Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/numa.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* pSeries NUMA support
4
*
5
* Copyright (C) 2002 Anton Blanchard <[email protected]>, IBM
6
*/
7
#define pr_fmt(fmt) "numa: " fmt
8
9
#include <linux/threads.h>
10
#include <linux/memblock.h>
11
#include <linux/init.h>
12
#include <linux/mm.h>
13
#include <linux/mmzone.h>
14
#include <linux/export.h>
15
#include <linux/nodemask.h>
16
#include <linux/cpu.h>
17
#include <linux/notifier.h>
18
#include <linux/of.h>
19
#include <linux/of_address.h>
20
#include <linux/pfn.h>
21
#include <linux/cpuset.h>
22
#include <linux/node.h>
23
#include <linux/stop_machine.h>
24
#include <linux/proc_fs.h>
25
#include <linux/seq_file.h>
26
#include <linux/uaccess.h>
27
#include <linux/slab.h>
28
#include <asm/cputhreads.h>
29
#include <asm/sparsemem.h>
30
#include <asm/smp.h>
31
#include <asm/topology.h>
32
#include <asm/firmware.h>
33
#include <asm/paca.h>
34
#include <asm/hvcall.h>
35
#include <asm/setup.h>
36
#include <asm/vdso.h>
37
#include <asm/vphn.h>
38
#include <asm/drmem.h>
39
40
static int numa_enabled = 1;
41
42
static char *cmdline __initdata;
43
44
int numa_cpu_lookup_table[NR_CPUS];
45
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
46
47
EXPORT_SYMBOL(numa_cpu_lookup_table);
48
EXPORT_SYMBOL(node_to_cpumask_map);
49
50
static int primary_domain_index;
51
static int n_mem_addr_cells, n_mem_size_cells;
52
53
#define FORM0_AFFINITY 0
54
#define FORM1_AFFINITY 1
55
#define FORM2_AFFINITY 2
56
static int affinity_form;
57
58
#define MAX_DISTANCE_REF_POINTS 4
59
static int distance_ref_points_depth;
60
static const __be32 *distance_ref_points;
61
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
63
[0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
64
};
65
static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
66
67
/*
68
* Allocate node_to_cpumask_map based on number of available nodes
69
* Requires node_possible_map to be valid.
70
*
71
* Note: cpumask_of_node() is not valid until after this is done.
72
*/
73
static void __init setup_node_to_cpumask_map(void)
74
{
75
unsigned int node;
76
77
/* setup nr_node_ids if not done yet */
78
if (nr_node_ids == MAX_NUMNODES)
79
setup_nr_node_ids();
80
81
/* allocate the map */
82
for_each_node(node)
83
alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
84
85
/* cpumask_of_node() will now work */
86
pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
87
}
88
89
static int __init fake_numa_create_new_node(unsigned long end_pfn,
90
unsigned int *nid)
91
{
92
unsigned long long mem;
93
char *p = cmdline;
94
static unsigned int fake_nid;
95
static unsigned long long curr_boundary;
96
97
/*
98
* Modify node id, iff we started creating NUMA nodes
99
* We want to continue from where we left of the last time
100
*/
101
if (fake_nid)
102
*nid = fake_nid;
103
/*
104
* In case there are no more arguments to parse, the
105
* node_id should be the same as the last fake node id
106
* (we've handled this above).
107
*/
108
if (!p)
109
return 0;
110
111
mem = memparse(p, &p);
112
if (!mem)
113
return 0;
114
115
if (mem < curr_boundary)
116
return 0;
117
118
curr_boundary = mem;
119
120
if ((end_pfn << PAGE_SHIFT) > mem) {
121
/*
122
* Skip commas and spaces
123
*/
124
while (*p == ',' || *p == ' ' || *p == '\t')
125
p++;
126
127
cmdline = p;
128
fake_nid++;
129
*nid = fake_nid;
130
pr_debug("created new fake_node with id %d\n", fake_nid);
131
return 1;
132
}
133
return 0;
134
}
135
136
static void __init reset_numa_cpu_lookup_table(void)
137
{
138
unsigned int cpu;
139
140
for_each_possible_cpu(cpu)
141
numa_cpu_lookup_table[cpu] = -1;
142
}
143
144
void map_cpu_to_node(int cpu, int node)
145
{
146
update_numa_cpu_lookup_table(cpu, node);
147
148
if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
149
pr_debug("adding cpu %d to node %d\n", cpu, node);
150
cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
151
}
152
}
153
154
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
155
void unmap_cpu_from_node(unsigned long cpu)
156
{
157
int node = numa_cpu_lookup_table[cpu];
158
159
if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
160
cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
161
pr_debug("removing cpu %lu from node %d\n", cpu, node);
162
} else {
163
pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
164
}
165
}
166
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
167
168
static int __associativity_to_nid(const __be32 *associativity,
169
int max_array_sz)
170
{
171
int nid;
172
/*
173
* primary_domain_index is 1 based array index.
174
*/
175
int index = primary_domain_index - 1;
176
177
if (!numa_enabled || index >= max_array_sz)
178
return NUMA_NO_NODE;
179
180
nid = of_read_number(&associativity[index], 1);
181
182
/* POWER4 LPAR uses 0xffff as invalid node */
183
if (nid == 0xffff || nid >= nr_node_ids)
184
nid = NUMA_NO_NODE;
185
return nid;
186
}
187
/*
188
* Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
189
* info is found.
