Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/perf/hv-24x7.c
26451 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Hypervisor supplied "24x7" performance counter support
4
*
5
* Author: Cody P Schafer <[email protected]>
6
* Copyright 2014 IBM Corporation.
7
*/
8
9
#define pr_fmt(fmt) "hv-24x7: " fmt
10
11
#include <linux/perf_event.h>
12
#include <linux/rbtree.h>
13
#include <linux/module.h>
14
#include <linux/slab.h>
15
#include <linux/vmalloc.h>
16
17
#include <asm/cputhreads.h>
18
#include <asm/firmware.h>
19
#include <asm/hvcall.h>
20
#include <asm/io.h>
21
#include <asm/papr-sysparm.h>
22
#include <linux/byteorder/generic.h>
23
24
#include <asm/rtas.h>
25
#include "hv-24x7.h"
26
#include "hv-24x7-catalog.h"
27
#include "hv-common.h"
28
29
/* Version of the 24x7 hypervisor API that we should use in this machine. */
30
static int interface_version;
31
32
/* Whether we have to aggregate result data for some domains. */
33
static bool aggregate_result_elements;
34
35
static cpumask_t hv_24x7_cpumask;
36
37
static bool domain_is_valid(unsigned int domain)
38
{
39
switch (domain) {
40
#define DOMAIN(n, v, x, c) \
41
case HV_PERF_DOMAIN_##n: \
42
/* fall through */
43
#include "hv-24x7-domains.h"
44
#undef DOMAIN
45
return true;
46
default:
47
return false;
48
}
49
}
50
51
static bool is_physical_domain(unsigned int domain)
52
{
53
switch (domain) {
54
#define DOMAIN(n, v, x, c) \
55
case HV_PERF_DOMAIN_##n: \
56
return c;
57
#include "hv-24x7-domains.h"
58
#undef DOMAIN
59
default:
60
return false;
61
}
62
}
63
64
/*
65
* The Processor Module Information system parameter allows transferring
66
* of certain processor module information from the platform to the OS.
67
* Refer PAPR+ document to get parameter token value as '43'.
68
*/
69
70
static u32 phys_sockets; /* Physical sockets */
71
static u32 phys_chipspersocket; /* Physical chips per socket*/
72
static u32 phys_coresperchip; /* Physical cores per chip */
73
74
/*
75
* read_24x7_sys_info()
76
* Retrieve the number of sockets and chips per socket and cores per
77
* chip details through the get-system-parameter rtas call.
78
*/
79
void read_24x7_sys_info(void)
80
{
81
struct papr_sysparm_buf *buf;
82
83
/*
84
* Making system parameter: chips and sockets and cores per chip
85
* default to 1.
86
*/
87
phys_sockets = 1;
88
phys_chipspersocket = 1;
89
phys_coresperchip = 1;
90
91
buf = papr_sysparm_buf_alloc();
92
if (!buf)
93
return;
94
95
if (!papr_sysparm_get(PAPR_SYSPARM_PROC_MODULE_INFO, buf)) {
96
int ntypes = be16_to_cpup((__be16 *)&buf->val[0]);
97
int len = be16_to_cpu(buf->len);
98
99
if (len >= 8 && ntypes != 0) {
100
phys_sockets = be16_to_cpup((__be16 *)&buf->val[2]);
101
phys_chipspersocket = be16_to_cpup((__be16 *)&buf->val[4]);
102
phys_coresperchip = be16_to_cpup((__be16 *)&buf->val[6]);
103
}
104
}
105
106
papr_sysparm_buf_free(buf);
107
}
108
109
/* Domains for which more than one result element are returned for each event. */
110
static bool domain_needs_aggregation(unsigned int domain)
111
{
112
return aggregate_result_elements &&
113
(domain == HV_PERF_DOMAIN_PHYS_CORE ||
114
(domain >= HV_PERF_DOMAIN_VCPU_HOME_CORE &&
115
domain <= HV_PERF_DOMAIN_VCPU_REMOTE_NODE));
116
}
117
118
static const char *domain_name(unsigned int domain)
119
{
120
if (!domain_is_valid(domain))
121
return NULL;
122
123
switch (domain) {
124
case HV_PERF_DOMAIN_PHYS_CHIP: return "Physical Chip";
125
case HV_PERF_DOMAIN_PHYS_CORE: return "Physical Core";
126
case HV_PERF_DOMAIN_VCPU_HOME_CORE: return "VCPU Home Core";
127
case HV_PERF_DOMAIN_VCPU_HOME_CHIP: return "VCPU Home Chip";
128
case HV_PERF_DOMAIN_VCPU_HOME_NODE: return "VCPU Home Node";
129
case HV_PERF_DOMAIN_VCPU_REMOTE_NODE: return "VCPU Remote Node";
130
}
131
132
WARN_ON_ONCE(domain);
133
return NULL;
134
}
135
136
static bool catalog_entry_domain_is_valid(unsigned int domain)
137
{
138
/* POWER8 doesn't support virtual domains. */
139
if (interface_version == 1)
140
return is_physical_domain(domain);
141
else
142
return domain_is_valid(domain);
143
}
144
145
/*
146
* TODO: Merging events:
147
* - Think of the hcall as an interface to a 4d array of counters:
148
* - x = domains
149
* - y = indexes in the domain (core, chip, vcpu, node, etc)
150
* - z = offset into the counter space
151
* - w = lpars (guest vms, "logical partitions")
152
* - A single request is: x,y,y_last,z,z_last,w,w_last
153
* - this means we can retrieve a rectangle of counters in y,z for a single x.
