Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/book3s64/pgtable.c
52401 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/mm_types.h>
8
#include <linux/memblock.h>
9
#include <linux/memremap.h>
10
#include <linux/pkeys.h>
11
#include <linux/debugfs.h>
12
#include <linux/proc_fs.h>
13
#include <linux/page_table_check.h>
14
15
#include <asm/pgalloc.h>
16
#include <asm/tlb.h>
17
#include <asm/trace.h>
18
#include <asm/powernv.h>
19
#include <asm/firmware.h>
20
#include <asm/ultravisor.h>
21
#include <asm/kexec.h>
22
23
#include <mm/mmu_decl.h>
24
#include <trace/events/thp.h>
25
26
#include "internal.h"
27
28
struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29
EXPORT_SYMBOL_GPL(mmu_psize_defs);
30
31
#ifdef CONFIG_SPARSEMEM_VMEMMAP
32
int mmu_vmemmap_psize = MMU_PAGE_4K;
33
#endif
34
35
unsigned long __pmd_frag_nr;
36
EXPORT_SYMBOL(__pmd_frag_nr);
37
unsigned long __pmd_frag_size_shift;
38
EXPORT_SYMBOL(__pmd_frag_size_shift);
39
40
#ifdef CONFIG_KFENCE
41
extern bool kfence_early_init;
42
static int __init parse_kfence_early_init(char *arg)
43
{
44
int val;
45
46
if (get_option(&arg, &val))
47
kfence_early_init = !!val;
48
return 0;
49
}
50
early_param("kfence.sample_interval", parse_kfence_early_init);
51
#endif
52
53
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
54
/*
55
* This is called when relaxing access to a hugepage. It's also called in the page
56
* fault path when we don't hit any of the major fault cases, ie, a minor
57
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
58
* handled those two for us, we additionally deal with missing execute
59
* permission here on some processors
60
*/
61
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
62
pmd_t *pmdp, pmd_t entry, int dirty)
63
{
64
int changed;
65
#ifdef CONFIG_DEBUG_VM
66
WARN_ON(!pmd_trans_huge(*pmdp));
67
assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
68
#endif
69
changed = !pmd_same(*(pmdp), entry);
70
if (changed) {
71
/*
72
* We can use MMU_PAGE_2M here, because only radix
73
* path look at the psize.
74
*/
75
__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
76
pmd_pte(entry), address, MMU_PAGE_2M);
77
}
78
return changed;
79
}
80
81
int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
82
pud_t *pudp, pud_t entry, int dirty)
83
{
84
int changed;
85
#ifdef CONFIG_DEBUG_VM
86
assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
87
#endif
88
changed = !pud_same(*(pudp), entry);
89
if (changed) {
90
/*
91
* We can use MMU_PAGE_1G here, because only radix
92
* path look at the psize.
93
*/
94
__ptep_set_access_flags(vma, pudp_ptep(pudp),
95
pud_pte(entry), address, MMU_PAGE_1G);
96
}
97
return changed;
98
}
99
100
101
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
102
unsigned long address, pmd_t *pmdp)
103
{
104
return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
105
}
106
107
int pudp_test_and_clear_young(struct vm_area_struct *vma,
108
unsigned long address, pud_t *pudp)
109
{
110
return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
111
}
112
113
/*
114
* set a new huge pmd. We should not be called for updating
115
* an existing pmd entry. That should go via pmd_hugepage_update.
116
*/
117
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
118
pmd_t *pmdp, pmd_t pmd)
119
{
120
#ifdef CONFIG_DEBUG_VM
121
/*
122
* Make sure hardware valid bit is not set. We don't do
123
* tlb flush for this update.