190
*/
191
static int associativity_to_nid(const __be32 *associativity)
192
{
193
int array_sz = of_read_number(associativity, 1);
194
195
/* Skip the first element in the associativity array */
196
return __associativity_to_nid((associativity + 1), array_sz);
197
}
198
199
static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
200
{
201
int dist;
202
int node1, node2;
203
204
node1 = associativity_to_nid(cpu1_assoc);
205
node2 = associativity_to_nid(cpu2_assoc);
206
207
dist = numa_distance_table[node1][node2];
208
if (dist <= LOCAL_DISTANCE)
209
return 0;
210
else if (dist <= REMOTE_DISTANCE)
211
return 1;
212
else
213
return 2;
214
}
215
216
static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
217
{
218
int dist = 0;
219
220
int i, index;
221
222
for (i = 0; i < distance_ref_points_depth; i++) {
223
index = be32_to_cpu(distance_ref_points[i]);
224
if (cpu1_assoc[index] == cpu2_assoc[index])
225
break;
226
dist++;
227
}
228
229
return dist;
230
}
231
232
int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
233
{
234
/* We should not get called with FORM0 */
235
VM_WARN_ON(affinity_form == FORM0_AFFINITY);
236
if (affinity_form == FORM1_AFFINITY)
237
return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
238
return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
239
}
240
241
/* must hold reference to node during call */
242
static const __be32 *of_get_associativity(struct device_node *dev)
243
{
244
return of_get_property(dev, "ibm,associativity", NULL);
245
}
246
247
int __node_distance(int a, int b)
248
{
249
int i;
250
int distance = LOCAL_DISTANCE;
251
252
if (affinity_form == FORM2_AFFINITY)
253
return numa_distance_table[a][b];
254
else if (affinity_form == FORM0_AFFINITY)
255
return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
256
257
for (i = 0; i < distance_ref_points_depth; i++) {
258
if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
259
break;
260
261
/* Double the distance for each NUMA level */
262
distance *= 2;
263
}
264
265
return distance;
266
}
267
EXPORT_SYMBOL(__node_distance);
268
269
/* Returns the nid associated with the given device tree node,
270
* or -1 if not found.
271
*/
272
static int of_node_to_nid_single(struct device_node *device)
273
{
274
int nid = NUMA_NO_NODE;
275
const __be32 *tmp;
276
277
tmp = of_get_associativity(device);
278
if (tmp)
279
nid = associativity_to_nid(tmp);
280
return nid;
281
}
282
283
/* Walk the device tree upwards, looking for an associativity id */
284
int of_node_to_nid(struct device_node *device)
285
{
286
int nid = NUMA_NO_NODE;
287
288
of_node_get(device);
289
while (device) {
290
nid = of_node_to_nid_single(device);
291
if (nid != -1)
292
break;
293
294
device = of_get_next_parent(device);
295
}
296
of_node_put(device);
297
298
return nid;
299
}
300
EXPORT_SYMBOL(of_node_to_nid);
301
302
static void __initialize_form1_numa_distance(const __be32 *associativity,
303
int max_array_sz)
304
{
305
int i, nid;
306
307
if (affinity_form != FORM1_AFFINITY)
308
return;
309
310
nid = __associativity_to_nid(associativity, max_array_sz);
311
if (nid != NUMA_NO_NODE) {
312
for (i = 0; i < distance_ref_points_depth; i++) {
313
const __be32 *entry;
314
int index = be32_to_cpu(distance_ref_points[i]) - 1;
315
316
/*
317
* broken hierarchy, return with broken distance table
318
*/
319
if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
320
return;
321
322
entry = &associativity[index];
323
distance_lookup_table[nid][i] = of_read_number(entry, 1);
324
}
325
}
326
}
327
328
static void initialize_form1_numa_distance(const __be32 *associativity)
329
{
330
int array_sz;
331
332
array_sz = of_read_number(associativity, 1);
333
/* Skip the first element in the associativity array */
334
__initialize_form1_numa_distance(associativity + 1, array_sz);
335
}
336
337
/*
338
* Used to update distance information w.r.t newly added node.
339
*/
340
void update_numa_distance(struct device_node *node)
341
{
342
int nid;
343
344
if (affinity_form == FORM0_AFFINITY)
345
return;
346
else if (affinity_form == FORM1_AFFINITY) {
347
const __be32 *associativity;
348
349
associativity = of_get_associativity(node);
350
if (!associativity)
351
return;
352
353
initialize_form1_numa_distance(associativity);
354
return;
355
}
356
357
/* FORM2 affinity */
358
nid = of_node_to_nid_single(node);
359
if (nid == NUMA_NO_NODE)
360
return;
361
362
/*
363
* With FORM2 we expect NUMA distance of all possible NUMA
364
* nodes to be provided during boot.
