Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/mm/pgtable.c
26439 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* This file contains common routines for dealing with free of page tables
4
* Along with common page table handling code
5
*
6
* Derived from arch/powerpc/mm/tlb_64.c:
7
* Copyright (C) 1995-1996 Gary Thomas ([email protected])
8
*
9
* Modifications by Paul Mackerras (PowerMac) ([email protected])
10
* and Cort Dougan (PReP) ([email protected])
11
* Copyright (C) 1996 Paul Mackerras
12
*
13
* Derived from "arch/i386/mm/init.c"
14
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15
*
16
* Dave Engebretsen <[email protected]>
17
* Rework for PPC64 port.
18
*/
19
20
#include <linux/kernel.h>
21
#include <linux/gfp.h>
22
#include <linux/mm.h>
23
#include <linux/percpu.h>
24
#include <linux/hardirq.h>
25
#include <linux/hugetlb.h>
26
#include <asm/tlbflush.h>
27
#include <asm/tlb.h>
28
#include <asm/hugetlb.h>
29
#include <asm/pte-walk.h>
30
31
#ifdef CONFIG_PPC64
32
#define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
33
#else
34
#define PGD_ALIGN PAGE_SIZE
35
#endif
36
37
pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
38
39
static inline int is_exec_fault(void)
40
{
41
return current->thread.regs && TRAP(current->thread.regs) == 0x400;
42
}
43
44
/* We only try to do i/d cache coherency on stuff that looks like
45
* reasonably "normal" PTEs. We currently require a PTE to be present
46
* and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
47
* on userspace PTEs
48
*/
49
static inline int pte_looks_normal(pte_t pte, unsigned long addr)
50
{
51
52
if (pte_present(pte) && !pte_special(pte)) {
53
if (pte_ci(pte))
54
return 0;
55
if (!is_kernel_addr(addr))
56
return 1;
57
}
58
return 0;
59
}
60
61
static struct folio *maybe_pte_to_folio(pte_t pte)
62
{
63
unsigned long pfn = pte_pfn(pte);
64
struct page *page;
65
66
if (unlikely(!pfn_valid(pfn)))
67
return NULL;
68
page = pfn_to_page(pfn);
69
if (PageReserved(page))
70
return NULL;
71
return page_folio(page);
72
}
73
74
#ifdef CONFIG_PPC_BOOK3S
75
76
/* Server-style MMU handles coherency when hashing if HW exec permission
77
* is supposed per page (currently 64-bit only). If not, then, we always
78
* flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
79
* support falls into the same category.
80
*/
81
82
static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr)
83
{
84
pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
85
if (pte_looks_normal(pte, addr) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
86
cpu_has_feature(CPU_FTR_NOEXECUTE))) {
87
struct folio *folio = maybe_pte_to_folio(pte);
88
if (!folio)
89
return pte;
90
if (!test_bit(PG_dcache_clean, &folio->flags)) {
91
flush_dcache_icache_folio(folio);
92
set_bit(PG_dcache_clean, &folio->flags);
93
}
94
}
95
return pte;
96
}
97
98
#else /* CONFIG_PPC_BOOK3S */
99
100
static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) { return pte; }
101
102
#endif /* CONFIG_PPC_BOOK3S */
103
104
/* Embedded type MMU with HW exec support. This is a bit more complicated
105
* as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106
* instead we "filter out" the exec permission for non clean pages.
107
*
108
* This is also called once for the folio. So only work with folio->flags here.