124
*/
125
126
WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
127
assert_spin_locked(pmd_lockptr(mm, pmdp));
128
WARN_ON(!(pmd_leaf(pmd)));
129
#endif
130
trace_hugepage_set_pmd(addr, pmd_val(pmd));
131
page_table_check_pmd_set(mm, addr, pmdp, pmd);
132
return set_pte_at_unchecked(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
133
}
134
135
void set_pud_at(struct mm_struct *mm, unsigned long addr,
136
pud_t *pudp, pud_t pud)
137
{
138
#ifdef CONFIG_DEBUG_VM
139
/*
140
* Make sure hardware valid bit is not set. We don't do
141
* tlb flush for this update.
142
*/
143
144
WARN_ON(pte_hw_valid(pud_pte(*pudp)));
145
assert_spin_locked(pud_lockptr(mm, pudp));
146
WARN_ON(!(pud_leaf(pud)));
147
#endif
148
trace_hugepage_set_pud(addr, pud_val(pud));
149
page_table_check_pud_set(mm, addr, pudp, pud);
150
return set_pte_at_unchecked(mm, addr, pudp_ptep(pudp), pud_pte(pud));
151
}
152
153
static void do_serialize(void *arg)
154
{
155
/* We've taken the IPI, so try to trim the mask while here */
156
if (radix_enabled()) {
157
struct mm_struct *mm = arg;
158
exit_lazy_flush_tlb(mm, false);
159
}
160
}
161
162
/*
163
* Serialize against __find_linux_pte() which does lock-less
164
* lookup in page tables with local interrupts disabled. For huge pages
165
* it casts pmd_t to pte_t. Since format of pte_t is different from
166
* pmd_t we want to prevent transit from pmd pointing to page table
167
* to pmd pointing to huge page (and back) while interrupts are disabled.
168
* We clear pmd to possibly replace it with page table pointer in
169
* different code paths. So make sure we wait for the parallel
170
* __find_linux_pte() to finish.
171
*/
172
void serialize_against_pte_lookup(struct mm_struct *mm)
173
{
174
smp_mb();
175
smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
176
}
177
178
/*
179
* We use this to invalidate a pmdp entry before switching from a
180
* hugepte to regular pmd entry.
181
*/
182
pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
183
pmd_t *pmdp)
184
{
185
pmd_t old_pmd;
186
187
VM_WARN_ON_ONCE(!pmd_present(*pmdp));
188
old_pmd = __pmd(pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID));
189
flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
190
page_table_check_pmd_clear(vma->vm_mm, address, old_pmd);
191
192
return old_pmd;
193
}
194
195
pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
196
pud_t *pudp)
197
{
198
pud_t old_pud;
199
200
VM_WARN_ON_ONCE(!pud_present(*pudp));
201
old_pud = __pud(pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID));
202
flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
203
page_table_check_pud_clear(vma->vm_mm, address, old_pud);
204
205
return old_pud;
206
}
207
208
pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
209
unsigned long addr, pmd_t *pmdp, int full)
210
{
211
pmd_t pmd;
212
VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
213
VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)) ||
214
!pmd_present(*pmdp));
215
pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
216
/*
217
* if it not a fullmm flush, then we can possibly end up converting
218
* this PMD pte entry to a regular level 0 PTE by a parallel page fault.
219
* Make sure we flush the tlb in this case.
220
*/
221
if (!full)
222
flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
223
return pmd;
224
}
225
226
pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
227
unsigned long addr, pud_t *pudp, int full)
228
{
229
pud_t pud;
230
231
VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
232
VM_BUG_ON(!pud_present(*pudp));
233
pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
234
/*
235
* if it not a fullmm flush, then we can possibly end up converting
236
* this PMD pte entry to a regular level 0 PTE by a parallel page fault.
237
* Make sure we flush the tlb in this case.