365
*/
366
WARN(numa_distance_table[nid][nid] == -1,
367
"NUMA distance details for node %d not provided\n", nid);
368
}
369
EXPORT_SYMBOL_GPL(update_numa_distance);
370
371
/*
372
* ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
373
* ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
374
*/
375
static void __init initialize_form2_numa_distance_lookup_table(void)
376
{
377
int i, j;
378
struct device_node *root;
379
const __u8 *form2_distances;
380
const __be32 *numa_lookup_index;
381
int form2_distances_length;
382
int max_numa_index, distance_index;
383
384
if (firmware_has_feature(FW_FEATURE_OPAL))
385
root = of_find_node_by_path("/ibm,opal");
386
else
387
root = of_find_node_by_path("/rtas");
388
if (!root)
389
root = of_find_node_by_path("/");
390
391
numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
392
max_numa_index = of_read_number(&numa_lookup_index[0], 1);
393
394
/* first element of the array is the size and is encode-int */
395
form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
396
form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
397
/* Skip the size which is encoded int */
398
form2_distances += sizeof(__be32);
399
400
pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
401
form2_distances_length, max_numa_index);
402
403
for (i = 0; i < max_numa_index; i++)
404
/* +1 skip the max_numa_index in the property */
405
numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
406
407
408
if (form2_distances_length != max_numa_index * max_numa_index) {
409
WARN(1, "Wrong NUMA distance information\n");
410
form2_distances = NULL; // don't use it
411
}
412
distance_index = 0;
413
for (i = 0; i < max_numa_index; i++) {
414
for (j = 0; j < max_numa_index; j++) {
415
int nodeA = numa_id_index_table[i];
416
int nodeB = numa_id_index_table[j];
417
int dist;
418
419
if (form2_distances)
420
dist = form2_distances[distance_index++];
421
else if (nodeA == nodeB)
422
dist = LOCAL_DISTANCE;
423
else
424
dist = REMOTE_DISTANCE;
425
numa_distance_table[nodeA][nodeB] = dist;
426
pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
427
}
428
}
429
430
of_node_put(root);
431
}
432
433
static int __init find_primary_domain_index(void)
434
{
435
int index;
436
struct device_node *root;
437
438
/*
439
* Check for which form of affinity.
440
*/
441
if (firmware_has_feature(FW_FEATURE_OPAL)) {
442
affinity_form = FORM1_AFFINITY;
443
} else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
444
pr_debug("Using form 2 affinity\n");
445
affinity_form = FORM2_AFFINITY;
446
} else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
447
pr_debug("Using form 1 affinity\n");
448
affinity_form = FORM1_AFFINITY;
449
} else
450
affinity_form = FORM0_AFFINITY;
451
452
if (firmware_has_feature(FW_FEATURE_OPAL))
453
root = of_find_node_by_path("/ibm,opal");
454
else
455
root = of_find_node_by_path("/rtas");
456
if (!root)
457
root = of_find_node_by_path("/");
458
459
/*
460
* This property is a set of 32-bit integers, each representing
461
* an index into the ibm,associativity nodes.
462
*
463
* With form 0 affinity the first integer is for an SMP configuration
464
* (should be all 0's) and the second is for a normal NUMA
465
* configuration. We have only one level of NUMA.
466
*
467
* With form 1 affinity the first integer is the most significant
468
* NUMA boundary and the following are progressively less significant
469
* boundaries. There can be more than one level of NUMA.
470
*/
471
distance_ref_points = of_get_property(root,
472
"ibm,associativity-reference-points",
473
&distance_ref_points_depth);
474
475
if (!distance_ref_points) {
476
pr_debug("ibm,associativity-reference-points not found.\n");
477
goto err;
478
}
479
480
distance_ref_points_depth /= sizeof(int);
481
if (affinity_form == FORM0_AFFINITY) {
482
if (distance_ref_points_depth < 2) {
483
pr_warn("short ibm,associativity-reference-points\n");
484
goto err;
485
}
486
487
index = of_read_number(&distance_ref_points[1], 1);
488
} else {
489
/*
490
* Both FORM1 and FORM2 affinity find the primary domain details
491
* at the same offset.
492
*/
493
index = of_read_number(distance_ref_points, 1);
494
}
495
/*
496
* Warn and cap if the hardware supports more than
497
* MAX_DISTANCE_REF_POINTS domains.
498
*/
499
if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
500
pr_warn("distance array capped at %d entries\n",
501
MAX_DISTANCE_REF_POINTS);
502
distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
503
}
504
505
of_node_put(root);
506
return index;
507
508
err:
509
of_node_put(root);
510
return -1;
511
}
512
513
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
514
{
515
struct device_node *memory = NULL;
516
517
memory = of_find_node_by_type(memory, "memory");
518
if (!memory)
519
panic("numa.c: No memory nodes found!");
520
521
*n_addr_cells = of_n_addr_cells(memory);
522
*n_size_cells = of_n_size_cells(memory);
523
of_node_put(memory);
524
}
525
526
static unsigned long read_n_cells(int n, const __be32 **buf)
527
{
528
unsigned long result = 0;
529
530
while (n--) {
531
result = (result << 32) | of_read_number(*buf, 1);
532
(*buf)++;
533
}
534
return result;
535
}
536
537
struct assoc_arrays {
538
u32 n_arrays;
539
u32 array_sz;
540
const __be32 *arrays;
541
};
542
543
/*
544
* Retrieve and validate the list of associativity arrays for drconf
545
* memory from the ibm,associativity-lookup-arrays property of the
546
* device tree..
547
*
548
* The layout of the ibm,associativity-lookup-arrays property is a number N
549
* indicating the number of associativity arrays, followed by a number M
550
* indicating the size of each associativity array, followed by a list
551
* of N associativity arrays.
