Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/fault.c
26486 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PowerPC version
4
* Copyright (C) 1995-1996 Gary Thomas ([email protected])
5
*
6
* Derived from "arch/i386/mm/fault.c"
7
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8
*
9
* Modified by Cort Dougan and Paul Mackerras.
10
*
11
* Modified for PPC64 by Dave Engebretsen ([email protected])
12
*/
13
14
#include <linux/signal.h>
15
#include <linux/sched.h>
16
#include <linux/sched/task_stack.h>
17
#include <linux/kernel.h>
18
#include <linux/errno.h>
19
#include <linux/string.h>
20
#include <linux/string_choices.h>
21
#include <linux/types.h>
22
#include <linux/pagemap.h>
23
#include <linux/ptrace.h>
24
#include <linux/mman.h>
25
#include <linux/mm.h>
26
#include <linux/interrupt.h>
27
#include <linux/highmem.h>
28
#include <linux/extable.h>
29
#include <linux/kprobes.h>
30
#include <linux/kdebug.h>
31
#include <linux/perf_event.h>
32
#include <linux/ratelimit.h>
33
#include <linux/context_tracking.h>
34
#include <linux/hugetlb.h>
35
#include <linux/uaccess.h>
36
#include <linux/kfence.h>
37
#include <linux/pkeys.h>
38
39
#include <asm/firmware.h>
40
#include <asm/interrupt.h>
41
#include <asm/page.h>
42
#include <asm/mmu.h>
43
#include <asm/mmu_context.h>
44
#include <asm/siginfo.h>
45
#include <asm/debug.h>
46
#include <asm/kup.h>
47
#include <asm/inst.h>
48
49
50
/*
51
* do_page_fault error handling helpers
52
*/
53
54
static int
55
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
56
{
57
/*
58
* If we are in kernel mode, bail out with a SEGV, this will
59
* be caught by the assembly which will restore the non-volatile
60
* registers before calling bad_page_fault()
61
*/
62
if (!user_mode(regs))
63
return SIGSEGV;
64
65
_exception(SIGSEGV, regs, si_code, address);
66
67
return 0;
68
}
69
70
static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
71
{
72
return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
73
}
74
75
static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
76
struct mm_struct *mm, struct vm_area_struct *vma)
77
{
78
79
/*
80
* Something tried to access memory that isn't in our memory map..
81
* Fix it, but check if it's kernel or user first..
82
*/
83
if (mm)
84
mmap_read_unlock(mm);
85
else
86
vma_end_read(vma);
87
88
return __bad_area_nosemaphore(regs, address, si_code);
89
}
90
91
static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
92
struct mm_struct *mm,
93
struct vm_area_struct *vma)
94
{
95
int pkey;
96
97
/*
98
* We don't try to fetch the pkey from page table because reading
99
* page table without locking doesn't guarantee stable pte value.
100
* Hence the pkey value that we return to userspace can be different
101
* from the pkey that actually caused access error.
102
*
103
* It does *not* guarantee that the VMA we find here
104
* was the one that we faulted on.
105
*
106
* 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
107
* 2. T1 : set AMR to deny access to pkey=4, touches, page
108
* 3. T1 : faults...
109
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
110
* 5. T1 : enters fault handler, takes mmap_lock, etc...
111
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
112
* faulted on a pte with its pkey=4.
113
*/
114
pkey = vma_pkey(vma);
115
116
if (mm)
117
mmap_read_unlock(mm);
118
else
119
vma_end_read(vma);
120
121
/*
122
* If we are in kernel mode, bail out with a SEGV, this will
123
* be caught by the assembly which will restore the non-volatile
124
* registers before calling bad_page_fault()
125
*/
126
if (!user_mode(regs))
127
return SIGSEGV;
128
129
_exception_pkey(regs, address, pkey);
130
131
return 0;
132
}
133
134
static noinline int bad_access(struct pt_regs *regs, unsigned long address,
135
struct mm_struct *mm, struct vm_area_struct *vma)
136
{
137
return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
138
}
139
140
static int do_sigbus(struct pt_regs *regs, unsigned long address,
141
vm_fault_t fault)
142
{
143
if (!user_mode(regs))
144
return SIGBUS;
145
146
current->thread.trap_nr = BUS_ADRERR;
147
#ifdef CONFIG_MEMORY_FAILURE
148
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
149
unsigned int lsb = 0; /* shutup gcc */
150
151
pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
152
current->comm, current->pid, address);
153
154
if (fault & VM_FAULT_HWPOISON_LARGE)
155
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
156
if (fault & VM_FAULT_HWPOISON)
157
lsb = PAGE_SHIFT;
158
159
force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
160
return 0;
161
}
162
163
#endif
164
force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
165
return 0;
166
}
167
168
static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
169
vm_fault_t fault)
170
{
171
/*
172
* Kernel page fault interrupted by SIGKILL. We have no reason to
173
* continue processing.