109
*/
110
static inline pte_t set_pte_filter(pte_t pte, unsigned long addr)
111
{
112
struct folio *folio;
113
114
if (radix_enabled())
115
return pte;
116
117
if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118
return set_pte_filter_hash(pte, addr);
119
120
/* No exec permission in the first place, move on */
121
if (!pte_exec(pte) || !pte_looks_normal(pte, addr))
122
return pte;
123
124
/* If you set _PAGE_EXEC on weird pages you're on your own */
125
folio = maybe_pte_to_folio(pte);
126
if (unlikely(!folio))
127
return pte;
128
129
/* If the page clean, we move on */
130
if (test_bit(PG_dcache_clean, &folio->flags))
131
return pte;
132
133
/* If it's an exec fault, we flush the cache and make it clean */
134
if (is_exec_fault()) {
135
flush_dcache_icache_folio(folio);
136
set_bit(PG_dcache_clean, &folio->flags);
137
return pte;
138
}
139
140
/* Else, we filter out _PAGE_EXEC */
141
return pte_exprotect(pte);
142
}
143
144
static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145
int dirty)
146
{
147
struct folio *folio;
148
149
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150
return pte;
151
152
if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153
return pte;
154
155
/* So here, we only care about exec faults, as we use them
156
* to recover lost _PAGE_EXEC and perform I$/D$ coherency
157
* if necessary. Also if _PAGE_EXEC is already set, same deal,
158
* we just bail out
159
*/
160
if (dirty || pte_exec(pte) || !is_exec_fault())
161
return pte;
162
163
#ifdef CONFIG_DEBUG_VM
164
/* So this is an exec fault, _PAGE_EXEC is not set. If it was
165
* an error we would have bailed out earlier in do_page_fault()
166
* but let's make sure of it
167
*/
168
if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169
return pte;
170
#endif /* CONFIG_DEBUG_VM */
171
172
/* If you set _PAGE_EXEC on weird pages you're on your own */
173
folio = maybe_pte_to_folio(pte);
174
if (unlikely(!folio))
175
goto bail;
176
177
/* If the page is already clean, we move on */
178
if (test_bit(PG_dcache_clean, &folio->flags))
179
goto bail;
180
181
/* Clean the page and set PG_dcache_clean */
182
flush_dcache_icache_folio(folio);
183
set_bit(PG_dcache_clean, &folio->flags);
184
185
bail:
186
return pte_mkexec(pte);
187
}
188
189
/*
190
* set_pte stores a linux PTE into the linux page table.
191
*/
192
void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193
pte_t pte, unsigned int nr)
194
{
195
196
/* Note: mm->context.id might not yet have been assigned as
197
* this context might not have been activated yet when this
198
* is called. Filter the pte value and use the filtered value
199
* to setup all the ptes in the range.
200
*/
201
pte = set_pte_filter(pte, addr);
202
203
/*
204
* We don't need to call arch_enter/leave_lazy_mmu_mode()
205
* because we expect set_ptes to be only be used on not present
206
* and not hw_valid ptes. Hence there is no translation cache flush
207
* involved that need to be batched.
208
*/
209
for (;;) {
210
211
/*
212
* Make sure hardware valid bit is not set. We don't do
213
* tlb flush for this update.
214
*/
215
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216
217
/* Perform the setting of the PTE */
218
__set_pte_at(mm, addr, ptep, pte, 0);
219
if (--nr == 0)
220
break;
221
ptep++;
222
addr += PAGE_SIZE;
223
pte = pte_next_pfn(pte);
224
}
225
}
226
227
void unmap_kernel_page(unsigned long va)
228
{
229
pmd_t *pmdp = pmd_off_k(va);
230
pte_t *ptep = pte_offset_kernel(pmdp, va);
231
232
pte_clear(&init_mm, va, ptep);
233
flush_tlb_kernel_range(va, va + PAGE_SIZE);
234
}
235
236
/*
237
* This is called when relaxing access to a PTE. It's also called in the page
238
* fault path when we don't hit any of the major fault cases, ie, a minor
239
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
240
* handled those two for us, we additionally deal with missing execute
241
* permission here on some processors
242
*/
243
int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
244
pte_t *ptep, pte_t entry, int dirty)
245
{
246
int changed;
247
entry = set_access_flags_filter(entry, vma, dirty);
248
changed = !pte_same(*(ptep), entry);
249
if (changed) {
250
assert_pte_locked(vma->vm_mm, address);
251
__ptep_set_access_flags(vma, ptep, entry,
252
address, mmu_virtual_psize);
253
}
254
return changed;
255
}
256
257
#ifdef CONFIG_HUGETLB_PAGE
258
int huge_ptep_set_access_flags(struct vm_area_struct *vma,
259
unsigned long addr, pte_t *ptep,
260
pte_t pte, int dirty)
261
{
262
#ifdef HUGETLB_NEED_PRELOAD
263
/*
264
* The "return 1" forces a call of update_mmu_cache, which will write a
265
* TLB entry. Without this, platforms that don't do a write of the TLB
266
* entry in the TLB miss handler asm will fault ad infinitum.
267
*/
268
ptep_set_access_flags(vma, addr, ptep, pte, dirty);
269
return 1;
270
#else
271
int changed, psize;
272
273
pte = set_access_flags_filter(pte, vma, dirty);
274
changed = !pte_same(*(ptep), pte);
275
if (changed) {
276
277
#ifdef CONFIG_PPC_BOOK3S_64
278
struct hstate *h = hstate_vma(vma);
279
280
psize = hstate_get_psize(h);
281
#ifdef CONFIG_DEBUG_VM
282
assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
283
#endif
284
285
#else
286
/*
287
* Not used on non book3s64 platforms.
288
* 8xx compares it with mmu_virtual_psize to
289
* know if it is a huge page or not.