552
*/
553
static int of_get_assoc_arrays(struct assoc_arrays *aa)
554
{
555
struct device_node *memory;
556
const __be32 *prop;
557
u32 len;
558
559
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
560
if (!memory)
561
return -1;
562
563
prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
564
if (!prop || len < 2 * sizeof(unsigned int)) {
565
of_node_put(memory);
566
return -1;
567
}
568
569
aa->n_arrays = of_read_number(prop++, 1);
570
aa->array_sz = of_read_number(prop++, 1);
571
572
of_node_put(memory);
573
574
/* Now that we know the number of arrays and size of each array,
575
* revalidate the size of the property read in.
576
*/
577
if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
578
return -1;
579
580
aa->arrays = prop;
581
return 0;
582
}
583
584
static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb)
585
{
586
struct assoc_arrays aa = { .arrays = NULL };
587
int default_nid = NUMA_NO_NODE;
588
int nid = default_nid;
589
int rc, index;
590
591
if ((primary_domain_index < 0) || !numa_enabled)
592
return default_nid;
593
594
rc = of_get_assoc_arrays(&aa);
595
if (rc)
596
return default_nid;
597
598
if (primary_domain_index <= aa.array_sz &&
599
!(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
600
const __be32 *associativity;
601
602
index = lmb->aa_index * aa.array_sz;
603
associativity = &aa.arrays[index];
604
nid = __associativity_to_nid(associativity, aa.array_sz);
605
if (nid > 0 && affinity_form == FORM1_AFFINITY) {
606
/*
607
* lookup array associativity entries have
608
* no length of the array as the first element.
609
*/
610
__initialize_form1_numa_distance(associativity, aa.array_sz);
611
}
612
}
613
return nid;
614
}
615
616
/*
617
* This is like of_node_to_nid_single() for memory represented in the
618
* ibm,dynamic-reconfiguration-memory node.
619
*/
620
int of_drconf_to_nid_single(struct drmem_lmb *lmb)
621
{
622
struct assoc_arrays aa = { .arrays = NULL };
623
int default_nid = NUMA_NO_NODE;
624
int nid = default_nid;
625
int rc, index;
626
627
if ((primary_domain_index < 0) || !numa_enabled)
628
return default_nid;
629
630
rc = of_get_assoc_arrays(&aa);
631
if (rc)
632
return default_nid;
633
634
if (primary_domain_index <= aa.array_sz &&
635
!(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
636
const __be32 *associativity;
637
638
index = lmb->aa_index * aa.array_sz;
639
associativity = &aa.arrays[index];
640
nid = __associativity_to_nid(associativity, aa.array_sz);
641
}
642
return nid;
643
}
644
645
#ifdef CONFIG_PPC_SPLPAR
646
647
static int __vphn_get_associativity(long lcpu, __be32 *associativity)
648
{
649
long rc, hwid;
650
651
/*
652
* On a shared lpar, device tree will not have node associativity.
653
* At this time lppaca, or its __old_status field may not be
654
* updated. Hence kernel cannot detect if its on a shared lpar. So
655
* request an explicit associativity irrespective of whether the
656
* lpar is shared or dedicated. Use the device tree property as a
657
* fallback. cpu_to_phys_id is only valid between
658
* smp_setup_cpu_maps() and smp_setup_pacas().
659
*/
660
if (firmware_has_feature(FW_FEATURE_VPHN)) {
661
if (cpu_to_phys_id)
662
hwid = cpu_to_phys_id[lcpu];
663
else
664
hwid = get_hard_smp_processor_id(lcpu);
665
666
rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
667
if (rc == H_SUCCESS)
668
return 0;
669
}
670
671
return -1;
672
}
673
674
static int vphn_get_nid(long lcpu)
675
{
676
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
677
678
679
if (!__vphn_get_associativity(lcpu, associativity))
680
return associativity_to_nid(associativity);
681
682
return NUMA_NO_NODE;
683
684
}
685
#else
686
687
static int __vphn_get_associativity(long lcpu, __be32 *associativity)
688
{
689
return -1;
690
}
691
692
static int vphn_get_nid(long unused)
693
{
694
return NUMA_NO_NODE;
695
}
696
#endif /* CONFIG_PPC_SPLPAR */
697
698
/*
699
* Figure out to which domain a cpu belongs and stick it there.
700
* Return the id of the domain used.
701
*/
702
static int numa_setup_cpu(unsigned long lcpu)
703
{
704
struct device_node *cpu;
705
int fcpu = cpu_first_thread_sibling(lcpu);
706
int nid = NUMA_NO_NODE;
707
708
if (!cpu_present(lcpu)) {
709
set_cpu_numa_node(lcpu, first_online_node);
710
return first_online_node;
711
}
712
713
/*
714
* If a valid cpu-to-node mapping is already available, use it
715
* directly instead of querying the firmware, since it represents
716
* the most recent mapping notified to us by the platform (eg: VPHN).
717
* Since cpu_to_node binding remains the same for all threads in the
718
* core. If a valid cpu-to-node mapping is already available, for
719
* the first thread in the core, use it.
720
*/
721
nid = numa_cpu_lookup_table[fcpu];
722
if (nid >= 0) {
723
map_cpu_to_node(lcpu, nid);
724
return nid;
725
}
726
727
nid = vphn_get_nid(lcpu);
728
if (nid != NUMA_NO_NODE)
729
goto out_present;
730
731
cpu = of_get_cpu_node(lcpu, NULL);
732
733
if (!cpu) {
734
WARN_ON(1);
735
if (cpu_present(lcpu))
736
goto out_present;
737
else
738
goto out;
739
}
740
741
nid = of_node_to_nid_single(cpu);
742
of_node_put(cpu);
743
744
out_present:
745
if (nid < 0 || !node_possible(nid))
746
nid = first_online_node;
747
748
/*
749
* Update for the first thread of the core. All threads of a core
750
* have to be part of the same node. This not only avoids querying
751
* for every other thread in the core, but always avoids a case
752
* where virtual node associativity change causes subsequent threads
753
* of a core to be associated with different nid. However if first
754
* thread is already online, expect it to have a valid mapping.