174
*/
175
if (fatal_signal_pending(current) && !user_mode(regs))
176
return SIGKILL;
177
178
/* Out of memory */
179
if (fault & VM_FAULT_OOM) {
180
/*
181
* We ran out of memory, or some other thing happened to us that
182
* made us unable to handle the page fault gracefully.
183
*/
184
if (!user_mode(regs))
185
return SIGSEGV;
186
pagefault_out_of_memory();
187
} else {
188
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
189
VM_FAULT_HWPOISON_LARGE))
190
return do_sigbus(regs, addr, fault);
191
else if (fault & VM_FAULT_SIGSEGV)
192
return bad_area_nosemaphore(regs, addr);
193
else
194
BUG();
195
}
196
return 0;
197
}
198
199
/* Is this a bad kernel fault ? */
200
static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
201
unsigned long address, bool is_write)
202
{
203
int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
204
205
if (is_exec) {
206
pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
207
address >= TASK_SIZE ? "exec-protected" : "user",
208
address,
209
from_kuid(&init_user_ns, current_uid()));
210
211
// Kernel exec fault is always bad
212
return true;
213
}
214
215
// Kernel fault on kernel address is bad
216
if (address >= TASK_SIZE)
217
return true;
218
219
// Read/write fault blocked by KUAP is bad, it can never succeed.
220
if (bad_kuap_fault(regs, address, is_write)) {
221
pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
222
str_write_read(is_write), address,
223
from_kuid(&init_user_ns, current_uid()));
224
225
// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
226
if (!search_exception_tables(regs->nip))
227
return true;
228
229
// Read/write fault in a valid region (the exception table search passed
230
// above), but blocked by KUAP is bad, it can never succeed.
231
return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
232
}
233
234
// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
235
return false;
236
}
237
238
static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
239
struct vm_area_struct *vma)
240
{
241
/*
242
* Make sure to check the VMA so that we do not perform
243
* faults just to hit a pkey fault as soon as we fill in a
244
* page. Only called for current mm, hence foreign == 0
245
*/
246
if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
247
return true;
248
249
return false;
250
}
251
252
static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
253
{
254
/*
255
* Allow execution from readable areas if the MMU does not
256
* provide separate controls over reading and executing.
257
*
258
* Note: That code used to not be enabled for 4xx/BookE.
259
* It is now as I/D cache coherency for these is done at
260
* set_pte_at() time and I see no reason why the test
261
* below wouldn't be valid on those processors. This -may-
262
* break programs compiled with a really old ABI though.
263
*/
264
if (is_exec) {
265
return !(vma->vm_flags & VM_EXEC) &&
266
(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267
!(vma->vm_flags & (VM_READ | VM_WRITE)));
268
}
269
270
if (is_write) {
271
if (unlikely(!(vma->vm_flags & VM_WRITE)))
272
return true;
273
return false;
274
}
275
276
/*
277
* VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
278
* defined in protection_map[]. In that case Read faults can only be
279
* caused by a PROT_NONE mapping. However a non exec access on a
280
* VM_EXEC only mapping is invalid anyway, so report it as such.
281
*/
282
if (unlikely(!vma_is_accessible(vma)))
283
return true;
284
285
if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
286
return true;
287
288
/*
289
* We should ideally do the vma pkey access check here. But in the
290
* fault path, handle_mm_fault() also does the same check. To avoid
291
* these multiple checks, we skip it here and handle access error due
292
* to pkeys later.
