 0 ? ret : 0;
702
}
703
704
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
705
int psize, int ssize)
706
{
707
unsigned long vaddr, time_limit;
708
unsigned int step, shift;
709
int rc;
710
int ret = 0;
711
712
shift = mmu_psize_defs[psize].shift;
713
step = 1 << shift;
714
715
if (!mmu_hash_ops.hpte_removebolted)
716
return -ENODEV;
717
718
/* Unmap the full range specificied */
719
vaddr = ALIGN_DOWN(vstart, step);
720
time_limit = jiffies + HZ;
721
722
for (;vaddr < vend; vaddr += step) {
723
rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
724
725
/*
726
* For large number of mappings introduce a cond_resched()
727
* to prevent softlockup warnings.
728
*/
729
if (time_after(jiffies, time_limit)) {
730
cond_resched();
731
time_limit = jiffies + HZ;
732
}
733
if (rc == -ENOENT) {
734
ret = -ENOENT;
735
continue;
736
}
737
if (rc < 0)
738
return rc;
739
}
740
741
return ret;
742
}
743
744
static bool disable_1tb_segments __ro_after_init;
745
746
static int __init parse_disable_1tb_segments(char *p)
747
{
748
disable_1tb_segments = true;
749
return 0;
750
}
751
early_param("disable_1tb_segments", parse_disable_1tb_segments);
752
753
bool stress_hpt_enabled __initdata;
754
755
static int __init parse_stress_hpt(char *p)
756
{
757
stress_hpt_enabled = true;
758
return 0;
759
}
760
early_param("stress_hpt", parse_stress_hpt);
761
762
__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
763
764
/*
765
* per-CPU array allocated if we enable stress_hpt.
766
*/
767
#define STRESS_MAX_GROUPS 16
768
struct stress_hpt_struct {
769
unsigned long last_group[STRESS_MAX_GROUPS];
770
};
771
772
static inline int stress_nr_groups(void)
773
{
774
/*
775
* LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
776
* to allow practical forward progress. Bare metal returns 1, which
777
* seems to help uncover more bugs.
778
*/
779
if (firmware_has_feature(FW_FEATURE_LPAR))
780
return STRESS_MAX_GROUPS;
781
else
782
return 1;
783
}
784
785
static struct stress_hpt_struct *stress_hpt_struct;
786
787
static int __init htab_dt_scan_seg_sizes(unsigned long node,
788
const char *uname, int depth,
789
void *data)
790
{
791
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
792
const __be32 *prop;
793
int size = 0;
794
795
/* We are scanning "cpu" nodes only */
796
if (type == NULL || strcmp(type, "cpu") != 0)
797
return 0;
798
799
prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
800
if (prop == NULL)
801
return 0;
802
for (; size >= 4; size -= 4, ++prop) {
803
if (be32_to_cpu(prop[0]) == 40) {
804
DBG("1T segment support detected\n");
805
806
if (disable_1tb_segments) {
807
DBG("1T segments disabled by command line\n");
808
break;
809
}
810
811
cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
812
return 1;
813
}
814
}
815
cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
816
return 0;
817
}
818
819
static int __init get_idx_from_shift(unsigned int shift)
820
{
821
int idx = -1;
822
823
switch (shift) {
824
case 0xc:
825
idx = MMU_PAGE_4K;
826
break;
827
case 0x10:
828
idx = MMU_PAGE_64K;
829
break;
830
case 0x14:
831
idx = MMU_PAGE_1M;
832
break;
833
case 0x18:
834
idx = MMU_PAGE_16M;
835
break;
836
case 0x22:
837
idx = MMU_PAGE_16G;
838
break;
839
}
840
return idx;
841
}
842
843
static int __init htab_dt_scan_page_sizes(unsigned long node,
844
const char *uname, int depth,
845
void *data)
846
{
847
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
848
const __be32 *prop;
849
int size = 0;
850
851
/* We are scanning "cpu" nodes only */
852
if (type == NULL || strcmp(type, "cpu") != 0)
853
return 0;
854
855
prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
856
if (!prop)
857
return 0;
858
859
pr_info("Page sizes from device-tree:\n");
860
size /= 4;
861
cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
862
while(size > 0) {
863
unsigned int base_shift = be32_to_cpu(prop[0]);
864
unsigned int slbenc = be32_to_cpu(prop[1]);
865
unsigned int lpnum = be32_to_cpu(prop[2]);
866
struct mmu_psize_def *def;
867
int idx, base_idx;
868
869
size -= 3; prop += 3;
870
base_idx = get_idx_from_shift(base_shift);
871
if (base_idx < 0) {
872
/* skip the pte encoding also */
873
prop += lpnum * 2; size -= lpnum * 2;
874
continue;
875
}
876
def = &mmu_psize_defs[base_idx];
877
if (base_idx == MMU_PAGE_16M)
878
cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
879
880
def->shift = base_shift;
881
if (base_shift <= 23)
882
def->avpnm = 0;
883
else
884
def->avpnm = (1 << (base_shift - 23)) - 1;
885
def->sllp = slbenc;
886
/*
887
* We don't know for sure what's up with tlbiel, so
888
* for now we only set it for 4K and 64K pages
889
*/
890
if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
891
def->tlbiel = 1;
892
else
893
def->tlbiel = 0;
894
895
while (size > 0 && lpnum) {
896
unsigned int shift = be32_to_cpu(prop[0]);
897
int penc = be32_to_cpu(prop[1]);
898
899
prop += 2; size -= 2;
900
lpnum--;
901
902
idx = get_idx_from_shift(shift);
903
if (idx < 0)
904
continue;
905
906
if (penc == -1)
907
pr_err("Invalid penc for base_shift=%d "
908
"shift=%d\n", base_shift, shift);
909
910
def->penc[idx] = penc;
911
pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
912
" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
913
base_shift, shift, def->sllp,
914
def->avpnm, def->tlbiel, def->penc[idx]);
915
}
916
}
917
918
return 1;
919
}
920
921
#ifdef CONFIG_HUGETLB_PAGE
922
/*
923
* Scan for 16G memory blocks that have been set aside for huge pages
924
* and reserve those blocks for 16G huge pages.
925
*/
926
static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
927
const char *uname, int depth,
928
void *data) {
929
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
930
const __be64 *addr_prop;
931
const __be32 *page_count_prop;
932
unsigned int expected_pages;
933
long unsigned int phys_addr;
934
long unsigned int block_size;
935
936
/* We are scanning "memory" nodes only */
937
if (type == NULL || strcmp(type, "memory") != 0)
938
return 0;
939
940
/*
941
* This property is the log base 2 of the number of virtual pages that
942
* will represent this memory block.