290
*/
291
psize = MMU_PAGE_COUNT;
292
#endif
293
__ptep_set_access_flags(vma, ptep, pte, addr, psize);
294
}
295
return changed;
296
#endif
297
}
298
299
#if defined(CONFIG_PPC_8xx)
300
301
#if defined(CONFIG_SPLIT_PTE_PTLOCKS) || defined(CONFIG_SPLIT_PMD_PTLOCKS)
302
/* We need the same lock to protect the PMD table and the two PTE tables. */
303
#error "8M hugetlb folios are incompatible with split page table locks"
304
#endif
305
306
static void __set_huge_pte_at(pmd_t *pmd, pte_t *ptep, pte_basic_t val)
307
{
308
pte_basic_t *entry = (pte_basic_t *)ptep;
309
int num, i;
310
311
/*
312
* Make sure hardware valid bit is not set. We don't do
313
* tlb flush for this update.
314
*/
315
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316
317
num = number_of_cells_per_pte(pmd, val, 1);
318
319
for (i = 0; i < num; i++, entry++, val += SZ_4K)
320
*entry = val;
321
}
322
323
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
324
pte_t pte, unsigned long sz)
325
{
326
pmd_t *pmdp = pmd_off(mm, addr);
327
328
pte = set_pte_filter(pte, addr);
329
330
if (sz == SZ_8M) { /* Flag both PMD entries as 8M and fill both page tables */
331
*pmdp = __pmd(pmd_val(*pmdp) | _PMD_PAGE_8M);
332
*(pmdp + 1) = __pmd(pmd_val(*(pmdp + 1)) | _PMD_PAGE_8M);
333
334
__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp, 0), pte_val(pte));
335
__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp + 1, 0), pte_val(pte) + SZ_4M);
336
} else {
337
__set_huge_pte_at(pmdp, ptep, pte_val(pte));
338
}
339
}
340
#else
341
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
342
pte_t pte, unsigned long sz)
343
{
344
unsigned long pdsize;
345
int i;
346
347
pte = set_pte_filter(pte, addr);
348
349
/*
350
* Make sure hardware valid bit is not set. We don't do
351
* tlb flush for this update.
352
*/
353
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
354
355
if (sz < PMD_SIZE)
356
pdsize = PAGE_SIZE;
357
else if (sz < PUD_SIZE)
358
pdsize = PMD_SIZE;
359
else if (sz < P4D_SIZE)
360
pdsize = PUD_SIZE;
361
else if (sz < PGDIR_SIZE)
362
pdsize = P4D_SIZE;
363
else
364
pdsize = PGDIR_SIZE;
365
366
for (i = 0; i < sz / pdsize; i++, ptep++, addr += pdsize) {
367
__set_pte_at(mm, addr, ptep, pte, 0);
368
pte = __pte(pte_val(pte) + ((unsigned long long)pdsize / PAGE_SIZE << PFN_PTE_SHIFT));
369
}
370
}
371
#endif
372
#endif /* CONFIG_HUGETLB_PAGE */
373
374
#ifdef CONFIG_DEBUG_VM
375
void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
376
{
377
pgd_t *pgd;
378
p4d_t *p4d;
379
pud_t *pud;
380
pmd_t *pmd;
381
pte_t *pte;
382
spinlock_t *ptl;
383
384
if (mm == &init_mm)
385
return;
386
pgd = mm->pgd + pgd_index(addr);
387
BUG_ON(pgd_none(*pgd));
388
p4d = p4d_offset(pgd, addr);
389
BUG_ON(p4d_none(*p4d));
390
pud = pud_offset(p4d, addr);
391
BUG_ON(pud_none(*pud));
392
pmd = pmd_offset(pud, addr);
393
/*
394
* khugepaged to collapse normal pages to hugepage, first set
395
* pmd to none to force page fault/gup to take mmap_lock. After
396
* pmd is set to none, we do a pte_clear which does this assertion
397
* so if we find pmd none, return.
398
*/
399
if (pmd_none(*pmd))
400
return;
401
pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
402
BUG_ON(!pte);
403
assert_spin_locked(ptl);
404
pte_unmap(pte);
405
}
406
#endif /* CONFIG_DEBUG_VM */
407
408
unsigned long vmalloc_to_phys(void *va)
409
{
410
unsigned long pfn = vmalloc_to_pfn(va);
411
412
BUG_ON(!pfn);
413
return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
414
}
415
EXPORT_SYMBOL_GPL(vmalloc_to_phys);
416
417
/*
418
* We have 3 cases for pgds and pmds:
419
* (1) invalid (all zeroes)
420
* (2) pointer to next table, as normal; bottom 6 bits == 0
421
* (3) leaf pte for huge page _PAGE_PTE set
422
*
423
* So long as we atomically load page table pointers we are safe against teardown,
424
* we can follow the address down to the page and take a ref on it.