293
*/
294
return false;
295
}
296
297
#ifdef CONFIG_PPC_SMLPAR
298
static inline void cmo_account_page_fault(void)
299
{
300
if (firmware_has_feature(FW_FEATURE_CMO)) {
301
u32 page_ins;
302
303
preempt_disable();
304
page_ins = be32_to_cpu(get_lppaca()->page_ins);
305
page_ins += 1 << PAGE_FACTOR;
306
get_lppaca()->page_ins = cpu_to_be32(page_ins);
307
preempt_enable();
308
}
309
}
310
#else
311
static inline void cmo_account_page_fault(void) { }
312
#endif /* CONFIG_PPC_SMLPAR */
313
314
static void sanity_check_fault(bool is_write, bool is_user,
315
unsigned long error_code, unsigned long address)
316
{
317
/*
318
* Userspace trying to access kernel address, we get PROTFAULT for that.
319
*/
320
if (is_user && address >= TASK_SIZE) {
321
if ((long)address == -1)
322
return;
323
324
pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
325
current->comm, current->pid, address,
326
from_kuid(&init_user_ns, current_uid()));
327
return;
328
}
329
330
if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
331
return;
332
333
/*
334
* For hash translation mode, we should never get a
335
* PROTFAULT. Any update to pte to reduce access will result in us
336
* removing the hash page table entry, thus resulting in a DSISR_NOHPTE
337
* fault instead of DSISR_PROTFAULT.
338
*
339
* A pte update to relax the access will not result in a hash page table
340
* entry invalidate and hence can result in DSISR_PROTFAULT.
341
* ptep_set_access_flags() doesn't do a hpte flush. This is why we have
342
* the special !is_write in the below conditional.
343
*
344
* For platforms that doesn't supports coherent icache and do support
345
* per page noexec bit, we do setup things such that we do the
346
* sync between D/I cache via fault. But that is handled via low level
347
* hash fault code (hash_page_do_lazy_icache()) and we should not reach
348
* here in such case.
349
*
350
* For wrong access that can result in PROTFAULT, the above vma->vm_flags
351
* check should handle those and hence we should fall to the bad_area
352
* handling correctly.
353
*
354
* For embedded with per page exec support that doesn't support coherent
355
* icache we do get PROTFAULT and we handle that D/I cache sync in
356
* set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
357
* is conditional for server MMU.
358
*
359
* For radix, we can get prot fault for autonuma case, because radix
360
* page table will have them marked noaccess for user.
361
*/
362
if (radix_enabled() || is_write)
363
return;
364
365
WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
366
}
367
368
/*
369
* Define the correct "is_write" bit in error_code based
370
* on the processor family
371
*/
372
#ifdef CONFIG_BOOKE
373
#define page_fault_is_write(__err) ((__err) & ESR_DST)
374
#else
375
#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
376
#endif
377
378
#ifdef CONFIG_BOOKE
379
#define page_fault_is_bad(__err) (0)
380
#elif defined(CONFIG_PPC_8xx)
381
#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
382
#elif defined(CONFIG_PPC64)
383
static int page_fault_is_bad(unsigned long err)
384
{
385
unsigned long flag = DSISR_BAD_FAULT_64S;
386
387
/*
388
* PAPR+ v2.11 ยง 14.15.3.4.1 (unreleased)
389
* If byte 0, bit 3 of pi-attribute-specifier-type in
390
* ibm,pi-features property is defined, ignore the DSI error
391
* which is caused by the paste instruction on the
392
* suspended NX window.
393
*/
394
if (mmu_has_feature(MMU_FTR_NX_DSI))
395
flag &= ~DSISR_BAD_COPYPASTE;
396
397
return err & flag;
398
}
399
#else
400
#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
401
#endif
402
403
/*
404
* For 600- and 800-family processors, the error_code parameter is DSISR
405
* for a data fault, SRR1 for an instruction fault.
406
* For 400-family processors the error_code parameter is ESR for a data fault,
407
* 0 for an instruction fault.
408
* For 64-bit processors, the error_code parameter is DSISR for a data access
409
* fault, SRR1 & 0x08000000 for an instruction access fault.
410
*
411
* The return value is 0 if the fault was handled, or the signal
412
* number if this is a kernel fault that can't be handled here.