943
*/
944
page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
945
if (page_count_prop == NULL)
946
return 0;
947
expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
948
addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
949
if (addr_prop == NULL)
950
return 0;
951
phys_addr = be64_to_cpu(addr_prop[0]);
952
block_size = be64_to_cpu(addr_prop[1]);
953
if (block_size != (16 * GB))
954
return 0;
955
printk(KERN_INFO "Huge page(16GB) memory: "
956
"addr = 0x%lX size = 0x%lX pages = %d\n",
957
phys_addr, block_size, expected_pages);
958
if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
959
memblock_reserve(phys_addr, block_size * expected_pages);
960
pseries_add_gpage(phys_addr, block_size, expected_pages);
961
}
962
return 0;
963
}
964
#endif /* CONFIG_HUGETLB_PAGE */
965
966
static void __init mmu_psize_set_default_penc(void)
967
{
968
int bpsize, apsize;
969
for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
970
for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
971
mmu_psize_defs[bpsize].penc[apsize] = -1;
972
}
973
974
#ifdef CONFIG_PPC_64K_PAGES
975
976
static bool __init might_have_hea(void)
977
{
978
/*
979
* The HEA ethernet adapter requires awareness of the
980
* GX bus. Without that awareness we can easily assume
981
* we will never see an HEA ethernet device.
982
*/
983
#ifdef CONFIG_IBMEBUS
984
return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
985
firmware_has_feature(FW_FEATURE_SPLPAR);
986
#else
987
return false;
988
#endif
989
}
990
991
#endif /* #ifdef CONFIG_PPC_64K_PAGES */
992
993
static void __init htab_scan_page_sizes(void)
994
{
995
int rc;
996
997
/* se the invalid penc to -1 */
998
mmu_psize_set_default_penc();
999
1000
/* Default to 4K pages only */
1001
memcpy(mmu_psize_defs, mmu_psize_defaults,
1002
sizeof(mmu_psize_defaults));
1003
1004
/*
1005
* Try to find the available page sizes in the device-tree
1006
*/
1007
rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
1008
if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
1009
/*
1010
* Nothing in the device-tree, but the CPU supports 16M pages,
1011
* so let's fallback on a known size list for 16M capable CPUs.
1012
*/
1013
memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
1014
sizeof(mmu_psize_defaults_gp));
1015
}
1016
1017
#ifdef CONFIG_HUGETLB_PAGE
1018
if (!hugetlb_disabled && !early_radix_enabled() ) {
1019
/* Reserve 16G huge page memory sections for huge pages */
1020
of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
1021
}
1022
#endif /* CONFIG_HUGETLB_PAGE */
1023
}
1024
1025
/*
1026
* Fill in the hpte_page_sizes[] array.
1027
* We go through the mmu_psize_defs[] array looking for all the
1028
* supported base/actual page size combinations. Each combination
1029
* has a unique pagesize encoding (penc) value in the low bits of
1030
* the LP field of the HPTE. For actual page sizes less than 1MB,
1031
* some of the upper LP bits are used for RPN bits, meaning that
1032
* we need to fill in several entries in hpte_page_sizes[].
1033
*
1034
* In diagrammatic form, with r = RPN bits and z = page size bits:
1035
* PTE LP actual page size
1036
* rrrr rrrz >=8KB
1037
* rrrr rrzz >=16KB
1038
* rrrr rzzz >=32KB
1039
* rrrr zzzz >=64KB
1040
* ...
1041
*
1042
* The zzzz bits are implementation-specific but are chosen so that
1043
* no encoding for a larger page size uses the same value in its
1044
* low-order N bits as the encoding for the 2^(12+N) byte page size
1045
* (if it exists).
1046
*/
1047
static void __init init_hpte_page_sizes(void)
1048
{
1049
long int ap, bp;
1050
long int shift, penc;
1051
1052
for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
1053
if (!mmu_psize_defs[bp].shift)
1054
continue; /* not a supported page size */
1055
for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
1056
penc = mmu_psize_defs[bp].penc[ap];
1057
if (penc == -1 || !mmu_psize_defs[ap].shift)
1058
continue;
1059
shift = mmu_psize_defs[ap].shift - LP_SHIFT;
1060
if (shift <= 0)
1061
continue; /* should never happen */
1062
/*
1063
* For page sizes less than 1MB, this loop
1064
* replicates the entry for all possible values
1065
* of the rrrr bits.
1066
*/
1067
while (penc < (1 << LP_BITS)) {
1068
hpte_page_sizes[penc] = (ap << 4) | bp;
1069
penc += 1 << shift;
1070
}
1071
}
1072
}
1073
}
1074
1075
static void __init htab_init_page_sizes(void)
1076
{
1077
bool aligned = true;
1078
init_hpte_page_sizes();
1079
1080
if (!hash_supports_debug_pagealloc() && !kfence_early_init_enabled()) {
1081
/*
1082
* Pick a size for the linear mapping. Currently, we only
1083
* support 16M, 1M and 4K which is the default
1084
*/
1085
if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
1086
(unsigned long)_stext % 0x1000000) {
1087
if (mmu_psize_defs[MMU_PAGE_16M].shift)
1088
pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
1089
aligned = false;
1090
}
1091
1092
if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
1093
mmu_linear_psize = MMU_PAGE_16M;
1094
else if (mmu_psize_defs[MMU_PAGE_1M].shift)
1095
mmu_linear_psize = MMU_PAGE_1M;
1096
}
1097
1098
#ifdef CONFIG_PPC_64K_PAGES
1099
/*
1100
* Pick a size for the ordinary pages. Default is 4K, we support
1101
* 64K for user mappings and vmalloc if supported by the processor.
1102
* We only use 64k for ioremap if the processor
1103
* (and firmware) support cache-inhibited large pages.
1104
* If not, we use 4k and set mmu_ci_restrictions so that
1105
* hash_page knows to switch processes that use cache-inhibited
1106
* mappings to 4k pages.
1107
*/
1108
if (mmu_psize_defs[MMU_PAGE_64K].shift) {
1109
mmu_virtual_psize = MMU_PAGE_64K;
1110
mmu_vmalloc_psize = MMU_PAGE_64K;
1111
if (mmu_linear_psize == MMU_PAGE_4K)
1112
mmu_linear_psize = MMU_PAGE_64K;
1113
if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
1114
/*
1115
* When running on pSeries using 64k pages for ioremap
1116
* would stop us accessing the HEA ethernet. So if we
1117
* have the chance of ever seeing one, stay at 4k.