154
*
155
* - Things to consider (ignoring w):
156
* - input cost_per_request = 16
157
* - output cost_per_result(ys,zs) = 8 + 8 * ys + ys * zs
158
* - limited number of requests per hcall (must fit into 4K bytes)
159
* - 4k = 16 [buffer header] - 16 [request size] * request_count
160
* - 255 requests per hcall
161
* - sometimes it will be more efficient to read extra data and discard
162
*/
163
164
/*
165
* Example usage:
166
* perf stat -e 'hv_24x7/domain=2,offset=8,vcpu=0,lpar=0xffffffff/'
167
*/
168
169
/* u3 0-6, one of HV_24X7_PERF_DOMAIN */
170
EVENT_DEFINE_RANGE_FORMAT(domain, config, 0, 3);
171
/* u16 */
172
EVENT_DEFINE_RANGE_FORMAT(core, config, 16, 31);
173
EVENT_DEFINE_RANGE_FORMAT(chip, config, 16, 31);
174
EVENT_DEFINE_RANGE_FORMAT(vcpu, config, 16, 31);
175
/* u32, see "data_offset" */
176
EVENT_DEFINE_RANGE_FORMAT(offset, config, 32, 63);
177
/* u16 */
178
EVENT_DEFINE_RANGE_FORMAT(lpar, config1, 0, 15);
179
180
EVENT_DEFINE_RANGE(reserved1, config, 4, 15);
181
EVENT_DEFINE_RANGE(reserved2, config1, 16, 63);
182
EVENT_DEFINE_RANGE(reserved3, config2, 0, 63);
183
184
static struct attribute *format_attrs[] = {
185
&format_attr_domain.attr,
186
&format_attr_offset.attr,
187
&format_attr_core.attr,
188
&format_attr_chip.attr,
189
&format_attr_vcpu.attr,
190
&format_attr_lpar.attr,
191
NULL,
192
};
193
194
static const struct attribute_group format_group = {
195
.name = "format",
196
.attrs = format_attrs,
197
};
198
199
static struct attribute_group event_group = {
200
.name = "events",
201
/* .attrs is set in init */
202
};
203
204
static struct attribute_group event_desc_group = {
205
.name = "event_descs",
206
/* .attrs is set in init */
207
};
208
209
static struct attribute_group event_long_desc_group = {
210
.name = "event_long_descs",
211
/* .attrs is set in init */
212
};
213
214
static struct kmem_cache *hv_page_cache;
215
216
static DEFINE_PER_CPU(int, hv_24x7_txn_flags);
217
static DEFINE_PER_CPU(int, hv_24x7_txn_err);
218
219
struct hv_24x7_hw {
220
struct perf_event *events[255];
221
};
222
223
static DEFINE_PER_CPU(struct hv_24x7_hw, hv_24x7_hw);
224
225
/*
226
* request_buffer and result_buffer are not required to be 4k aligned,
227
* but are not allowed to cross any 4k boundary. Aligning them to 4k is
228
* the simplest way to ensure that.
229
*/
230
#define H24x7_DATA_BUFFER_SIZE 4096
231
static DEFINE_PER_CPU(char, hv_24x7_reqb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
232
static DEFINE_PER_CPU(char, hv_24x7_resb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
233
234
static unsigned int max_num_requests(int interface_version)
235
{
236
return (H24x7_DATA_BUFFER_SIZE - sizeof(struct hv_24x7_request_buffer))
237
/ H24x7_REQUEST_SIZE(interface_version);
238
}
239
240
static char *event_name(struct hv_24x7_event_data *ev, int *len)
241
{
242
*len = be16_to_cpu(ev->event_name_len) - 2;
243
return (char *)ev->remainder;
244
}
245
246
static char *event_desc(struct hv_24x7_event_data *ev, int *len)
247
{
248
unsigned int nl = be16_to_cpu(ev->event_name_len);
249
__be16 *desc_len = (__be16 *)(ev->remainder + nl - 2);
250
251
*len = be16_to_cpu(*desc_len) - 2;
252
return (char *)ev->remainder + nl;
253
}
254
255
static char *event_long_desc(struct hv_24x7_event_data *ev, int *len)
256
{
257
unsigned int nl = be16_to_cpu(ev->event_name_len);
258
__be16 *desc_len_ = (__be16 *)(ev->remainder + nl - 2);
259
unsigned int desc_len = be16_to_cpu(*desc_len_);
260
__be16 *long_desc_len = (__be16 *)(ev->remainder + nl + desc_len - 2);
261
262
*len = be16_to_cpu(*long_desc_len) - 2;
263
return (char *)ev->remainder + nl + desc_len;
264
}
265
266
static bool event_fixed_portion_is_within(struct hv_24x7_event_data *ev,
267
void *end)
268
{
269
void *start = ev;
270
271
return (start + offsetof(struct hv_24x7_event_data, remainder)) < end;
272
}
273
274
/*
275
* Things we don't check:
276
* - padding for desc, name, and long/detailed desc is required to be '\0'
277
* bytes.
278
*
279
* Return NULL if we pass end,
280
* Otherwise return the address of the byte just following the event.