238
*/
239
if (!full)
240
flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
241
return pud;
242
}
243
244
static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
245
{
246
return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
247
}
248
249
static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
250
{
251
return __pud(pud_val(pud) | pgprot_val(pgprot));
252
}
253
254
/*
255
* At some point we should be able to get rid of
256
* pmd_mkhuge() and mk_huge_pmd() when we update all the
257
* other archs to mark the pmd huge in pfn_pmd()
258
*/
259
pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
260
{
261
unsigned long pmdv;
262
263
pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
264
265
return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
266
}
267
268
pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
269
{
270
unsigned long pudv;
271
272
pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
273
274
return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
275
}
276
277
pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
278
{
279
unsigned long pmdv;
280
281
pmdv = pmd_val(pmd);
282
pmdv &= _HPAGE_CHG_MASK;
283
return pmd_set_protbits(__pmd(pmdv), newprot);
284
}
285
286
pud_t pud_modify(pud_t pud, pgprot_t newprot)
287
{
288
unsigned long pudv;
289
290
pudv = pud_val(pud);
291
pudv &= _HPAGE_CHG_MASK;
292
return pud_set_protbits(__pud(pudv), newprot);
293
}
294
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
295
296
/* For use by kexec, called with MMU off */
297
notrace void mmu_cleanup_all(void)
298
{
299
if (radix_enabled())
300
radix__mmu_cleanup_all();
301
else if (mmu_hash_ops.hpte_clear_all)
302
mmu_hash_ops.hpte_clear_all();
303
304
reset_sprs();
305
}
306
307
#ifdef CONFIG_MEMORY_HOTPLUG
308
int __meminit create_section_mapping(unsigned long start, unsigned long end,
309
int nid, pgprot_t prot)
310
{
311
if (radix_enabled())
312
return radix__create_section_mapping(start, end, nid, prot);
313
314
return hash__create_section_mapping(start, end, nid, prot);
315
}
316
317
int __meminit remove_section_mapping(unsigned long start, unsigned long end)
318
{
319
if (radix_enabled())
320
return radix__remove_section_mapping(start, end);
321
322
return hash__remove_section_mapping(start, end);
323
}
324
#endif /* CONFIG_MEMORY_HOTPLUG */
325
326
void __init mmu_partition_table_init(void)
327
{
328
unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
329
unsigned long ptcr;
330
331
/* Initialize the Partition Table with no entries */
332
partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
333
ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
334
set_ptcr_when_no_uv(ptcr);
335
powernv_set_nmmu_ptcr(ptcr);
336
}
337
338
static void flush_partition(unsigned int lpid, bool radix)
339
{
340
if (radix) {
341
radix__flush_all_lpid(lpid);
342
radix__flush_all_lpid_guest(lpid);
343
} else {
344
asm volatile("ptesync" : : : "memory");
345
asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
346
"r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
347
/* do we need fixup here ?*/
348
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
349
trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
350
}
351
}
352
353
void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
354
unsigned long dw1, bool flush)
355
{
356
unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
357
358
/*
359
* When ultravisor is enabled, the partition table is stored in secure
360
* memory and can only be accessed doing an ultravisor call. However, we
361
* maintain a copy of the partition table in normal memory to allow Nest
362
* MMU translations to occur (for normal VMs).
363
*
364
* Therefore, here we always update partition_tb, regardless of whether
365
* we are running under an ultravisor or not.
366
*/
367
partition_tb[lpid].patb0 = cpu_to_be64(dw0);
368
partition_tb[lpid].patb1 = cpu_to_be64(dw1);
369
370
/*
371
* If ultravisor is enabled, we do an ultravisor call to register the
372
* partition table entry (PATE), which also do a global flush of TLBs
373
* and partition table caches for the lpid. Otherwise, just do the
374
* flush. The type of flush (hash or radix) depends on what the previous
375
* use of the partition ID was, not the new use.
376
*/
377
if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
378
uv_register_pate(lpid, dw0, dw1);
379
pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
380
dw0, dw1);
381
} else if (flush) {
382
/*
383
* Boot does not need to flush, because MMU is off and each
384
* CPU does a tlbiel_all() before switching them on, which
385
* flushes everything.