1118
*/
1119
if (!might_have_hea())
1120
mmu_io_psize = MMU_PAGE_64K;
1121
} else
1122
mmu_ci_restrictions = 1;
1123
}
1124
#endif /* CONFIG_PPC_64K_PAGES */
1125
1126
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1127
/*
1128
* We try to use 16M pages for vmemmap if that is supported
1129
* and we have at least 1G of RAM at boot
1130
*/
1131
if (mmu_psize_defs[MMU_PAGE_16M].shift &&
1132
memblock_phys_mem_size() >= 0x40000000)
1133
mmu_vmemmap_psize = MMU_PAGE_16M;
1134
else
1135
mmu_vmemmap_psize = mmu_virtual_psize;
1136
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
1137
1138
printk(KERN_DEBUG "Page orders: linear mapping = %d, "
1139
"virtual = %d, io = %d"
1140
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1141
", vmemmap = %d"
1142
#endif
1143
"\n",
1144
mmu_psize_defs[mmu_linear_psize].shift,
1145
mmu_psize_defs[mmu_virtual_psize].shift,
1146
mmu_psize_defs[mmu_io_psize].shift
1147
#ifdef CONFIG_SPARSEMEM_VMEMMAP
1148
,mmu_psize_defs[mmu_vmemmap_psize].shift
1149
#endif
1150
);
1151
}
1152
1153
static int __init htab_dt_scan_pftsize(unsigned long node,
1154
const char *uname, int depth,
1155
void *data)
1156
{
1157
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1158
const __be32 *prop;
1159
1160
/* We are scanning "cpu" nodes only */
1161
if (type == NULL || strcmp(type, "cpu") != 0)
1162
return 0;
1163
1164
prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
1165
if (prop != NULL) {
1166
/* pft_size[0] is the NUMA CEC cookie */
1167
ppc64_pft_size = be32_to_cpu(prop[1]);
1168
return 1;
1169
}
1170
return 0;
1171
}
1172
1173
unsigned htab_shift_for_mem_size(unsigned long mem_size)
1174
{
1175
unsigned memshift = __ilog2(mem_size);
1176
unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
1177
unsigned pteg_shift;
1178
1179
/* round mem_size up to next power of 2 */
1180
if ((1UL << memshift) < mem_size)
1181
memshift += 1;
1182
1183
/* aim for 2 pages / pteg */
1184
pteg_shift = memshift - (pshift + 1);
1185
1186
/*
1187
* 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
1188
* size permitted by the architecture.
1189
*/
1190
return max(pteg_shift + 7, 18U);
1191
}
1192
1193
static unsigned long __init htab_get_table_size(void)
1194
{
1195
/*
1196
* If hash size isn't already provided by the platform, we try to
1197
* retrieve it from the device-tree. If it's not there neither, we
1198
* calculate it now based on the total RAM size
1199
*/
1200
if (ppc64_pft_size == 0)
1201
of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
1202
if (ppc64_pft_size)
1203
return 1UL << ppc64_pft_size;
1204
1205
return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
1206
}
1207
1208
#ifdef CONFIG_MEMORY_HOTPLUG
1209
static int resize_hpt_for_hotplug(unsigned long new_mem_size)
1210
{
1211
unsigned target_hpt_shift;
1212
1213
if (!mmu_hash_ops.resize_hpt)
1214
return 0;
1215
1216
target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
1217
1218
/*
1219
* To avoid lots of HPT resizes if memory size is fluctuating
1220
* across a boundary, we deliberately have some hysterisis
1221
* here: we immediately increase the HPT size if the target
1222
* shift exceeds the current shift, but we won't attempt to
1223
* reduce unless the target shift is at least 2 below the
1224
* current shift
1225
*/
1226
if (target_hpt_shift > ppc64_pft_size ||
1227
target_hpt_shift < ppc64_pft_size - 1)
1228
return mmu_hash_ops.resize_hpt(target_hpt_shift);
1229
1230
return 0;
1231
}
1232
1233
int hash__create_section_mapping(unsigned long start, unsigned long end,
1234
int nid, pgprot_t prot)
1235
{
1236
int rc;
1237
1238
if (end >= H_VMALLOC_START) {
1239
pr_warn("Outside the supported range\n");
1240
return -1;
1241
}
1242
1243
resize_hpt_for_hotplug(memblock_phys_mem_size());
1244
1245
rc = htab_bolt_mapping(start, end, __pa(start),
1246
pgprot_val(prot), mmu_linear_psize,
1247
mmu_kernel_ssize);
1248
1249
if (rc < 0) {
1250
int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
1251
mmu_kernel_ssize);
1252
BUG_ON(rc2 && (rc2 != -ENOENT));
1253
}
1254
return rc;
1255
}
1256
1257
int hash__remove_section_mapping(unsigned long start, unsigned long end)
1258
{
1259
int rc = htab_remove_mapping(start, end, mmu_linear_psize,
1260
mmu_kernel_ssize);
1261
1262
if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1263
pr_warn("Hash collision while resizing HPT\n");
1264
1265
return rc;
1266
}
1267
#endif /* CONFIG_MEMORY_HOTPLUG */
1268
1269
static void __init hash_init_partition_table(phys_addr_t hash_table,
1270
unsigned long htab_size)
1271
{
1272
mmu_partition_table_init();
1273
1274
/*
1275
* PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1276
* For now, UPRT is 0 and we have no segment table.
1277
*/
1278
htab_size = __ilog2(htab_size) - 18;
1279
mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1280
pr_info("Partition table %p\n", partition_tb);
1281
}
1282
1283
void hpt_clear_stress(void);
1284
static struct timer_list stress_hpt_timer;
1285
static void stress_hpt_timer_fn(struct timer_list *timer)
1286
{
1287
int next_cpu;
1288
1289
hpt_clear_stress();
1290
if (!firmware_has_feature(FW_FEATURE_LPAR))
1291
tlbiel_all();
1292
1293
next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1294
if (next_cpu >= nr_cpu_ids)
1295
next_cpu = cpumask_first(cpu_online_mask);
1296
stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1297
add_timer_on(&stress_hpt_timer, next_cpu);
1298
}
1299
1300
static void __init htab_initialize(void)
1301
{
1302
unsigned long table;
1303
unsigned long pteg_count;
1304
unsigned long prot;
1305
phys_addr_t base = 0, size = 0, end;
1306
u64 i;
1307
1308
DBG(" -> htab_initialize()\n");
1309
1310
if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1311
mmu_kernel_ssize = MMU_SEGSIZE_1T;
1312
mmu_highuser_ssize = MMU_SEGSIZE_1T;
1313
printk(KERN_INFO "Using 1TB segments\n");
1314
}
1315
1316
if (stress_slb_enabled)
1317
static_branch_enable(&stress_slb_key);
1318
1319
if (stress_hpt_enabled) {
1320
unsigned long tmp;
1321
static_branch_enable(&stress_hpt_key);
1322
// Too early to use nr_cpu_ids, so use NR_CPUS
1323
tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1324
__alignof__(struct stress_hpt_struct),
1325
0, MEMBLOCK_ALLOC_ANYWHERE);
1326
memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1327
stress_hpt_struct = __va(tmp);
1328
1329
timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1330
stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1331
add_timer(&stress_hpt_timer);
1332
}
1333
1334
/*
1335
* Calculate the required size of the htab. We want the number of
1336
* PTEGs to equal one half the number of real pages.
1337
*/
1338
htab_size_bytes = htab_get_table_size();
1339
pteg_count = htab_size_bytes >> 7;
1340
1341
htab_hash_mask = pteg_count - 1;
1342
1343
if (firmware_has_feature(FW_FEATURE_LPAR) ||
1344
firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1345
/* Using a hypervisor which owns the htab */
1346
htab_address = NULL;
1347
_SDR1 = 0;
1348
#ifdef CONFIG_FA_DUMP
1349
/*
1350
* If firmware assisted dump is active firmware preserves
1351
* the contents of htab along with entire partition memory.
1352
* Clear the htab if firmware assisted dump is active so
1353
* that we dont end up using old mappings.