281
*/
282
static void *event_end(struct hv_24x7_event_data *ev, void *end)
283
{
284
void *start = ev;
285
__be16 *dl_, *ldl_;
286
unsigned int dl, ldl;
287
unsigned int nl = be16_to_cpu(ev->event_name_len);
288
289
if (nl < 2) {
290
pr_debug("%s: name length too short: %d", __func__, nl);
291
return NULL;
292
}
293
294
if (start + nl > end) {
295
pr_debug("%s: start=%p + nl=%u > end=%p",
296
__func__, start, nl, end);
297
return NULL;
298
}
299
300
dl_ = (__be16 *)(ev->remainder + nl - 2);
301
if (!IS_ALIGNED((uintptr_t)dl_, 2))
302
pr_warn("desc len not aligned %p", dl_);
303
dl = be16_to_cpu(*dl_);
304
if (dl < 2) {
305
pr_debug("%s: desc len too short: %d", __func__, dl);
306
return NULL;
307
}
308
309
if (start + nl + dl > end) {
310
pr_debug("%s: (start=%p + nl=%u + dl=%u)=%p > end=%p",
311
__func__, start, nl, dl, start + nl + dl, end);
312
return NULL;
313
}
314
315
ldl_ = (__be16 *)(ev->remainder + nl + dl - 2);
316
if (!IS_ALIGNED((uintptr_t)ldl_, 2))
317
pr_warn("long desc len not aligned %p", ldl_);
318
ldl = be16_to_cpu(*ldl_);
319
if (ldl < 2) {
320
pr_debug("%s: long desc len too short (ldl=%u)",
321
__func__, ldl);
322
return NULL;
323
}
324
325
if (start + nl + dl + ldl > end) {
326
pr_debug("%s: start=%p + nl=%u + dl=%u + ldl=%u > end=%p",
327
__func__, start, nl, dl, ldl, end);
328
return NULL;
329
}
330
331
return start + nl + dl + ldl;
332
}
333
334
static long h_get_24x7_catalog_page_(unsigned long phys_4096,
335
unsigned long version, unsigned long index)
336
{
337
pr_devel("h_get_24x7_catalog_page(0x%lx, %lu, %lu)",
338
phys_4096, version, index);
339
340
WARN_ON(!IS_ALIGNED(phys_4096, 4096));
341
342
return plpar_hcall_norets(H_GET_24X7_CATALOG_PAGE,
343
phys_4096, version, index);
344
}
345
346
static long h_get_24x7_catalog_page(char page[], u64 version, u32 index)
347
{
348
return h_get_24x7_catalog_page_(virt_to_phys(page),
349
version, index);
350
}
351
352
/*
353
* Each event we find in the catalog, will have a sysfs entry. Format the
354
* data for this sysfs entry based on the event's domain.
355
*
356
* Events belonging to the Chip domain can only be monitored in that domain.
357
* i.e the domain for these events is a fixed/knwon value.
358
*
359
* Events belonging to the Core domain can be monitored either in the physical
360
* core or in one of the virtual CPU domains. So the domain value for these
361
* events must be specified by the user (i.e is a required parameter). Format
362
* the Core events with 'domain=?' so the perf-tool can error check required
363
* parameters.
364
*
365
* NOTE: For the Core domain events, rather than making domain a required
366
* parameter we could default it to PHYS_CORE and allowe users to
367
* override the domain to one of the VCPU domains.
368
*
369
* However, this can make the interface a little inconsistent.
370
*
371
* If we set domain=2 (PHYS_CHIP) and allow user to override this field
372
* the user may be tempted to also modify the "offset=x" field in which
373
* can lead to confusing usage. Consider the HPM_PCYC (offset=0x18) and
374
* HPM_INST (offset=0x20) events. With:
375
*
376
* perf stat -e hv_24x7/HPM_PCYC,offset=0x20/
377
*
378
* we end up monitoring HPM_INST, while the command line has HPM_PCYC.
379
*
380
* By not assigning a default value to the domain for the Core events,
381
* we can have simple guidelines:
382
*
383
* - Specifying values for parameters with "=?" is required.
384
*
385
* - Specifying (i.e overriding) values for other parameters
386
* is undefined.