755
*/
756
if (fcpu != lcpu) {
757
WARN_ON(cpu_online(fcpu));
758
map_cpu_to_node(fcpu, nid);
759
}
760
761
map_cpu_to_node(lcpu, nid);
762
out:
763
return nid;
764
}
765
766
static void verify_cpu_node_mapping(int cpu, int node)
767
{
768
int base, sibling, i;
769
770
/* Verify that all the threads in the core belong to the same node */
771
base = cpu_first_thread_sibling(cpu);
772
773
for (i = 0; i < threads_per_core; i++) {
774
sibling = base + i;
775
776
if (sibling == cpu || cpu_is_offline(sibling))
777
continue;
778
779
if (cpu_to_node(sibling) != node) {
780
WARN(1, "CPU thread siblings %d and %d don't belong"
781
" to the same node!\n", cpu, sibling);
782
break;
783
}
784
}
785
}
786
787
/* Must run before sched domains notifier. */
788
static int ppc_numa_cpu_prepare(unsigned int cpu)
789
{
790
int nid;
791
792
nid = numa_setup_cpu(cpu);
793
verify_cpu_node_mapping(cpu, nid);
794
return 0;
795
}
796
797
static int ppc_numa_cpu_dead(unsigned int cpu)
798
{
799
return 0;
800
}
801
802
/*
803
* Check and possibly modify a memory region to enforce the memory limit.
804
*
805
* Returns the size the region should have to enforce the memory limit.
806
* This will either be the original value of size, a truncated value,
807
* or zero. If the returned value of size is 0 the region should be
808
* discarded as it lies wholly above the memory limit.
809
*/
810
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
811
unsigned long size)
812
{
813
/*
814
* We use memblock_end_of_DRAM() in here instead of memory_limit because
815
* we've already adjusted it for the limit and it takes care of
816
* having memory holes below the limit. Also, in the case of
817
* iommu_is_off, memory_limit is not set but is implicitly enforced.
818
*/
819
820
if (start + size <= memblock_end_of_DRAM())
821
return size;
822
823
if (start >= memblock_end_of_DRAM())
824
return 0;
825
826
return memblock_end_of_DRAM() - start;
827
}
828
829
/*
830
* Reads the counter for a given entry in
831
* linux,drconf-usable-memory property
832
*/
833
static inline int __init read_usm_ranges(const __be32 **usm)
834
{
835
/*
836
* For each lmb in ibm,dynamic-memory a corresponding
837
* entry in linux,drconf-usable-memory property contains
838
* a counter followed by that many (base, size) duple.
839
* read the counter from linux,drconf-usable-memory
840
*/
841
return read_n_cells(n_mem_size_cells, usm);
842
}
843
844
/*
845
* Extract NUMA information from the ibm,dynamic-reconfiguration-memory
846
* node. This assumes n_mem_{addr,size}_cells have been set.
847
*/
848
static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
849
const __be32 **usm,
850
void *data)
851
{
852
unsigned int ranges, is_kexec_kdump = 0;
853
unsigned long base, size, sz;
854
int nid;
855
856
/*
857
* Skip this block if the reserved bit is set in flags (0x80)
858
* or if the block is not assigned to this partition (0x8)
859
*/
860
if ((lmb->flags & DRCONF_MEM_RESERVED)
861
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
862
return 0;
863
864
if (*usm)
865
is_kexec_kdump = 1;
866
867
base = lmb->base_addr;
868
size = drmem_lmb_size();
869
ranges = 1;
870
871
if (is_kexec_kdump) {
872
ranges = read_usm_ranges(usm);
873
if (!ranges) /* there are no (base, size) duple */
874
return 0;
875
}
876
877
do {
878
if (is_kexec_kdump) {
879
base = read_n_cells(n_mem_addr_cells, usm);
880
size = read_n_cells(n_mem_size_cells, usm);
881
}
882
883
nid = get_nid_and_numa_distance(lmb);
884
fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
885
&nid);
886
node_set_online(nid);
887
sz = numa_enforce_memory_limit(base, size);
888
if (sz)
889
memblock_set_node(base, sz, &memblock.memory, nid);
890
} while (--ranges);
891
892
return 0;
893
}
894
895
static int __init parse_numa_properties(void)
896
{
897
struct device_node *memory, *pci;
898
int default_nid = 0;
899
unsigned long i;
900
const __be32 *associativity;
901
902
if (numa_enabled == 0) {
903
pr_warn("disabled by user\n");
904
return -1;
905
}
906
907
primary_domain_index = find_primary_domain_index();
908
909
if (primary_domain_index < 0) {
910
/*
911
* if we fail to parse primary_domain_index from device tree
912
* mark the numa disabled, boot with numa disabled.
913
*/
914
numa_enabled = false;
915
return primary_domain_index;
916
}
917
918
pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
919
920
/*
921
* If it is FORM2 initialize the distance table here.