1354
*/
1355
if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1356
mmu_hash_ops.hpte_clear_all();
1357
#endif
1358
} else {
1359
unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1360
1361
table = memblock_phys_alloc_range(htab_size_bytes,
1362
htab_size_bytes,
1363
0, limit);
1364
if (!table)
1365
panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1366
&htab_size_bytes, &limit);
1367
1368
DBG("Hash table allocated at %lx, size: %lx\n", table,
1369
htab_size_bytes);
1370
1371
htab_address = __va(table);
1372
1373
/* htab absolute addr + encoded htabsize */
1374
_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1375
1376
/* Initialize the HPT with no entries */
1377
memset((void *)table, 0, htab_size_bytes);
1378
1379
if (!cpu_has_feature(CPU_FTR_ARCH_300))
1380
/* Set SDR1 */
1381
mtspr(SPRN_SDR1, _SDR1);
1382
else
1383
hash_init_partition_table(table, htab_size_bytes);
1384
}
1385
1386
prot = pgprot_val(PAGE_KERNEL);
1387
1388
hash_debug_pagealloc_alloc_slots();
1389
hash_kfence_alloc_pool();
1390
/* create bolted the linear mapping in the hash table */
1391
for_each_mem_range(i, &base, &end) {
1392
size = end - base;
1393
base = (unsigned long)__va(base);
1394
1395
DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1396
base, size, prot);
1397
1398
if ((base + size) >= H_VMALLOC_START) {
1399
pr_warn("Outside the supported range\n");
1400
continue;
1401
}
1402
1403
BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1404
prot, mmu_linear_psize, mmu_kernel_ssize));
1405
}
1406
hash_kfence_map_pool();
1407
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1408
1409
/*
1410
* If we have a memory_limit and we've allocated TCEs then we need to
1411
* explicitly map the TCE area at the top of RAM. We also cope with the
1412
* case that the TCEs start below memory_limit.
1413
* tce_alloc_start/end are 16MB aligned so the mapping should work
1414
* for either 4K or 16MB pages.
1415
*/
1416
if (tce_alloc_start) {
1417
tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1418
tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1419
1420
if (base + size >= tce_alloc_start)
1421
tce_alloc_start = base + size + 1;
1422
1423
BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1424
__pa(tce_alloc_start), prot,
1425
mmu_linear_psize, mmu_kernel_ssize));
1426
}
1427
1428
1429
DBG(" <- htab_initialize()\n");
1430
}
1431
#undef KB
1432
#undef MB
1433
1434
void __init hash__early_init_devtree(void)
1435
{
1436
/* Initialize segment sizes */
1437
of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1438
1439
/* Initialize page sizes */
1440
htab_scan_page_sizes();
1441
}
1442
1443
static struct hash_mm_context init_hash_mm_context;
1444
void __init hash__early_init_mmu(void)
1445
{
1446
#ifndef CONFIG_PPC_64K_PAGES
1447
/*
1448
* We have code in __hash_page_4K() and elsewhere, which assumes it can
1449
* do the following:
1450
* new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1451
*
1452
* Where the slot number is between 0-15, and values of 8-15 indicate
1453
* the secondary bucket. For that code to work H_PAGE_F_SECOND and
1454
* H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1455
* H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1456
* with a BUILD_BUG_ON().
1457
*/
1458
BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
1459
#endif /* CONFIG_PPC_64K_PAGES */
1460
1461
htab_init_page_sizes();
1462
1463
/*
1464
* initialize page table size
1465
*/
1466
__pte_frag_nr = H_PTE_FRAG_NR;
1467
__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1468
__pmd_frag_nr = H_PMD_FRAG_NR;
1469
__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1470
1471
__pte_index_size = H_PTE_INDEX_SIZE;
1472
__pmd_index_size = H_PMD_INDEX_SIZE;
1473
__pud_index_size = H_PUD_INDEX_SIZE;
1474
__pgd_index_size = H_PGD_INDEX_SIZE;
1475
__pud_cache_index = H_PUD_CACHE_INDEX;
1476
__pte_table_size = H_PTE_TABLE_SIZE;
1477
__pmd_table_size = H_PMD_TABLE_SIZE;
1478
__pud_table_size = H_PUD_TABLE_SIZE;
1479
__pgd_table_size = H_PGD_TABLE_SIZE;
1480
__pmd_val_bits = HASH_PMD_VAL_BITS;
1481
__pud_val_bits = HASH_PUD_VAL_BITS;
1482
__pgd_val_bits = HASH_PGD_VAL_BITS;
1483
1484
__kernel_virt_start = H_KERN_VIRT_START;
1485
__vmalloc_start = H_VMALLOC_START;
1486
__vmalloc_end = H_VMALLOC_END;
1487
__kernel_io_start = H_KERN_IO_START;
1488
__kernel_io_end = H_KERN_IO_END;
1489
vmemmap = (struct page *)H_VMEMMAP_START;
1490
ioremap_bot = IOREMAP_BASE;
1491
1492
#ifdef CONFIG_PCI
1493
pci_io_base = ISA_IO_BASE;
1494
#endif
1495
1496
/* Select appropriate backend */
1497
if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1498
ps3_early_mm_init();
1499
else if (firmware_has_feature(FW_FEATURE_LPAR))
1500
hpte_init_pseries();
1501
else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1502
hpte_init_native();
1503
1504
if (!mmu_hash_ops.hpte_insert)
1505
panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1506
1507
/*
1508
* Initialize the MMU Hash table and create the linear mapping
1509
* of memory. Has to be done before SLB initialization as this is
1510
* currently where the page size encoding is obtained.
1511
*/
1512
htab_initialize();
1513
1514
init_mm.context.hash_context = &init_hash_mm_context;
1515
mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1516
1517
pr_info("Initializing hash mmu with SLB\n");
1518
/* Initialize SLB management */
1519
slb_initialize();
1520
1521
if (cpu_has_feature(CPU_FTR_ARCH_206)
1522
&& cpu_has_feature(CPU_FTR_HVMODE))
1523
tlbiel_all();
1524
}
1525
1526
#ifdef CONFIG_SMP
1527
void hash__early_init_mmu_secondary(void)
1528
{
1529
/* Initialize hash table for that CPU */
1530
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1531
1532
if (!cpu_has_feature(CPU_FTR_ARCH_300))
1533
mtspr(SPRN_SDR1, _SDR1);
1534
else
1535
set_ptcr_when_no_uv(__pa(partition_tb) |
1536
(PATB_SIZE_SHIFT - 12));
1537
}
1538
/* Initialize SLB */
1539
slb_initialize();
1540
1541
if (cpu_has_feature(CPU_FTR_ARCH_206)
1542
&& cpu_has_feature(CPU_FTR_HVMODE))
1543
tlbiel_all();
1544
1545
#ifdef CONFIG_PPC_MEM_KEYS
1546
if (mmu_has_feature(MMU_FTR_PKEY))
1547
mtspr(SPRN_UAMOR, default_uamor);
1548
#endif
1549
}
1550
#endif /* CONFIG_SMP */
1551
1552
/*
1553
* Called by asm hashtable.S for doing lazy icache flush
1554
*/
1555
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1556
{
1557
struct folio *folio;
1558
1559
if (!pfn_valid(pte_pfn(pte)))
1560
return pp;
1561
1562
folio = page_folio(pte_page(pte));
1563
1564
/* page is dirty */
1565
if (!test_bit(PG_dcache_clean, &folio->flags) &&
1566
!folio_test_reserved(folio)) {
1567
if (trap == INTERRUPT_INST_STORAGE) {
1568
flush_dcache_icache_folio(folio);
1569
set_bit(PG_dcache_clean, &folio->flags);
1570
} else
1571
pp |= HPTE_R_N;
1572
}
1573
return pp;
1574
}
1575
1576
static unsigned int get_paca_psize(unsigned long addr)
1577
{
1578
unsigned char *psizes;
1579
unsigned long index, mask_index;
1580
1581
if (addr < SLICE_LOW_TOP) {
1582
psizes = get_paca()->mm_ctx_low_slices_psize;
1583
index = GET_LOW_SLICE_INDEX(addr);
1584
} else {
1585
psizes = get_paca()->mm_ctx_high_slices_psize;
1586
index = GET_HIGH_SLICE_INDEX(addr);
1587
}
1588
mask_index = index & 0x1;
1589
return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1590
}
1591
1592
1593
/*
1594
* Demote a segment to using 4k pages.