387
*/
388
static char *event_fmt(struct hv_24x7_event_data *event, unsigned int domain)
389
{
390
const char *sindex;
391
const char *lpar;
392
const char *domain_str;
393
char buf[8];
394
395
switch (domain) {
396
case HV_PERF_DOMAIN_PHYS_CHIP:
397
snprintf(buf, sizeof(buf), "%d", domain);
398
domain_str = buf;
399
lpar = "0x0";
400
sindex = "chip";
401
break;
402
case HV_PERF_DOMAIN_PHYS_CORE:
403
domain_str = "?";
404
lpar = "0x0";
405
sindex = "core";
406
break;
407
default:
408
domain_str = "?";
409
lpar = "?";
410
sindex = "vcpu";
411
}
412
413
return kasprintf(GFP_KERNEL,
414
"domain=%s,offset=0x%x,%s=?,lpar=%s",
415
domain_str,
416
be16_to_cpu(event->event_counter_offs) +
417
be16_to_cpu(event->event_group_record_offs),
418
sindex,
419
lpar);
420
}
421
422
/* Avoid trusting fw to NUL terminate strings */
423
static char *memdup_to_str(char *maybe_str, int max_len, gfp_t gfp)
424
{
425
return kasprintf(gfp, "%.*s", max_len, maybe_str);
426
}
427
428
static ssize_t cpumask_show(struct device *dev,
429
struct device_attribute *attr, char *buf)
430
{
431
return cpumap_print_to_pagebuf(true, buf, &hv_24x7_cpumask);
432
}
433
434
static ssize_t sockets_show(struct device *dev,
435
struct device_attribute *attr, char *buf)
436
{
437
return sprintf(buf, "%d\n", phys_sockets);
438
}
439
440
static ssize_t chipspersocket_show(struct device *dev,
441
struct device_attribute *attr, char *buf)
442
{
443
return sprintf(buf, "%d\n", phys_chipspersocket);
444
}
445
446
static ssize_t coresperchip_show(struct device *dev,
447
struct device_attribute *attr, char *buf)
448
{
449
return sprintf(buf, "%d\n", phys_coresperchip);
450
}
451
452
static struct attribute *device_str_attr_create_(char *name, char *str)
453
{
454
struct dev_ext_attribute *attr = kzalloc(sizeof(*attr), GFP_KERNEL);
455
456
if (!attr)
457
return NULL;
458
459
sysfs_attr_init(&attr->attr.attr);
460
461
attr->var = str;
462
attr->attr.attr.name = name;
463
attr->attr.attr.mode = 0444;
464
attr->attr.show = device_show_string;
465
466
return &attr->attr.attr;
467
}
468
469
/*
470
* Allocate and initialize strings representing event attributes.
471
*
472
* NOTE: The strings allocated here are never destroyed and continue to
473
* exist till shutdown. This is to allow us to create as many events
474
* from the catalog as possible, even if we encounter errors with some.
475
* In case of changes to error paths in future, these may need to be
476
* freed by the caller.
477
*/
478
static struct attribute *device_str_attr_create(char *name, int name_max,
479
int name_nonce,
480
char *str, size_t str_max)
481
{
482
char *n;
483
char *s = memdup_to_str(str, str_max, GFP_KERNEL);
484
struct attribute *a;
485
486
if (!s)
487
return NULL;
488
489
if (!name_nonce)
490
n = kasprintf(GFP_KERNEL, "%.*s", name_max, name);
491
else
492
n = kasprintf(GFP_KERNEL, "%.*s__%d", name_max, name,
493
name_nonce);
494
if (!n)
495
goto out_s;
496
497
a = device_str_attr_create_(n, s);
498
if (!a)
499
goto out_n;
500
501
return a;
502
out_n:
503
kfree(n);
504
out_s:
505
kfree(s);
506
return NULL;
507
}
508
509
static struct attribute *event_to_attr(unsigned int ix,
510
struct hv_24x7_event_data *event,
511
unsigned int domain,
512
int nonce)
513
{
514
int event_name_len;
515
char *ev_name, *a_ev_name, *val;
516
struct attribute *attr;
517
518
if (!domain_is_valid(domain)) {
519
pr_warn("catalog event %u has invalid domain %u\n",
520
ix, domain);
521
return NULL;
522
}
523
524
val = event_fmt(event, domain);
525
if (!val)
526
return NULL;
527
528
ev_name = event_name(event, &event_name_len);
529
if (!nonce)
530
a_ev_name = kasprintf(GFP_KERNEL, "%.*s",
531
(int)event_name_len, ev_name);
532
else
533
a_ev_name = kasprintf(GFP_KERNEL, "%.*s__%d",
534
(int)event_name_len, ev_name, nonce);
535
536
if (!a_ev_name)
537
goto out_val;
538
539
attr = device_str_attr_create_(a_ev_name, val);
540
if (!attr)
541
goto out_name;
542
543
return attr;
544
out_name:
545
kfree(a_ev_name);
546
out_val:
547
kfree(val);
548
return NULL;
549
}
550
551
static struct attribute *event_to_desc_attr(struct hv_24x7_event_data *event,
552
int nonce)
553
{
554
int nl, dl;
555
char *name = event_name(event, &nl);
556
char *desc = event_desc(event, &dl);
557
558
/* If there isn't a description, don't create the sysfs file */
559
if (!dl)
560
return NULL;
561
562
return device_str_attr_create(name, nl, nonce, desc, dl);
563
}
564
565
static struct attribute *
566
event_to_long_desc_attr(struct hv_24x7_event_data *event, int nonce)