413
*/
414
static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
415
unsigned long error_code)
416
{
417
struct vm_area_struct * vma;
418
struct mm_struct *mm = current->mm;
419
unsigned int flags = FAULT_FLAG_DEFAULT;
420
int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
421
int is_user = user_mode(regs);
422
int is_write = page_fault_is_write(error_code);
423
vm_fault_t fault, major = 0;
424
bool kprobe_fault = kprobe_page_fault(regs, 11);
425
426
if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
427
return 0;
428
429
if (unlikely(page_fault_is_bad(error_code))) {
430
if (is_user) {
431
_exception(SIGBUS, regs, BUS_OBJERR, address);
432
return 0;
433
}
434
return SIGBUS;
435
}
436
437
/* Additional sanity check(s) */
438
sanity_check_fault(is_write, is_user, error_code, address);
439
440
/*
441
* The kernel should never take an execute fault nor should it
442
* take a page fault to a kernel address or a page fault to a user
443
* address outside of dedicated places.
444
*
445
* Rather than kfence directly reporting false negatives, search whether
446
* the NIP belongs to the fixup table for cases where fault could come
447
* from functions like copy_from_kernel_nofault().
448
*/
449
if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
450
if (is_kfence_address((void *)address) &&
451
!search_exception_tables(instruction_pointer(regs)) &&
452
kfence_handle_page_fault(address, is_write, regs))
453
return 0;
454
455
return SIGSEGV;
456
}
457
458
/*
459
* If we're in an interrupt, have no user context or are running
460
* in a region with pagefaults disabled then we must not take the fault
461
*/
462
if (unlikely(faulthandler_disabled() || !mm)) {
463
if (is_user)
464
printk_ratelimited(KERN_ERR "Page fault in user mode"
465
" with faulthandler_disabled()=%d"
466
" mm=%p\n",
467
faulthandler_disabled(), mm);
468
return bad_area_nosemaphore(regs, address);
469
}
470
471
interrupt_cond_local_irq_enable(regs);
472
473
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
474
475
/*
476
* We want to do this outside mmap_lock, because reading code around nip
477
* can result in fault, which will cause a deadlock when called with
478
* mmap_lock held
479
*/
480
if (is_user)
481
flags |= FAULT_FLAG_USER;
482
if (is_write)
483
flags |= FAULT_FLAG_WRITE;
484
if (is_exec)
485
flags |= FAULT_FLAG_INSTRUCTION;
486
487
if (!(flags & FAULT_FLAG_USER))
488
goto lock_mmap;
489
490
vma = lock_vma_under_rcu(mm, address);
491
if (!vma)
492
goto lock_mmap;
493
494
if (unlikely(access_pkey_error(is_write, is_exec,
495
(error_code & DSISR_KEYFAULT), vma))) {
496
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497
return bad_access_pkey(regs, address, NULL, vma);
498
}
499
500
if (unlikely(access_error(is_write, is_exec, vma))) {
501
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
502
return bad_access(regs, address, NULL, vma);
503
}
504
505
fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
506
if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
507
vma_end_read(vma);
508
509
if (!(fault & VM_FAULT_RETRY)) {
510
count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
511
goto done;
512
}
513
count_vm_vma_lock_event(VMA_LOCK_RETRY);
514
if (fault & VM_FAULT_MAJOR)
515
flags |= FAULT_FLAG_TRIED;
516
517
if (fault_signal_pending(fault, regs))
518
return user_mode(regs) ? 0 : SIGBUS;
519
520
lock_mmap:
521
522
/* When running in the kernel we expect faults to occur only to
523
* addresses in user space. All other faults represent errors in the
524
* kernel and should generate an OOPS. Unfortunately, in the case of an
525
* erroneous fault occurring in a code path which already holds mmap_lock
526
* we will deadlock attempting to validate the fault against the
527
* address space. Luckily the kernel only validly references user
528
* space from well defined areas of code, which are listed in the
529
* exceptions table. lock_mm_and_find_vma() handles that logic.
530
*/
531
retry:
532
vma = lock_mm_and_find_vma(mm, address, regs);
533
if (unlikely(!vma))
534
return bad_area_nosemaphore(regs, address);
535
536
if (unlikely(access_pkey_error(is_write, is_exec,
537
(error_code & DSISR_KEYFAULT), vma)))
538
return bad_access_pkey(regs, address, mm, vma);
539
540
if (unlikely(access_error(is_write, is_exec, vma)))
541
return bad_access(regs, address, mm, vma);
542
543
/*
544
* If for any reason at all we couldn't handle the fault,
545
* make sure we exit gracefully rather than endlessly redo
546
* the fault.