1595
* For now this makes the whole process use 4k pages.
1596
*/
1597
#ifdef CONFIG_PPC_64K_PAGES
1598
void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1599
{
1600
if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1601
return;
1602
slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1603
#ifdef CONFIG_SPU_BASE
1604
spu_flush_all_slbs(mm);
1605
#endif
1606
if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1607
1608
copy_mm_to_paca(mm);
1609
slb_flush_and_restore_bolted();
1610
}
1611
}
1612
#endif /* CONFIG_PPC_64K_PAGES */
1613
1614
#ifdef CONFIG_PPC_SUBPAGE_PROT
1615
/*
1616
* This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1617
* Userspace sets the subpage permissions using the subpage_prot system call.
1618
*
1619
* Result is 0: full permissions, _PAGE_RW: read-only,
1620
* _PAGE_RWX: no access.
1621
*/
1622
static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1623
{
1624
struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1625
u32 spp = 0;
1626
u32 **sbpm, *sbpp;
1627
1628
if (!spt)
1629
return 0;
1630
1631
if (ea >= spt->maxaddr)
1632
return 0;
1633
if (ea < 0x100000000UL) {
1634
/* addresses below 4GB use spt->low_prot */
1635
sbpm = spt->low_prot;
1636
} else {
1637
sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1638
if (!sbpm)
1639
return 0;
1640
}
1641
sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1642
if (!sbpp)
1643
return 0;
1644
spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1645
1646
/* extract 2-bit bitfield for this 4k subpage */
1647
spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1648
1649
/*
1650
* 0 -> full permission
1651
* 1 -> Read only
1652
* 2 -> no access.
1653
* We return the flag that need to be cleared.
1654
*/
1655
spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1656
return spp;
1657
}
1658
1659
#else /* CONFIG_PPC_SUBPAGE_PROT */
1660
static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1661
{
1662
return 0;
1663
}
1664
#endif
1665
1666
void hash_failure_debug(unsigned long ea, unsigned long access,
1667
unsigned long vsid, unsigned long trap,
1668
int ssize, int psize, int lpsize, unsigned long pte)
1669
{
1670
if (!printk_ratelimit())
1671
return;
1672
pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1673
ea, access, current->comm);
1674
pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1675
trap, vsid, ssize, psize, lpsize, pte);
1676
}
1677
1678
static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1679
int psize, bool user_region)
1680
{
1681
if (user_region) {
1682
if (psize != get_paca_psize(ea)) {
1683
copy_mm_to_paca(mm);
1684
slb_flush_and_restore_bolted();
1685
}
1686
} else if (get_paca()->vmalloc_sllp !=
1687
mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1688
get_paca()->vmalloc_sllp =
1689
mmu_psize_defs[mmu_vmalloc_psize].sllp;
1690
slb_vmalloc_update();
1691
}
1692
}
1693
1694
/*
1695
* Result code is:
1696
* 0 - handled
1697
* 1 - normal page fault
1698
* -1 - critical hash insertion error
1699
* -2 - access not permitted by subpage protection mechanism
1700
*/
1701
int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1702
unsigned long access, unsigned long trap,
1703
unsigned long flags)
1704
{
1705
bool is_thp;
1706
pgd_t *pgdir;
1707
unsigned long vsid;
1708
pte_t *ptep;
1709
unsigned hugeshift;
1710
int rc, user_region = 0;
1711
int psize, ssize;
1712
1713
DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1714
ea, access, trap);
1715
trace_hash_fault(ea, access, trap);
1716
1717
/* Get region & vsid */
1718
switch (get_region_id(ea)) {
1719
case USER_REGION_ID:
1720
user_region = 1;
1721
if (! mm) {
1722
DBG_LOW(" user region with no mm !\n");
1723
rc = 1;
1724
goto bail;
1725
}
1726
psize = get_slice_psize(mm, ea);
1727
ssize = user_segment_size(ea);
1728
vsid = get_user_vsid(&mm->context, ea, ssize);
1729
break;
1730
case VMALLOC_REGION_ID:
1731
vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1732
psize = mmu_vmalloc_psize;
1733
ssize = mmu_kernel_ssize;
1734
flags |= HPTE_USE_KERNEL_KEY;
1735
break;
1736
1737
case IO_REGION_ID:
1738
vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1739
psize = mmu_io_psize;
1740
ssize = mmu_kernel_ssize;
1741
flags |= HPTE_USE_KERNEL_KEY;
1742
break;
1743
default:
1744
/*
1745
* Not a valid range
1746
* Send the problem up to do_page_fault()
1747
*/
1748
rc = 1;
1749
goto bail;
1750
}
1751
DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1752
1753
/* Bad address. */
1754
if (!vsid) {
1755
DBG_LOW("Bad address!\n");
1756
rc = 1;
1757
goto bail;
1758
}
1759
/* Get pgdir */
1760
pgdir = mm->pgd;
1761
if (pgdir == NULL) {
1762
rc = 1;
1763
goto bail;
1764
}
1765
1766
/* Check CPU locality */
1767
if (user_region && mm_is_thread_local(mm))
1768
flags |= HPTE_LOCAL_UPDATE;
1769
1770
#ifndef CONFIG_PPC_64K_PAGES
1771
/*
1772
* If we use 4K pages and our psize is not 4K, then we might
1773
* be hitting a special driver mapping, and need to align the
1774
* address before we fetch the PTE.
1775
*
1776
* It could also be a hugepage mapping, in which case this is
1777
* not necessary, but it's not harmful, either.
1778
*/
1779
if (psize != MMU_PAGE_4K)
1780
ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1781
#endif /* CONFIG_PPC_64K_PAGES */
1782
1783
/* Get PTE and page size from page tables */
1784
ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1785
if (ptep == NULL || !pte_present(*ptep)) {
1786
DBG_LOW(" no PTE !\n");
1787
rc = 1;
1788
goto bail;
1789
}
1790
1791
if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) {
1792
if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M)
1793
hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift;
1794
if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G)
1795
hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift;
1796
}
1797
1798
/*
1799
* Add _PAGE_PRESENT to the required access perm. If there are parallel
1800
* updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1801
*
1802
* We can safely use the return pte address in rest of the function
1803
* because we do set H_PAGE_BUSY which prevents further updates to pte
1804
* from generic code.