567
{
568
int nl, dl;
569
char *name = event_name(event, &nl);
570
char *desc = event_long_desc(event, &dl);
571
572
/* If there isn't a description, don't create the sysfs file */
573
if (!dl)
574
return NULL;
575
576
return device_str_attr_create(name, nl, nonce, desc, dl);
577
}
578
579
static int event_data_to_attrs(unsigned int ix, struct attribute **attrs,
580
struct hv_24x7_event_data *event, int nonce)
581
{
582
*attrs = event_to_attr(ix, event, event->domain, nonce);
583
if (!*attrs)
584
return -1;
585
586
return 0;
587
}
588
589
/* */
590
struct event_uniq {
591
struct rb_node node;
592
const char *name;
593
int nl;
594
unsigned int ct;
595
unsigned int domain;
596
};
597
598
static int memord(const void *d1, size_t s1, const void *d2, size_t s2)
599
{
600
if (s1 < s2)
601
return 1;
602
if (s1 > s2)
603
return -1;
604
605
return memcmp(d1, d2, s1);
606
}
607
608
static int ev_uniq_ord(const void *v1, size_t s1, unsigned int d1,
609
const void *v2, size_t s2, unsigned int d2)
610
{
611
int r = memord(v1, s1, v2, s2);
612
613
if (r)
614
return r;
615
if (d1 > d2)
616
return 1;
617
if (d2 > d1)
618
return -1;
619
return 0;
620
}
621
622
static int event_uniq_add(struct rb_root *root, const char *name, int nl,
623
unsigned int domain)
624
{
625
struct rb_node **new = &(root->rb_node), *parent = NULL;
626
struct event_uniq *data;
627
628
/* Figure out where to put new node */
629
while (*new) {
630
struct event_uniq *it;
631
int result;
632
633
it = rb_entry(*new, struct event_uniq, node);
634
result = ev_uniq_ord(name, nl, domain, it->name, it->nl,
635
it->domain);
636
637
parent = *new;
638
if (result < 0)
639
new = &((*new)->rb_left);
640
else if (result > 0)
641
new = &((*new)->rb_right);
642
else {
643
it->ct++;
644
pr_info("found a duplicate event %.*s, ct=%u\n", nl,
645
name, it->ct);
646
return it->ct;
647
}
648
}
649
650
data = kmalloc(sizeof(*data), GFP_KERNEL);
651
if (!data)
652
return -ENOMEM;
653
654
*data = (struct event_uniq) {
655
.name = name,
656
.nl = nl,
657
.ct = 0,
658
.domain = domain,
659
};
660
661
/* Add new node and rebalance tree. */
662
rb_link_node(&data->node, parent, new);
663
rb_insert_color(&data->node, root);
664
665
/* data->ct */
666
return 0;
667
}
668
669
static void event_uniq_destroy(struct rb_root *root)
670
{
671
/*
672
* the strings we point to are in the giant block of memory filled by
673
* the catalog, and are freed separately.
674
*/
675
struct event_uniq *pos, *n;
676
677
rbtree_postorder_for_each_entry_safe(pos, n, root, node)
678
kfree(pos);
679
}
680
681
682
/*
683
* ensure the event structure's sizes are self consistent and don't cause us to
684
* read outside of the event
685
*
686
* On success, return the event length in bytes.
687
* Otherwise, return -1 (and print as appropriate).
688
*/
689
static ssize_t catalog_event_len_validate(struct hv_24x7_event_data *event,
690
size_t event_idx,
691
size_t event_data_bytes,
692
size_t event_entry_count,
693
size_t offset, void *end)
694
{
695
ssize_t ev_len;
696
void *ev_end, *calc_ev_end;
697
698
if (offset >= event_data_bytes)
699
return -1;
700
701
if (event_idx >= event_entry_count) {
702
pr_devel("catalog event data has %zu bytes of padding after last event\n",
703
event_data_bytes - offset);
704
return -1;
705
}
706
707
if (!event_fixed_portion_is_within(event, end)) {
708
pr_warn("event %zu fixed portion is not within range\n",
709
event_idx);
710
return -1;
711
}
712
713
ev_len = be16_to_cpu(event->length);
714
715
if (ev_len % 16)
716
pr_info("event %zu has length %zu not divisible by 16: event=%p\n",
717
event_idx, ev_len, event);
718
719
ev_end = (__u8 *)event + ev_len;
720
if (ev_end > end) {
721
pr_warn("event %zu has .length=%zu, ends after buffer end: ev_end=%p > end=%p, offset=%zu\n",
722
event_idx, ev_len, ev_end, end,
723
offset);
724
return -1;
725
}
726
727
calc_ev_end = event_end(event, end);
728
if (!calc_ev_end) {
729
pr_warn("event %zu has a calculated length which exceeds buffer length %zu: event=%p end=%p, offset=%zu\n",
730
event_idx, event_data_bytes, event, end,
731
offset);
732
return -1;
733
}
734
735
if (calc_ev_end > ev_end) {
736
pr_warn("event %zu exceeds its own length: event=%p, end=%p, offset=%zu, calc_ev_end=%p\n",
737
event_idx, event, ev_end, offset, calc_ev_end);
738
return -1;
739
}
740
741
return ev_len;
742
}
743
744
/*
745
* Return true incase of invalid or dummy events with names like RESERVED*
746
*/
747
static bool ignore_event(const char *name)