922
*/
923
if (affinity_form == FORM2_AFFINITY)
924
initialize_form2_numa_distance_lookup_table();
925
926
/*
927
* Even though we connect cpus to numa domains later in SMP
928
* init, we need to know the node ids now. This is because
929
* each node to be onlined must have NODE_DATA etc backing it.
930
*/
931
for_each_present_cpu(i) {
932
__be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
933
struct device_node *cpu;
934
int nid = NUMA_NO_NODE;
935
936
memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
937
938
if (__vphn_get_associativity(i, vphn_assoc) == 0) {
939
nid = associativity_to_nid(vphn_assoc);
940
initialize_form1_numa_distance(vphn_assoc);
941
} else {
942
943
/*
944
* Don't fall back to default_nid yet -- we will plug
945
* cpus into nodes once the memory scan has discovered
946
* the topology.
947
*/
948
cpu = of_get_cpu_node(i, NULL);
949
BUG_ON(!cpu);
950
951
associativity = of_get_associativity(cpu);
952
if (associativity) {
953
nid = associativity_to_nid(associativity);
954
initialize_form1_numa_distance(associativity);
955
}
956
of_node_put(cpu);
957
}
958
959
/* node_set_online() is an UB if 'nid' is negative */
960
if (likely(nid >= 0))
961
node_set_online(nid);
962
}
963
964
get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
965
966
for_each_node_by_type(memory, "memory") {
967
unsigned long start;
968
unsigned long size;
969
int nid;
970
int ranges;
971
const __be32 *memcell_buf;
972
unsigned int len;
973
974
memcell_buf = of_get_property(memory,
975
"linux,usable-memory", &len);
976
if (!memcell_buf || len <= 0)
977
memcell_buf = of_get_property(memory, "reg", &len);
978
if (!memcell_buf || len <= 0)
979
continue;
980
981
/* ranges in cell */
982
ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
983
new_range:
984
/* these are order-sensitive, and modify the buffer pointer */
985
start = read_n_cells(n_mem_addr_cells, &memcell_buf);
986
size = read_n_cells(n_mem_size_cells, &memcell_buf);
987
988
/*
989
* Assumption: either all memory nodes or none will
990
* have associativity properties. If none, then
991
* everything goes to default_nid.
992
*/
993
associativity = of_get_associativity(memory);
994
if (associativity) {
995
nid = associativity_to_nid(associativity);
996
initialize_form1_numa_distance(associativity);
997
} else
998
nid = default_nid;
999
1000
fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1001
node_set_online(nid);
1002
1003
size = numa_enforce_memory_limit(start, size);
1004
if (size)
1005
memblock_set_node(start, size, &memblock.memory, nid);
1006
1007
if (--ranges)
1008
goto new_range;
1009
}
1010
1011
for_each_node_by_name(pci, "pci") {
1012
int nid = NUMA_NO_NODE;
1013
1014
associativity = of_get_associativity(pci);
1015
if (associativity) {
1016
nid = associativity_to_nid(associativity);
1017
initialize_form1_numa_distance(associativity);
1018
}
1019
if (likely(nid >= 0) && !node_online(nid))
1020
node_set_online(nid);
1021
}
1022
1023
/*
1024
* Now do the same thing for each MEMBLOCK listed in the
1025
* ibm,dynamic-memory property in the
1026
* ibm,dynamic-reconfiguration-memory node.
1027
*/
1028
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1029
if (memory) {
1030
walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1031
of_node_put(memory);
1032
}
1033
1034
return 0;
1035
}
1036
1037
static void __init setup_nonnuma(void)
1038
{
1039
unsigned long top_of_ram = memblock_end_of_DRAM();
1040
unsigned long total_ram = memblock_phys_mem_size();
1041
unsigned long start_pfn, end_pfn;
1042
unsigned int nid = 0;
1043
int i;
1044
1045
pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1046
pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1047
1048
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1049
fake_numa_create_new_node(end_pfn, &nid);
1050
memblock_set_node(PFN_PHYS(start_pfn),
1051
PFN_PHYS(end_pfn - start_pfn),
1052
&memblock.memory, nid);
1053
node_set_online(nid);
1054
}
1055
}
1056
1057
void __init dump_numa_cpu_topology(void)
1058
{
1059
unsigned int node;
1060
unsigned int cpu, count;
1061
1062
if (!numa_enabled)
1063
return;
1064
1065
for_each_online_node(node) {
1066
pr_info("Node %d CPUs:", node);
1067
1068
count = 0;
1069
/*
1070
* If we used a CPU iterator here we would miss printing
1071
* the holes in the cpumap.
1072
*/
1073
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1074
if (cpumask_test_cpu(cpu,
1075
node_to_cpumask_map[node])) {
1076
if (count == 0)
1077
pr_cont(" %u", cpu);
1078
++count;
1079
} else {
1080
if (count > 1)
1081
pr_cont("-%u", cpu - 1);
1082
count = 0;
1083
}
1084
}
1085
1086
if (count > 1)
1087
pr_cont("-%u", nr_cpu_ids - 1);
1088
pr_cont("\n");
1089
}
1090
}
1091
1092
/* Initialize NODE_DATA for a node on the local memory */
1093
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1094
{
1095
u64 spanned_pages = end_pfn - start_pfn;
1096
1097
alloc_node_data(nid);
1098
1099
NODE_DATA(nid)->node_id = nid;
1100
NODE_DATA(nid)->node_start_pfn = start_pfn;
1101
NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1102
}
1103
1104
static void __init find_possible_nodes(void)
1105
{
1106
struct device_node *rtas, *root;
1107
const __be32 *domains = NULL;
1108
int prop_length, max_nodes;
1109
u32 i;
1110
1111
if (!numa_enabled)
1112
return;
1113
1114
rtas = of_find_node_by_path("/rtas");
1115
if (!rtas)
1116
return;
1117
1118
/*
1119
* ibm,current-associativity-domains is a fairly recent property. If
1120
* it doesn't exist, then fallback on ibm,max-associativity-domains.