425
* This function need to be called with interrupts disabled. We use this variant
426
* when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
427
*/
428
pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
429
bool *is_thp, unsigned *hpage_shift)
430
{
431
pgd_t *pgdp;
432
#ifdef CONFIG_PPC64
433
p4d_t p4d, *p4dp;
434
pud_t pud, *pudp;
435
#endif
436
pmd_t pmd, *pmdp;
437
pte_t *ret_pte;
438
unsigned pdshift;
439
440
if (hpage_shift)
441
*hpage_shift = 0;
442
443
if (is_thp)
444
*is_thp = false;
445
446
/*
447
* Always operate on the local stack value. This make sure the
448
* value don't get updated by a parallel THP split/collapse,
449
* page fault or a page unmap. The return pte_t * is still not
450
* stable. So should be checked there for above conditions.
451
* Top level is an exception because it is folded into p4d.
452
*
453
* On PPC32, P4D/PUD/PMD are folded into PGD so go straight to
454
* PMD level.
455
*/
456
pgdp = pgdir + pgd_index(ea);
457
#ifdef CONFIG_PPC64
458
p4dp = p4d_offset(pgdp, ea);
459
p4d = READ_ONCE(*p4dp);
460
pdshift = P4D_SHIFT;
461
462
if (p4d_none(p4d))
463
return NULL;
464
465
if (p4d_leaf(p4d)) {
466
ret_pte = (pte_t *)p4dp;
467
goto out;
468
}
469
470
/*
471
* Even if we end up with an unmap, the pgtable will not
472
* be freed, because we do an rcu free and here we are
473
* irq disabled
474
*/
475
pdshift = PUD_SHIFT;
476
pudp = pud_offset(&p4d, ea);
477
pud = READ_ONCE(*pudp);
478
479
if (pud_none(pud))
480
return NULL;
481
482
if (pud_leaf(pud)) {
483
ret_pte = (pte_t *)pudp;
484
goto out;
485
}
486
487
pmdp = pmd_offset(&pud, ea);
488
#else
489
pmdp = pmd_offset(pud_offset(p4d_offset(pgdp, ea), ea), ea);
490
#endif
491
pdshift = PMD_SHIFT;
492
pmd = READ_ONCE(*pmdp);
493
494
/*
495
* A hugepage collapse is captured by this condition, see
496
* pmdp_collapse_flush.
497
*/
498
if (pmd_none(pmd))
499
return NULL;
500
501
#ifdef CONFIG_PPC_BOOK3S_64
502
/*
503
* A hugepage split is captured by this condition, see
504
* pmdp_invalidate.
505
*
506
* Huge page modification can be caught here too.
507
*/
508
if (pmd_is_serializing(pmd))
509
return NULL;
510
#endif
511
512
if (pmd_trans_huge(pmd)) {
513
if (is_thp)
514
*is_thp = true;
515
ret_pte = (pte_t *)pmdp;
516
goto out;
517
}
518
519
if (pmd_leaf(pmd)) {
520
ret_pte = (pte_t *)pmdp;
521
goto out;
522
}
523
524
return pte_offset_kernel(&pmd, ea);
525
526
out:
527
if (hpage_shift)
528
*hpage_shift = pdshift;
529
return ret_pte;
530
}
531
EXPORT_SYMBOL_GPL(__find_linux_pte);
532
533
/* Note due to the way vm flags are laid out, the bits are XWR */
534
const pgprot_t protection_map[16] = {
535
[VM_NONE] = PAGE_NONE,
536
[VM_READ] = PAGE_READONLY,
537
[VM_WRITE] = PAGE_COPY,
538
[VM_WRITE | VM_READ] = PAGE_COPY,
539
[VM_EXEC] = PAGE_EXECONLY_X,
540
[VM_EXEC | VM_READ] = PAGE_READONLY_X,
541
[VM_EXEC | VM_WRITE] = PAGE_COPY_X,
542
[VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_X,
543
[VM_SHARED] = PAGE_NONE,
544
[VM_SHARED | VM_READ] = PAGE_READONLY,
545
[VM_SHARED | VM_WRITE] = PAGE_SHARED,
546
[VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
547
[VM_SHARED | VM_EXEC] = PAGE_EXECONLY_X,
548
[VM_SHARED | VM_EXEC | VM_READ] = PAGE_READONLY_X,
549
[VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_X,
550
[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_X
551
};
552
553
#ifndef CONFIG_PPC_BOOK3S_64
554
DECLARE_VM_GET_PAGE_PROT
555
#endif
556
557