1805
*/
1806
access |= _PAGE_PRESENT | _PAGE_PTE;
1807
1808
/*
1809
* Pre-check access permissions (will be re-checked atomically
1810
* in __hash_page_XX but this pre-check is a fast path
1811
*/
1812
if (!check_pte_access(access, pte_val(*ptep))) {
1813
DBG_LOW(" no access !\n");
1814
rc = 1;
1815
goto bail;
1816
}
1817
1818
if (hugeshift) {
1819
if (is_thp)
1820
rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1821
trap, flags, ssize, psize);
1822
#ifdef CONFIG_HUGETLB_PAGE
1823
else
1824
rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1825
flags, ssize, hugeshift, psize);
1826
#else
1827
else {
1828
/*
1829
* if we have hugeshift, and is not transhuge with
1830
* hugetlb disabled, something is really wrong.
1831
*/
1832
rc = 1;
1833
WARN_ON(1);
1834
}
1835
#endif
1836
if (current->mm == mm)
1837
check_paca_psize(ea, mm, psize, user_region);
1838
1839
goto bail;
1840
}
1841
1842
#ifndef CONFIG_PPC_64K_PAGES
1843
DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1844
#else
1845
DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1846
pte_val(*(ptep + PTRS_PER_PTE)));
1847
#endif
1848
/* Do actual hashing */
1849
#ifdef CONFIG_PPC_64K_PAGES
1850
/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1851
if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1852
demote_segment_4k(mm, ea);
1853
psize = MMU_PAGE_4K;
1854
}
1855
1856
/*
1857
* If this PTE is non-cacheable and we have restrictions on
1858
* using non cacheable large pages, then we switch to 4k
1859
*/
1860
if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1861
if (user_region) {
1862
demote_segment_4k(mm, ea);
1863
psize = MMU_PAGE_4K;
1864
} else if (ea < VMALLOC_END) {
1865
/*
1866
* some driver did a non-cacheable mapping
1867
* in vmalloc space, so switch vmalloc
1868
* to 4k pages
1869
*/
1870
printk(KERN_ALERT "Reducing vmalloc segment "
1871
"to 4kB pages because of "
1872
"non-cacheable mapping\n");
1873
psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1874
#ifdef CONFIG_SPU_BASE
1875
spu_flush_all_slbs(mm);
1876
#endif
1877
}
1878
}
1879
1880
#endif /* CONFIG_PPC_64K_PAGES */
1881
1882
if (current->mm == mm)
1883
check_paca_psize(ea, mm, psize, user_region);
1884
1885
#ifdef CONFIG_PPC_64K_PAGES
1886
if (psize == MMU_PAGE_64K)
1887
rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1888
flags, ssize);
1889
else
1890
#endif /* CONFIG_PPC_64K_PAGES */
1891
{
1892
int spp = subpage_protection(mm, ea);
1893
if (access & spp)
1894
rc = -2;
1895
else
1896
rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1897
flags, ssize, spp);
1898
}
1899
1900
/*
1901
* Dump some info in case of hash insertion failure, they should
1902
* never happen so it is really useful to know if/when they do
1903
*/
1904
if (rc == -1)
1905
hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1906
psize, pte_val(*ptep));
1907
#ifndef CONFIG_PPC_64K_PAGES
1908
DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1909
#else
1910
DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1911
pte_val(*(ptep + PTRS_PER_PTE)));
1912
#endif
1913
DBG_LOW(" -> rc=%d\n", rc);
1914
1915
bail:
1916
return rc;
1917
}
1918
EXPORT_SYMBOL_GPL(hash_page_mm);
1919
1920
int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1921
unsigned long dsisr)
1922
{
1923
unsigned long flags = 0;
1924
struct mm_struct *mm = current->mm;
1925
1926
if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1927
(get_region_id(ea) == IO_REGION_ID))
1928
mm = &init_mm;
1929
1930
if (dsisr & DSISR_NOHPTE)
1931
flags |= HPTE_NOHPTE_UPDATE;
1932
1933
return hash_page_mm(mm, ea, access, trap, flags);
1934
}
1935
EXPORT_SYMBOL_GPL(hash_page);
1936
1937
DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1938
{
1939
unsigned long ea = regs->dar;
1940
unsigned long dsisr = regs->dsisr;
1941
unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1942
unsigned long flags = 0;
1943
struct mm_struct *mm;
1944
unsigned int region_id;
1945
long err;
1946
1947
if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1948
hash__do_page_fault(regs);
1949
return;
1950
}
1951
1952
region_id = get_region_id(ea);
1953
if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1954
mm = &init_mm;
1955
else
1956
mm = current->mm;
1957
1958
if (dsisr & DSISR_NOHPTE)
1959
flags |= HPTE_NOHPTE_UPDATE;
1960
1961
if (dsisr & DSISR_ISSTORE)
1962
access |= _PAGE_WRITE;
1963
/*
1964
* We set _PAGE_PRIVILEGED only when
1965
* kernel mode access kernel space.
1966
*
1967
* _PAGE_PRIVILEGED is NOT set
1968
* 1) when kernel mode access user space
1969
* 2) user space access kernel space.
1970
*/
1971
access |= _PAGE_PRIVILEGED;
1972
if (user_mode(regs) || (region_id == USER_REGION_ID))
1973
access &= ~_PAGE_PRIVILEGED;
1974
1975
if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1976
access |= _PAGE_EXEC;
1977
1978
err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1979
if (unlikely(err < 0)) {
1980
// failed to insert a hash PTE due to an hypervisor error
1981
if (user_mode(regs)) {
1982
if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1983
_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1984
else
1985
_exception(SIGBUS, regs, BUS_ADRERR, ea);
1986
} else {
1987
bad_page_fault(regs, SIGBUS);
1988
}
1989
err = 0;
1990
1991
} else if (err) {
1992
hash__do_page_fault(regs);
1993
}
1994
}
1995
1996
static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1997
{
1998
int psize = get_slice_psize(mm, ea);
1999
2000
/* We only prefault standard pages for now */
2001
if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
2002
return false;
2003
2004
/*
2005
* Don't prefault if subpage protection is enabled for the EA.
2006
*/
2007
if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
2008
return false;
2009
2010
return true;
2011
}
2012
2013
static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
2014
bool is_exec, unsigned long trap)
2015
{
2016
unsigned long vsid;
2017
pgd_t *pgdir;
2018
int rc, ssize, update_flags = 0;
2019
unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
2020
unsigned long flags;
2021
2022
BUG_ON(get_region_id(ea) != USER_REGION_ID);
2023
2024
if (!should_hash_preload(mm, ea))
2025
return;
2026
2027
DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
2028
" trap=%lx\n", mm, mm->pgd, ea, access, trap);
2029
2030
/* Get Linux PTE if available */
2031
pgdir = mm->pgd;
2032
if (pgdir == NULL)
2033
return;
2034
2035
/* Get VSID */
2036
ssize = user_segment_size(ea);
2037
vsid = get_user_vsid(&mm->context, ea, ssize);
2038
if (!vsid)
2039
return;
2040
2041
#ifdef CONFIG_PPC_64K_PAGES
2042
/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
2043
* a 64K kernel), then we don't preload, hash_page() will take
2044
* care of it once we actually try to access the page.