386
*/
387
flush_partition(lpid, (old & PATB_HR));
388
}
389
}
390
EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
391
392
static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
393
{
394
void *pmd_frag, *ret;
395
396
if (PMD_FRAG_NR == 1)
397
return NULL;
398
399
spin_lock(&mm->page_table_lock);
400
ret = mm->context.pmd_frag;
401
if (ret) {
402
pmd_frag = ret + PMD_FRAG_SIZE;
403
/*
404
* If we have taken up all the fragments mark PTE page NULL
405
*/
406
if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
407
pmd_frag = NULL;
408
mm->context.pmd_frag = pmd_frag;
409
}
410
spin_unlock(&mm->page_table_lock);
411
return (pmd_t *)ret;
412
}
413
414
static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
415
{
416
void *ret = NULL;
417
struct ptdesc *ptdesc;
418
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
419
420
if (mm == &init_mm)
421
gfp &= ~__GFP_ACCOUNT;
422
ptdesc = pagetable_alloc(gfp, 0);
423
if (!ptdesc)
424
return NULL;
425
if (!pagetable_pmd_ctor(mm, ptdesc)) {
426
pagetable_free(ptdesc);
427
return NULL;
428
}
429
430
atomic_set(&ptdesc->pt_frag_refcount, 1);
431
432
ret = ptdesc_address(ptdesc);
433
/*
434
* if we support only one fragment just return the
435
* allocated page.
436
*/
437
if (PMD_FRAG_NR == 1)
438
return ret;
439
440
spin_lock(&mm->page_table_lock);
441
/*
442
* If we find ptdesc_page set, we return
443
* the allocated page with single fragment
444
* count.
445
*/
446
if (likely(!mm->context.pmd_frag)) {
447
atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
448
mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
449
}
450
spin_unlock(&mm->page_table_lock);
451
452
return (pmd_t *)ret;
453
}
454
455
pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
456
{
457
pmd_t *pmd;
458
459
pmd = get_pmd_from_cache(mm);
460
if (pmd)
461
return pmd;
462
463
return __alloc_for_pmdcache(mm);
464
}
465
466
void pmd_fragment_free(unsigned long *pmd)
467
{
468
struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
469
470
if (pagetable_is_reserved(ptdesc))
471
return free_reserved_ptdesc(ptdesc);
472
473
BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
474
if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
475
pagetable_dtor(ptdesc);
476
pagetable_free(ptdesc);
477
}
478
}
479
480
static inline void pgtable_free(void *table, int index)
481
{
482
switch (index) {
483
case PTE_INDEX:
484
pte_fragment_free(table, 0);
485
break;
486
case PMD_INDEX:
487
pmd_fragment_free(table);
488
break;
489
case PUD_INDEX:
490
__pud_free(table);
491
break;
492
/* We don't free pgd table via RCU callback */
493
default:
494
BUG();
495
}
496
}
497
498
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
499
{
500
unsigned long pgf = (unsigned long)table;
501
502
BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
503
pgf |= index;
504
tlb_remove_table(tlb, (void *)pgf);
505
}
506
507
void __tlb_remove_table(void *_table)
508
{
509
void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
510
unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
511
512
return pgtable_free(table, index);
513
}
514
515
#ifdef CONFIG_PROC_FS
516
atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
517
518
void arch_report_meminfo(struct seq_file *m)
519
{
520
seq_printf(m, "DirectMap4k: %8lu kB\n",
521
atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
522
seq_printf(m, "DirectMap64k: %8lu kB\n",
523
atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
524
if (radix_enabled()) {
525
seq_printf(m, "DirectMap2M: %8lu kB\n",
526
atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
527
seq_printf(m, "DirectMap1G: %8lu kB\n",
528
atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
529
} else {
530
seq_printf(m, "DirectMap16M: %8lu kB\n",
531
atomic_long_read(&direct_pages_count[MMU_PAGE_16M]) << 14);
532
seq_printf(m, "DirectMap16G: %8lu kB\n",
533
atomic_long_read(&direct_pages_count[MMU_PAGE_16G]) << 24);
534
}
535
}
536
#endif /* CONFIG_PROC_FS */
537
538
pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
539
pte_t *ptep)
540
{
541
unsigned long pte_val;
542
543
/*
544
* Clear the _PAGE_PRESENT so that no hardware parallel update is
545
* possible. Also keep the pte_present true so that we don't take
546
* wrong fault.