748
{
749
return strncmp(name, "RESERVED", 8) == 0;
750
}
751
752
#define MAX_4K (SIZE_MAX / 4096)
753
754
static int create_events_from_catalog(struct attribute ***events_,
755
struct attribute ***event_descs_,
756
struct attribute ***event_long_descs_)
757
{
758
long hret;
759
size_t catalog_len, catalog_page_len, event_entry_count,
760
event_data_len, event_data_offs,
761
event_data_bytes, junk_events, event_idx, event_attr_ct, i,
762
attr_max, event_idx_last, desc_ct, long_desc_ct;
763
ssize_t ct, ev_len;
764
uint64_t catalog_version_num;
765
struct attribute **events, **event_descs, **event_long_descs;
766
struct hv_24x7_catalog_page_0 *page_0 =
767
kmem_cache_alloc(hv_page_cache, GFP_KERNEL);
768
void *page = page_0;
769
void *event_data, *end;
770
struct hv_24x7_event_data *event;
771
struct rb_root ev_uniq = RB_ROOT;
772
int ret = 0;
773
774
if (!page) {
775
ret = -ENOMEM;
776
goto e_out;
777
}
778
779
hret = h_get_24x7_catalog_page(page, 0, 0);
780
if (hret) {
781
ret = -EIO;
782
goto e_free;
783
}
784
785
catalog_version_num = be64_to_cpu(page_0->version);
786
catalog_page_len = be32_to_cpu(page_0->length);
787
788
if (MAX_4K < catalog_page_len) {
789
pr_err("invalid page count: %zu\n", catalog_page_len);
790
ret = -EIO;
791
goto e_free;
792
}
793
794
catalog_len = catalog_page_len * 4096;
795
796
event_entry_count = be16_to_cpu(page_0->event_entry_count);
797
event_data_offs = be16_to_cpu(page_0->event_data_offs);
798
event_data_len = be16_to_cpu(page_0->event_data_len);
799
800
pr_devel("cv %llu cl %zu eec %zu edo %zu edl %zu\n",
801
catalog_version_num, catalog_len,
802
event_entry_count, event_data_offs, event_data_len);
803
804
if ((MAX_4K < event_data_len)
805
|| (MAX_4K < event_data_offs)
806
|| (MAX_4K - event_data_offs < event_data_len)) {
807
pr_err("invalid event data offs %zu and/or len %zu\n",
808
event_data_offs, event_data_len);
809
ret = -EIO;
810
goto e_free;
811
}
812
813
if ((event_data_offs + event_data_len) > catalog_page_len) {
814
pr_err("event data %zu-%zu does not fit inside catalog 0-%zu\n",
815
event_data_offs,
816
event_data_offs + event_data_len,
817
catalog_page_len);
818
ret = -EIO;
819
goto e_free;
820
}
821
822
if (SIZE_MAX - 1 < event_entry_count) {
823
pr_err("event_entry_count %zu is invalid\n", event_entry_count);
824
ret = -EIO;
825
goto e_free;
826
}
827
828
event_data_bytes = event_data_len * 4096;
829
830
/*
831
* event data can span several pages, events can cross between these
832
* pages. Use vmalloc to make this easier.
833
*/
834
event_data = vmalloc(event_data_bytes);
835
if (!event_data) {
836
pr_err("could not allocate event data\n");
837
ret = -ENOMEM;
838
goto e_free;
839
}
840
841
end = event_data + event_data_bytes;
842
843
/*
844
* using vmalloc_to_phys() like this only works if PAGE_SIZE is
845
* divisible by 4096
846
*/
847
BUILD_BUG_ON(PAGE_SIZE % 4096);
848
849
for (i = 0; i < event_data_len; i++) {
850
hret = h_get_24x7_catalog_page_(
851
vmalloc_to_phys(event_data + i * 4096),
852
catalog_version_num,
853
i + event_data_offs);
854
if (hret) {
855
pr_err("Failed to get event data in page %zu: rc=%ld\n",
856
i + event_data_offs, hret);
857
ret = -EIO;
858
goto e_event_data;
859
}
860
}
861
862
/*
863
* scan the catalog to determine the number of attributes we need, and
864
* verify it at the same time.
865
*/
866
for (junk_events = 0, event = event_data, event_idx = 0, attr_max = 0;
867
;
868
event_idx++, event = (void *)event + ev_len) {
869
size_t offset = (void *)event - (void *)event_data;
870
char *name;
871
int nl;
872
873
ev_len = catalog_event_len_validate(event, event_idx,
874
event_data_bytes,
875
event_entry_count,
876
offset, end);
877
if (ev_len < 0)
878
break;
879
880
name = event_name(event, &nl);
881
882
if (ignore_event(name)) {
883
junk_events++;
884
continue;
885
}
886
if (event->event_group_record_len == 0) {
887
pr_devel("invalid event %zu (%.*s): group_record_len == 0, skipping\n",
888
event_idx, nl, name);
889
junk_events++;
890
continue;
891
}
892
893
if (!catalog_entry_domain_is_valid(event->domain)) {
894
pr_info("event %zu (%.*s) has invalid domain %d\n",
895
event_idx, nl, name, event->domain);
896
junk_events++;
897
continue;
898
}
899
900
attr_max++;
901
}
902
903
event_idx_last = event_idx;
904
if (event_idx_last != event_entry_count)
905
pr_warn("event buffer ended before listed # of events were parsed (got %zu, wanted %zu, junk %zu)\n",
906
event_idx_last, event_entry_count, junk_events);
907
908