1121
* Current denotes what the platform can support compared to max
1122
* which denotes what the Hypervisor can support.
1123
*
1124
* If the LPAR is migratable, new nodes might be activated after a LPM,
1125
* so we should consider the max number in that case.
1126
*/
1127
root = of_find_node_by_path("/");
1128
if (!of_get_property(root, "ibm,migratable-partition", NULL))
1129
domains = of_get_property(rtas,
1130
"ibm,current-associativity-domains",
1131
&prop_length);
1132
of_node_put(root);
1133
if (!domains) {
1134
domains = of_get_property(rtas, "ibm,max-associativity-domains",
1135
&prop_length);
1136
if (!domains)
1137
goto out;
1138
}
1139
1140
max_nodes = of_read_number(&domains[primary_domain_index], 1);
1141
pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1142
1143
for (i = 0; i < max_nodes; i++) {
1144
if (!node_possible(i))
1145
node_set(i, node_possible_map);
1146
}
1147
1148
prop_length /= sizeof(int);
1149
if (prop_length > primary_domain_index + 2)
1150
coregroup_enabled = 1;
1151
1152
out:
1153
of_node_put(rtas);
1154
}
1155
1156
void __init mem_topology_setup(void)
1157
{
1158
int cpu;
1159
1160
max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1161
min_low_pfn = MEMORY_START >> PAGE_SHIFT;
1162
1163
/*
1164
* Linux/mm assumes node 0 to be online at boot. However this is not
1165
* true on PowerPC, where node 0 is similar to any other node, it
1166
* could be cpuless, memoryless node. So force node 0 to be offline
1167
* for now. This will prevent cpuless, memoryless node 0 showing up
1168
* unnecessarily as online. If a node has cpus or memory that need
1169
* to be online, then node will anyway be marked online.
1170
*/
1171
node_set_offline(0);
1172
1173
if (parse_numa_properties())
1174
setup_nonnuma();
1175
1176
/*
1177
* Modify the set of possible NUMA nodes to reflect information
1178
* available about the set of online nodes, and the set of nodes
1179
* that we expect to make use of for this platform's affinity
1180
* calculations.
1181
*/
1182
nodes_and(node_possible_map, node_possible_map, node_online_map);
1183
1184
find_possible_nodes();
1185
1186
setup_node_to_cpumask_map();
1187
1188
reset_numa_cpu_lookup_table();
1189
1190
for_each_possible_cpu(cpu) {
1191
/*
1192
* Powerpc with CONFIG_NUMA always used to have a node 0,
1193
* even if it was memoryless or cpuless. For all cpus that
1194
* are possible but not present, cpu_to_node() would point
1195
* to node 0. To remove a cpuless, memoryless dummy node,
1196
* powerpc need to make sure all possible but not present
1197
* cpu_to_node are set to a proper node.
1198
*/
1199
numa_setup_cpu(cpu);
1200
}
1201
}
1202
1203
void __init initmem_init(void)
1204
{
1205
int nid;
1206
1207
memblock_dump_all();
1208
1209
for_each_online_node(nid) {
1210
unsigned long start_pfn, end_pfn;
1211
1212
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1213
setup_node_data(nid, start_pfn, end_pfn);
1214
}
1215
1216
sparse_init();
1217
1218
/*
1219
* We need the numa_cpu_lookup_table to be accurate for all CPUs,
1220
* even before we online them, so that we can use cpu_to_{node,mem}
1221
* early in boot, cf. smp_prepare_cpus().
1222
* _nocalls() + manual invocation is used because cpuhp is not yet
1223
* initialized for the boot CPU.
1224
*/
1225
cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1226
ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1227
}
1228
1229
static int __init early_numa(char *p)
1230
{
1231
if (!p)
1232
return 0;
1233
1234
if (strstr(p, "off"))
1235
numa_enabled = 0;
1236
1237
p = strstr(p, "fake=");
1238
if (p)
1239
cmdline = p + strlen("fake=");
1240
1241
return 0;
1242
}
1243
early_param("numa", early_numa);
1244
1245
#ifdef CONFIG_MEMORY_HOTPLUG
1246
/*
1247
* Find the node associated with a hot added memory section for
1248
* memory represented in the device tree by the property
1249
* ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1250
*/
1251
static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1252
{
1253
struct drmem_lmb *lmb;
1254
unsigned long lmb_size;
1255
int nid = NUMA_NO_NODE;
1256
1257
lmb_size = drmem_lmb_size();
1258
1259
for_each_drmem_lmb(lmb) {
1260
/* skip this block if it is reserved or not assigned to
1261
* this partition */
1262
if ((lmb->flags & DRCONF_MEM_RESERVED)
1263
|| !(lmb->flags & DRCONF_MEM_ASSIGNED))
1264
continue;
1265
1266
if ((scn_addr < lmb->base_addr)
1267
|| (scn_addr >= (lmb->base_addr + lmb_size)))
1268
continue;
1269
1270
nid = of_drconf_to_nid_single(lmb);
1271
break;
1272
}
1273
1274
return nid;
1275
}
1276
1277
/*
1278
* Find the node associated with a hot added memory section for memory
1279
* represented in the device tree as a node (i.e. memory@XXXX) for
1280
* each memblock.