547
*/
548
pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
549
550
return __pte(pte_val);
551
552
}
553
554
void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
555
pte_t *ptep, pte_t old_pte, pte_t pte)
556
{
557
if (radix_enabled())
558
return radix__ptep_modify_prot_commit(vma, addr,
559
ptep, old_pte, pte);
560
set_pte_at_unchecked(vma->vm_mm, addr, ptep, pte);
561
}
562
563
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
564
/*
565
* For hash translation mode, we use the deposited table to store hash slot
566
* information and they are stored at PTRS_PER_PMD offset from related pmd
567
* location. Hence a pmd move requires deposit and withdraw.
568
*
569
* For radix translation with split pmd ptl, we store the deposited table in the
570
* pmd page. Hence if we have different pmd page we need to withdraw during pmd
571
* move.
572
*
573
* With hash we use deposited table always irrespective of anon or not.
574
* With radix we use deposited table only for anonymous mapping.
575
*/
576
int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
577
struct spinlock *old_pmd_ptl,
578
struct vm_area_struct *vma)
579
{
580
if (radix_enabled())
581
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
582
583
return true;
584
}
585
#endif
586
587
/*
588
* Does the CPU support tlbie?
589
*/
590
bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
591
EXPORT_SYMBOL(tlbie_capable);
592
593
/*
594
* Should tlbie be used for management of CPU TLBs, for kernel and process
595
* address spaces? tlbie may still be used for nMMU accelerators, and for KVM
596
* guest address spaces.
597
*/
598
bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
599
600
static int __init setup_disable_tlbie(char *str)
601
{
602
if (!radix_enabled()) {
603
pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
604
return 1;
605
}
606
607
tlbie_capable = false;
608
tlbie_enabled = false;
609
610
return 1;
611
}
612
__setup("disable_tlbie", setup_disable_tlbie);
613
614
static int __init pgtable_debugfs_setup(void)
615
{
616
if (!tlbie_capable)
617
return 0;
618
619
/*
620
* There is no locking vs tlb flushing when changing this value.
621
* The tlb flushers will see one value or another, and use either
622
* tlbie or tlbiel with IPIs. In both cases the TLBs will be
623
* invalidated as expected.
624
*/
625
debugfs_create_bool("tlbie_enabled", 0600,
626
arch_debugfs_dir,
627
&tlbie_enabled);
628
629
return 0;
630
}
631
arch_initcall(pgtable_debugfs_setup);
632
633
#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
634
/*
635
* Override the generic version in mm/memremap.c.
636
*
637
* With hash translation, the direct-map range is mapped with just one
638
* page size selected by htab_init_page_sizes(). Consult
639
* mmu_psize_defs[] to determine the minimum page size alignment.
640
*/
641
unsigned long memremap_compat_align(void)
642
{
643
if (!radix_enabled()) {
644
unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
645
return max(SUBSECTION_SIZE, 1UL << shift);
646
}
647
648
return SUBSECTION_SIZE;
649
}
650
EXPORT_SYMBOL_GPL(memremap_compat_align);
651
#endif
652
653
pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
654
{
655
unsigned long prot;
656
657
/* Radix supports execute-only, but protection_map maps X -> RX */
658
if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
659
vm_flags |= VM_READ;
660
661
prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
662
663
if (vm_flags & VM_SAO)
664
prot |= _PAGE_SAO;
665
666
#ifdef CONFIG_PPC_MEM_KEYS
667
prot |= vmflag_to_pte_pkey_bits(vm_flags);
668
#endif
669
670
return __pgprot(prot);
671
}
672
EXPORT_SYMBOL(vm_get_page_prot);
673
674