events = kmalloc_array(attr_max + 1, sizeof(*events), GFP_KERNEL);
909
if (!events) {
910
ret = -ENOMEM;
911
goto e_event_data;
912
}
913
914
event_descs = kmalloc_array(event_idx + 1, sizeof(*event_descs),
915
GFP_KERNEL);
916
if (!event_descs) {
917
ret = -ENOMEM;
918
goto e_event_attrs;
919
}
920
921
event_long_descs = kmalloc_array(event_idx + 1,
922
sizeof(*event_long_descs), GFP_KERNEL);
923
if (!event_long_descs) {
924
ret = -ENOMEM;
925
goto e_event_descs;
926
}
927
928
/* Iterate over the catalog filling in the attribute vector */
929
for (junk_events = 0, event_attr_ct = 0, desc_ct = 0, long_desc_ct = 0,
930
event = event_data, event_idx = 0;
931
event_idx < event_idx_last;
932
event_idx++, ev_len = be16_to_cpu(event->length),
933
event = (void *)event + ev_len) {
934
char *name;
935
int nl;
936
int nonce;
937
/*
938
* these are the only "bad" events that are intermixed and that
939
* we can ignore without issue. make sure to skip them here
940
*/
941
if (event->event_group_record_len == 0)
942
continue;
943
if (!catalog_entry_domain_is_valid(event->domain))
944
continue;
945
946
name = event_name(event, &nl);
947
if (ignore_event(name))
948
continue;
949
950
nonce = event_uniq_add(&ev_uniq, name, nl, event->domain);
951
ct = event_data_to_attrs(event_idx, events + event_attr_ct,
952
event, nonce);
953
if (ct < 0) {
954
pr_warn("event %zu (%.*s) creation failure, skipping\n",
955
event_idx, nl, name);
956
junk_events++;
957
} else {
958
event_attr_ct++;
959
event_descs[desc_ct] = event_to_desc_attr(event, nonce);
960
if (event_descs[desc_ct])
961
desc_ct++;
962
event_long_descs[long_desc_ct] =
963
event_to_long_desc_attr(event, nonce);
964
if (event_long_descs[long_desc_ct])
965
long_desc_ct++;
966
}
967
}
968
969
pr_info("read %zu catalog entries, created %zu event attrs (%zu failures), %zu descs\n",
970
event_idx, event_attr_ct, junk_events, desc_ct);
971
972
events[event_attr_ct] = NULL;
973
event_descs[desc_ct] = NULL;
974
event_long_descs[long_desc_ct] = NULL;
975
976
event_uniq_destroy(&ev_uniq);
977
vfree(event_data);
978
kmem_cache_free(hv_page_cache, page);
979
980
*events_ = events;
981
*event_descs_ = event_descs;
982
*event_long_descs_ = event_long_descs;
983
return 0;
984
985
e_event_descs:
986
kfree(event_descs);
987
e_event_attrs:
988
kfree(events);
989
e_event_data:
990
vfree(event_data);
991
e_free:
992
kmem_cache_free(hv_page_cache, page);
993
e_out:
994
*events_ = NULL;
995
*event_descs_ = NULL;
996
*event_long_descs_ = NULL;
997
return ret;
998
}
999
1000
static ssize_t catalog_read(struct file *filp, struct kobject *kobj,
1001
const struct bin_attribute *bin_attr, char *buf,
1002
loff_t offset, size_t count)
1003
{
1004
long hret;
1005
ssize_t ret = 0;
1006
size_t catalog_len = 0, catalog_page_len = 0;
1007
loff_t page_offset = 0;
1008
loff_t offset_in_page;
1009
size_t copy_len;
1010
uint64_t catalog_version_num = 0;
1011
void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);
1012
struct hv_24x7_catalog_page_0 *page_0 = page;
1013
1014
if (!page)
1015
return -ENOMEM;
1016
1017
hret = h_get_24x7_catalog_page(page, 0, 0);
1018
if (hret) {
1019
ret = -EIO;
1020
goto e_free;
1021
}
1022
1023
catalog_version_num = be64_to_cpu(page_0->version);
1024
catalog_page_len = be32_to_cpu(page_0->length);
1025
catalog_len = catalog_page_len * 4096;
1026
1027
page_offset = offset / 4096;
1028
offset_in_page = offset % 4096;
1029
1030
if (page_offset >= catalog_page_len)
1031
goto e_free;
1032
1033
if (page_offset != 0) {
1034
hret = h_get_24x7_catalog_page(page, catalog_version_num,
1035
page_offset);
1036
if (hret) {
1037
ret = -EIO;
1038
goto e_free;
1039
}
1040
}
1041
1042
copy_len = 4096 - offset_in_page;
1043
if (copy_len > count)
1044
copy_len = count;
1045
1046
memcpy(buf, page+offset_in_page, copy_len);
1047
ret = copy_len;
1048
1049
e_free:
1050
if (hret)
1051
pr_err("h_get_24x7_catalog_page(ver=%lld, page=%lld) failed:"
1052
" rc=%ld\n",
1053
catalog_version_num, page_offset, hret);
1054
kmem_cache_free(hv_page_cache, page);
1055
1056
pr_devel("catalog_read: offset=%lld(%lld) count=%zu "
1057
"catalog_len=%zu(%zu) => %zd\n", offset, page_offset,
1058
count, catalog_len, catalog_page_len, ret);
1059
1060
return ret;
1061
}
1062
1063
static ssize_t domains_show(struct device *dev, struct device_attribute *attr,
1064
char *page)
1065
{
1066
int d, n, count = 0;
1067
const char *str;
1068
1069
for (d = 0; d < HV_PERF_DOMAIN_MAX; d++) {
1070
str = domain_name(d);
1071
if (!str)
1072
continue;
1073