1281
*/
1282
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1283
{
1284
struct device_node *memory;
1285
int nid = NUMA_NO_NODE;
1286
1287
for_each_node_by_type(memory, "memory") {
1288
int i = 0;
1289
1290
while (1) {
1291
struct resource res;
1292
1293
if (of_address_to_resource(memory, i++, &res))
1294
break;
1295
1296
if ((scn_addr < res.start) || (scn_addr > res.end))
1297
continue;
1298
1299
nid = of_node_to_nid_single(memory);
1300
break;
1301
}
1302
1303
if (nid >= 0)
1304
break;
1305
}
1306
1307
of_node_put(memory);
1308
1309
return nid;
1310
}
1311
1312
/*
1313
* Find the node associated with a hot added memory section. Section
1314
* corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1315
* sections are fully contained within a single MEMBLOCK.
1316
*/
1317
int hot_add_scn_to_nid(unsigned long scn_addr)
1318
{
1319
struct device_node *memory = NULL;
1320
int nid;
1321
1322
if (!numa_enabled)
1323
return first_online_node;
1324
1325
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1326
if (memory) {
1327
nid = hot_add_drconf_scn_to_nid(scn_addr);
1328
of_node_put(memory);
1329
} else {
1330
nid = hot_add_node_scn_to_nid(scn_addr);
1331
}
1332
1333
if (nid < 0 || !node_possible(nid))
1334
nid = first_online_node;
1335
1336
return nid;
1337
}
1338
1339
u64 hot_add_drconf_memory_max(void)
1340
{
1341
struct device_node *memory = NULL;
1342
struct device_node *dn = NULL;
1343
const __be64 *lrdr = NULL;
1344
1345
dn = of_find_node_by_path("/rtas");
1346
if (dn) {
1347
lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1348
of_node_put(dn);
1349
if (lrdr)
1350
return be64_to_cpup(lrdr);
1351
}
1352
1353
memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1354
if (memory) {
1355
of_node_put(memory);
1356
return drmem_lmb_memory_max();
1357
}
1358
return 0;
1359
}
1360
1361
/*
1362
* memory_hotplug_max - return max address of memory that may be added
1363
*
1364
* This is currently only used on systems that support drconfig memory
1365
* hotplug.
1366
*/
1367
u64 memory_hotplug_max(void)
1368
{
1369
return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1370
}
1371
#endif /* CONFIG_MEMORY_HOTPLUG */
1372
1373
/* Virtual Processor Home Node (VPHN) support */
1374
#ifdef CONFIG_PPC_SPLPAR
1375
static int topology_inited;
1376
1377
/*
1378
* Retrieve the new associativity information for a virtual processor's
1379
* home node.
1380
*/
1381
static long vphn_get_associativity(unsigned long cpu,
1382
__be32 *associativity)
1383
{
1384
long rc;
1385
1386
rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1387
VPHN_FLAG_VCPU, associativity);
1388
1389
switch (rc) {
1390
case H_SUCCESS:
1391
pr_debug("VPHN hcall succeeded. Reset polling...\n");
1392
goto out;
1393
1394
case H_FUNCTION:
1395
pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1396
break;
1397
case H_HARDWARE:
1398
pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1399
"preventing VPHN. Disabling polling...\n");
1400
break;
1401
case H_PARAMETER:
1402
pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1403
"Disabling polling...\n");
1404
break;
1405
default:
1406
pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1407
, rc);
1408
break;
1409
}
1410
out:
1411
return rc;
1412
}
1413
1414
void find_and_update_cpu_nid(int cpu)
1415
{
1416
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1417
int new_nid;
1418
1419
/* Use associativity from first thread for all siblings */
1420
if (vphn_get_associativity(cpu, associativity))
1421
return;
1422
1423
/* Do not have previous associativity, so find it now. */
1424
new_nid = associativity_to_nid(associativity);
1425
1426
if (new_nid < 0 || !node_possible(new_nid))
1427
new_nid = first_online_node;
1428
else
1429
// Associate node <-> cpu, so cpu_up() calls
1430
// try_online_node() on the right node.
1431
set_cpu_numa_node(cpu, new_nid);
1432
1433
pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid);
1434
}
1435
1436
int cpu_to_coregroup_id(int cpu)
1437
{
1438
__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1439
int index;
1440
1441
if (cpu < 0 || cpu > nr_cpu_ids)
1442
return -1;
1443
1444
if (!coregroup_enabled)
1445
goto out;
1446
1447
if (!firmware_has_feature(FW_FEATURE_VPHN))
1448
goto out;
1449
1450
if (vphn_get_associativity(cpu, associativity))
1451
goto out;
1452
1453
index = of_read_number(associativity, 1);
1454
if (index > primary_domain_index + 1)
1455
return of_read_number(&associativity[index - 1], 1);
1456
1457
out:
1458
return cpu_to_core_id(cpu);
1459
}
1460
1461
static int topology_update_init(void)
1462
{
1463
topology_inited = 1;
1464
return 0;
1465
}
1466
device_initcall(topology_update_init);
1467
#endif /* CONFIG_PPC_SPLPAR */
1468
1469