2045
* That way we don't have to duplicate all of the logic for segment
2046
* page size demotion here
2047
* Called with PTL held, hence can be sure the value won't change in
2048
* between.
2049
*/
2050
if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
2051
return;
2052
#endif /* CONFIG_PPC_64K_PAGES */
2053
2054
/*
2055
* __hash_page_* must run with interrupts off, including PMI interrupts
2056
* off, as it sets the H_PAGE_BUSY bit.
2057
*
2058
* It's otherwise possible for perf interrupts to hit at any time and
2059
* may take a hash fault reading the user stack, which could take a
2060
* hash miss and deadlock on the same H_PAGE_BUSY bit.
2061
*
2062
* Interrupts must also be off for the duration of the
2063
* mm_is_thread_local test and update, to prevent preempt running the
2064
* mm on another CPU (XXX: this may be racy vs kthread_use_mm).
2065
*/
2066
powerpc_local_irq_pmu_save(flags);
2067
2068
/* Is that local to this CPU ? */
2069
if (mm_is_thread_local(mm))
2070
update_flags |= HPTE_LOCAL_UPDATE;
2071
2072
/* Hash it in */
2073
#ifdef CONFIG_PPC_64K_PAGES
2074
if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
2075
rc = __hash_page_64K(ea, access, vsid, ptep, trap,
2076
update_flags, ssize);
2077
else
2078
#endif /* CONFIG_PPC_64K_PAGES */
2079
rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
2080
ssize, subpage_protection(mm, ea));
2081
2082
/* Dump some info in case of hash insertion failure, they should
2083
* never happen so it is really useful to know if/when they do
2084
*/
2085
if (rc == -1)
2086
hash_failure_debug(ea, access, vsid, trap, ssize,
2087
mm_ctx_user_psize(&mm->context),
2088
mm_ctx_user_psize(&mm->context),
2089
pte_val(*ptep));
2090
2091
powerpc_local_irq_pmu_restore(flags);
2092
}
2093
2094
/*
2095
* This is called at the end of handling a user page fault, when the
2096
* fault has been handled by updating a PTE in the linux page tables.
2097
* We use it to preload an HPTE into the hash table corresponding to
2098
* the updated linux PTE.
2099
*
2100
* This must always be called with the pte lock held.
2101
*/
2102
void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
2103
pte_t *ptep)
2104
{
2105
/*
2106
* We don't need to worry about _PAGE_PRESENT here because we are
2107
* called with either mm->page_table_lock held or ptl lock held
2108
*/
2109
unsigned long trap;
2110
bool is_exec;
2111
2112
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
2113
if (!pte_young(*ptep) || address >= TASK_SIZE)
2114
return;
2115
2116
/*
2117
* We try to figure out if we are coming from an instruction
2118
* access fault and pass that down to __hash_page so we avoid
2119
* double-faulting on execution of fresh text. We have to test
2120
* for regs NULL since init will get here first thing at boot.
2121
*
2122
* We also avoid filling the hash if not coming from a fault.
2123
*/
2124
2125
trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
2126
switch (trap) {
2127
case 0x300:
2128
is_exec = false;
2129
break;
2130
case 0x400:
2131
is_exec = true;
2132
break;
2133
default:
2134
return;
2135
}
2136
2137
hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
2138
}
2139
2140
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2141
static inline void tm_flush_hash_page(int local)
2142
{
2143
/*
2144
* Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
2145
* page back to a block device w/PIO could pick up transactional data
2146
* (bad!) so we force an abort here. Before the sync the page will be
2147
* made read-only, which will flush_hash_page. BIG ISSUE here: if the
2148
* kernel uses a page from userspace without unmapping it first, it may
2149
* see the speculated version.
2150
*/
2151
if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
2152
MSR_TM_ACTIVE(current->thread.regs->msr)) {
2153
tm_enable();
2154
tm_abort(TM_CAUSE_TLBI);
2155
}
2156
}
2157
#else
2158
static inline void tm_flush_hash_page(int local)
2159
{
2160
}
2161
#endif
2162
2163
/*
2164
* Return the global hash slot, corresponding to the given PTE, which contains
2165
* the HPTE.
2166
*/
2167
unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
2168
int ssize, real_pte_t rpte, unsigned int subpg_index)
2169
{
2170
unsigned long hash, gslot, hidx;
2171
2172
hash = hpt_hash(vpn, shift, ssize);
2173
hidx = __rpte_to_hidx(rpte, subpg_index);
2174
if (hidx & _PTEIDX_SECONDARY)
2175
hash = ~hash;
2176
gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2177
gslot += hidx & _PTEIDX_GROUP_IX;
2178
return gslot;
2179
}
2180
2181
void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
2182
unsigned long flags)
2183
{
2184
unsigned long index, shift, gslot;
2185
int local = flags & HPTE_LOCAL_UPDATE;
2186
2187
DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
2188
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
2189
gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
2190
DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
2191
/*
2192
* We use same base page size and actual psize, because we don't
2193
* use these functions for hugepage
2194
*/
2195
mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
2196
ssize, local);
2197
} pte_iterate_hashed_end();
2198
2199
tm_flush_hash_page(local);
2200
}
2201
2202
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2203
void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
2204
pmd_t *pmdp, unsigned int psize, int ssize,
2205
unsigned long flags)
2206
{
2207
int i, max_hpte_count, valid;
2208
unsigned long s_addr;
2209
unsigned char *hpte_slot_array;
2210
unsigned long hidx, shift, vpn, hash, slot;
2211
int local = flags & HPTE_LOCAL_UPDATE;
2212
2213
s_addr = addr & HPAGE_PMD_MASK;
2214
hpte_slot_array = get_hpte_slot_array(pmdp);
2215
/*
2216
* IF we try to do a HUGE PTE update after a withdraw is done.