547
*/
548
fault = handle_mm_fault(vma, address, flags, regs);
549
550
major |= fault & VM_FAULT_MAJOR;
551
552
if (fault_signal_pending(fault, regs))
553
return user_mode(regs) ? 0 : SIGBUS;
554
555
/* The fault is fully completed (including releasing mmap lock) */
556
if (fault & VM_FAULT_COMPLETED)
557
goto out;
558
559
/*
560
* Handle the retry right now, the mmap_lock has been released in that
561
* case.
562
*/
563
if (unlikely(fault & VM_FAULT_RETRY)) {
564
flags |= FAULT_FLAG_TRIED;
565
goto retry;
566
}
567
568
mmap_read_unlock(current->mm);
569
570
done:
571
if (unlikely(fault & VM_FAULT_ERROR))
572
return mm_fault_error(regs, address, fault);
573
574
out:
575
/*
576
* Major/minor page fault accounting.
577
*/
578
if (major)
579
cmo_account_page_fault();
580
581
return 0;
582
}
583
NOKPROBE_SYMBOL(___do_page_fault);
584
585
static __always_inline void __do_page_fault(struct pt_regs *regs)
586
{
587
long err;
588
589
err = ___do_page_fault(regs, regs->dar, regs->dsisr);
590
if (unlikely(err))
591
bad_page_fault(regs, err);
592
}
593
594
DEFINE_INTERRUPT_HANDLER(do_page_fault)
595
{
596
__do_page_fault(regs);
597
}
598
599
#ifdef CONFIG_PPC_BOOK3S_64
600
/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
601
void hash__do_page_fault(struct pt_regs *regs)
602
{
603
__do_page_fault(regs);
604
}
605
NOKPROBE_SYMBOL(hash__do_page_fault);
606
#endif
607
608
/*
609
* bad_page_fault is called when we have a bad access from the kernel.
610
* It is called from the DSI and ISI handlers in head.S and from some
611
* of the procedures in traps.c.
612
*/
613
static void __bad_page_fault(struct pt_regs *regs, int sig)
614
{
615
int is_write = page_fault_is_write(regs->dsisr);
616
const char *msg;
617
618
/* kernel has accessed a bad area */
619
620
if (regs->dar < PAGE_SIZE)
621
msg = "Kernel NULL pointer dereference";
622
else
623
msg = "Unable to handle kernel data access";
624
625
switch (TRAP(regs)) {
626
case INTERRUPT_DATA_STORAGE:
627
case INTERRUPT_H_DATA_STORAGE:
628
pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
629
str_write_read(is_write), regs->dar);
630
break;
631
case INTERRUPT_DATA_SEGMENT:
632
pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
633
break;
634
case INTERRUPT_INST_STORAGE:
635
case INTERRUPT_INST_SEGMENT:
636
pr_alert("BUG: Unable to handle kernel instruction fetch%s",
637
regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
638
break;
639
case INTERRUPT_ALIGNMENT:
640
pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
641
regs->dar);
642
break;
643
default:
644
pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
645
regs->dar);
646
break;
647
}
648
printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
649
regs->nip);
650
651
if (task_stack_end_corrupted(current))
652
printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
653
654
die("Kernel access of bad area", regs, sig);
655
}
656
657
void bad_page_fault(struct pt_regs *regs, int sig)
658
{
659
const struct exception_table_entry *entry;
660
661
/* Are we prepared to handle this fault? */
662
entry = search_exception_tables(instruction_pointer(regs));
663
if (entry)
664
instruction_pointer_set(regs, extable_fixup(entry));
665
else
666
__bad_page_fault(regs, sig);
667
}
668
669
#ifdef CONFIG_PPC_BOOK3S_64
670
DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
671
{
672
bad_page_fault(regs, SIGSEGV);
673
}
674
675
/*
676
* In radix, segment interrupts indicate the EA is not addressable by the
677
* page table geometry, so they are always sent here.
678
*
679
* In hash, this is called if do_slb_fault returns error. Typically it is
680
* because the EA was outside the region allowed by software.
681
*/
682
DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
683
{
684
int err = regs->result;
685
686
if (err == -EFAULT) {
687
if (user_mode(regs))
688
_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
689
else
690
bad_page_fault(regs, SIGSEGV);
691
} else if (err == -EINVAL) {
692
unrecoverable_exception(regs);
693
} else {
694
BUG();
695
}
696
}
697
#endif
698
699