2217
* we will find the below NULL. This happens when we do
2218
* split_huge_pmd
2219
*/
2220
if (!hpte_slot_array)
2221
return;
2222
2223
if (mmu_hash_ops.hugepage_invalidate) {
2224
mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
2225
psize, ssize, local);
2226
goto tm_abort;
2227
}
2228
/*
2229
* No bluk hpte removal support, invalidate each entry
2230
*/
2231
shift = mmu_psize_defs[psize].shift;
2232
max_hpte_count = HPAGE_PMD_SIZE >> shift;
2233
for (i = 0; i < max_hpte_count; i++) {
2234
/*
2235
* 8 bits per each hpte entries
2236
* 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
2237
*/
2238
valid = hpte_valid(hpte_slot_array, i);
2239
if (!valid)
2240
continue;
2241
hidx = hpte_hash_index(hpte_slot_array, i);
2242
2243
/* get the vpn */
2244
addr = s_addr + (i * (1ul << shift));
2245
vpn = hpt_vpn(addr, vsid, ssize);
2246
hash = hpt_hash(vpn, shift, ssize);
2247
if (hidx & _PTEIDX_SECONDARY)
2248
hash = ~hash;
2249
2250
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2251
slot += hidx & _PTEIDX_GROUP_IX;
2252
mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2253
MMU_PAGE_16M, ssize, local);
2254
}
2255
tm_abort:
2256
tm_flush_hash_page(local);
2257
}
2258
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2259
2260
void flush_hash_range(unsigned long number, int local)
2261
{
2262
if (mmu_hash_ops.flush_hash_range)
2263
mmu_hash_ops.flush_hash_range(number, local);
2264
else {
2265
int i;
2266
struct ppc64_tlb_batch *batch =
2267
this_cpu_ptr(&ppc64_tlb_batch);
2268
2269
for (i = 0; i < number; i++)
2270
flush_hash_page(batch->vpn[i], batch->pte[i],
2271
batch->psize, batch->ssize, local);
2272
}
2273
}
2274
2275
long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2276
unsigned long pa, unsigned long rflags,
2277
unsigned long vflags, int psize, int ssize)
2278
{
2279
unsigned long hpte_group;
2280
long slot;
2281
2282
repeat:
2283
hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2284
2285
/* Insert into the hash table, primary slot */
2286
slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2287
psize, psize, ssize);
2288
2289
/* Primary is full, try the secondary */
2290
if (unlikely(slot == -1)) {
2291
hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2292
slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2293
vflags | HPTE_V_SECONDARY,
2294
psize, psize, ssize);
2295
if (slot == -1) {
2296
if (mftb() & 0x1)
2297
hpte_group = (hash & htab_hash_mask) *
2298
HPTES_PER_GROUP;
2299
2300
mmu_hash_ops.hpte_remove(hpte_group);
2301
goto repeat;
2302
}
2303
}
2304
2305
return slot;
2306
}
2307
2308
void hpt_clear_stress(void)
2309
{
2310
int cpu = raw_smp_processor_id();
2311
int g;
2312
2313
for (g = 0; g < stress_nr_groups(); g++) {
2314
unsigned long last_group;
2315
last_group = stress_hpt_struct[cpu].last_group[g];
2316
2317
if (last_group != -1UL) {
2318
int i;
2319
for (i = 0; i < HPTES_PER_GROUP; i++) {
2320
if (mmu_hash_ops.hpte_remove(last_group) == -1)
2321
break;
2322
}
2323
stress_hpt_struct[cpu].last_group[g] = -1;
2324
}
2325
}
2326
}
2327
2328
void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2329
{
2330
unsigned long last_group;
2331
int cpu = raw_smp_processor_id();
2332
2333
last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2334
if (hpte_group == last_group)
2335
return;
2336
2337
if (last_group != -1UL) {
2338
int i;
2339
/*
2340
* Concurrent CPUs might be inserting into this group, so
2341
* give up after a number of iterations, to prevent a live
2342
* lock.
2343
*/
2344
for (i = 0; i < HPTES_PER_GROUP; i++) {
2345
if (mmu_hash_ops.hpte_remove(last_group) == -1)
2346
break;
2347
}
2348
stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2349
}
2350
2351
if (ea >= PAGE_OFFSET) {
2352
/*
2353
* We would really like to prefetch to get the TLB loaded, then
2354
* remove the PTE before returning from fault interrupt, to
2355
* increase the hash fault rate.
2356
*
2357
* Unfortunately QEMU TCG does not model the TLB in a way that
2358
* makes this possible, and systemsim (mambo) emulator does not
2359
* bring in TLBs with prefetches (although loads/stores do
2360
* work for non-CI PTEs).
2361
*
2362
* So remember this PTE and clear it on the next hash fault.
2363
*/
2364
memmove(&stress_hpt_struct[cpu].last_group[1],
2365
&stress_hpt_struct[cpu].last_group[0],
2366
(stress_nr_groups() - 1) * sizeof(unsigned long));
2367
stress_hpt_struct[cpu].last_group[0] = hpte_group;
2368
}
2369
}
2370
2371
void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2372
phys_addr_t first_memblock_size)
2373
{
2374
/*
2375
* We don't currently support the first MEMBLOCK not mapping 0
2376
* physical on those processors
2377
*/
2378
BUG_ON(first_memblock_base != 0);
2379
2380
/*
2381
* On virtualized systems the first entry is our RMA region aka VRMA,
2382
* non-virtualized 64-bit hash MMU systems don't have a limitation
2383
* on real mode access.
2384
*
2385
* For guests on platforms before POWER9, we clamp the it limit to 1G
2386
* to avoid some funky things such as RTAS bugs etc...
2387
*
2388
* On POWER9 we limit to 1TB in case the host erroneously told us that
2389
* the RMA was >1TB. Effective address bits 0:23 are treated as zero
2390
* (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2391
* for virtual real mode addressing and so it doesn't make sense to
2392
* have an area larger than 1TB as it can't be addressed.
2393
*/
2394
if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2395
ppc64_rma_size = first_memblock_size;
2396
if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2397
ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2398
else
2399
ppc64_rma_size = min_t(u64, ppc64_rma_size,
2400
1UL << SID_SHIFT_1T);
2401
2402
/* Finally limit subsequent allocations */
2403
memblock_set_current_limit(ppc64_rma_size);
2404
} else {
2405
ppc64_rma_size = ULONG_MAX;
2406
}
2407
}
2408
2409
#ifdef CONFIG_DEBUG_FS
2410
2411
static int hpt_order_get(void *data, u64 *val)
2412
{
2413
*val = ppc64_pft_size;
2414
return 0;
2415
}
2416
2417
static int hpt_order_set(void *data, u64 val)
2418
{
2419
int ret;
2420
2421
if (!mmu_hash_ops.resize_hpt)
2422
return -ENODEV;
2423
2424
cpus_read_lock();
2425
ret = mmu_hash_ops.resize_hpt(val);
2426
cpus_read_unlock();
2427
2428
return ret;
2429
}
2430
2431
DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2432
2433
static int __init hash64_debugfs(void)
2434
{
2435
debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2436
&fops_hpt_order);
2437
return 0;
2438
}
2439
machine_device_initcall(pseries, hash64_debugfs);
2440
#endif /* CONFIG_DEBUG_FS */
2441
2442
void __init print_system_hash_info(void)
2443
{
2444
pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
2445
2446
if (htab_hash_mask)
2447
pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask);
2448
}
2449
2450
unsigned long arch_randomize_brk(struct mm_struct *mm)
2451
{
2452
/*
2453
* If we are using 1TB segments and we are allowed to randomise
2454
* the heap, we can put it above 1TB so it is backed by a 1TB
2455
* segment. Otherwise the heap will be in the bottom 1TB
2456
* which always uses 256MB segments and this may result in a
2457
* performance penalty.
2458
*/
2459
if (is_32bit_task())
2460
return randomize_page(mm->brk, SZ_32M);
2461
else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2462
return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2463
else
2464
return randomize_page(mm->brk, SZ_1G);
2465
}
2466
2467