1074
n = sprintf(page, "%d: %s\n", d, str);
1075
if (n < 0)
1076
break;
1077
1078
count += n;
1079
page += n;
1080
}
1081
return count;
1082
}
1083
1084
#define PAGE_0_ATTR(_name, _fmt, _expr) \
1085
static ssize_t _name##_show(struct device *dev, \
1086
struct device_attribute *dev_attr, \
1087
char *buf) \
1088
{ \
1089
long hret; \
1090
ssize_t ret = 0; \
1091
void *page = kmem_cache_alloc(hv_page_cache, GFP_USER); \
1092
struct hv_24x7_catalog_page_0 *page_0 = page; \
1093
if (!page) \
1094
return -ENOMEM; \
1095
hret = h_get_24x7_catalog_page(page, 0, 0); \
1096
if (hret) { \
1097
ret = -EIO; \
1098
goto e_free; \
1099
} \
1100
ret = sprintf(buf, _fmt, _expr); \
1101
e_free: \
1102
kmem_cache_free(hv_page_cache, page); \
1103
return ret; \
1104
} \
1105
static DEVICE_ATTR_RO(_name)
1106
1107
PAGE_0_ATTR(catalog_version, "%lld\n",
1108
(unsigned long long)be64_to_cpu(page_0->version));
1109
PAGE_0_ATTR(catalog_len, "%lld\n",
1110
(unsigned long long)be32_to_cpu(page_0->length) * 4096);
1111
static const BIN_ATTR_RO(catalog, 0/* real length varies */);
1112
static DEVICE_ATTR_RO(domains);
1113
static DEVICE_ATTR_RO(sockets);
1114
static DEVICE_ATTR_RO(chipspersocket);
1115
static DEVICE_ATTR_RO(coresperchip);
1116
static DEVICE_ATTR_RO(cpumask);
1117
1118
static const struct bin_attribute *const if_bin_attrs[] = {
1119
&bin_attr_catalog,
1120
NULL,
1121
};
1122
1123
static struct attribute *cpumask_attrs[] = {
1124
&dev_attr_cpumask.attr,
1125
NULL,
1126
};
1127
1128
static const struct attribute_group cpumask_attr_group = {
1129
.attrs = cpumask_attrs,
1130
};
1131
1132
static struct attribute *if_attrs[] = {
1133
&dev_attr_catalog_len.attr,
1134
&dev_attr_catalog_version.attr,
1135
&dev_attr_domains.attr,
1136
&dev_attr_sockets.attr,
1137
&dev_attr_chipspersocket.attr,
1138
&dev_attr_coresperchip.attr,
1139
NULL,
1140
};
1141
1142
static const struct attribute_group if_group = {
1143
.name = "interface",
1144
.bin_attrs = if_bin_attrs,
1145
.attrs = if_attrs,
1146
};
1147
1148
static const struct attribute_group *attr_groups[] = {
1149
&format_group,
1150
&event_group,
1151
&event_desc_group,
1152
&event_long_desc_group,
1153
&if_group,
1154
&cpumask_attr_group,
1155
NULL,
1156
};
1157
1158
/*
1159
* Start the process for a new H_GET_24x7_DATA hcall.
1160
*/
1161
static void init_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1162
struct hv_24x7_data_result_buffer *result_buffer)
1163
{
1164
1165
memset(request_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1166
memset(result_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1167
1168
request_buffer->interface_version = interface_version;
1169
/* memset above set request_buffer->num_requests to 0 */
1170
}
1171
1172
/*
1173
* Commit (i.e perform) the H_GET_24x7_DATA hcall using the data collected
1174
* by 'init_24x7_request()' and 'add_event_to_24x7_request()'.
1175
*/
1176
static int make_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1177
struct hv_24x7_data_result_buffer *result_buffer)
1178
{
1179
long ret;
1180
1181
/*
1182
* NOTE: Due to variable number of array elements in request and
1183
* result buffer(s), sizeof() is not reliable. Use the actual
1184
* allocated buffer size, H24x7_DATA_BUFFER_SIZE.
1185
*/
1186
ret = plpar_hcall_norets(H_GET_24X7_DATA,
1187
virt_to_phys(request_buffer), H24x7_DATA_BUFFER_SIZE,
1188
virt_to_phys(result_buffer), H24x7_DATA_BUFFER_SIZE);
1189
1190
if (ret) {
1191
struct hv_24x7_request *req;
1192
1193
req = request_buffer->requests;
1194
pr_notice_ratelimited("hcall failed: [%d %#x %#x %d] => ret 0x%lx (%ld) detail=0x%x failing ix=%x\n",
1195
req->performance_domain, req->data_offset,
1196
req->starting_ix, req->starting_lpar_ix,
1197
ret, ret, result_buffer->detailed_rc,
1198
result_buffer->failing_request_ix);
1199
return -EIO;
1200
}
1201
1202
return 0;
1203
}
1204
1205
/*
1206
* Add the given @event to the next slot in the 24x7 request_buffer.
1207
*
1208
* Note that H_GET_24X7_DATA hcall allows reading several counters'
1209
* values in a single HCALL. We expect the caller to add events to the
1210
* request buffer one by one, make the HCALL and process the results.
1211
*/
1212
static int add_event_to_24x7_request(struct perf_event *event,
1213
struct hv_24x7_request_buffer *request_buffer)
1214
{
1215
u16 idx;
1216
int i;
1217
size_t req_size;
1218
struct hv_24x7_request *req;
1219
1220
if (request_buffer->num_requests >=
1221
max_num_requests(request_buffer->interface_version)) {
1222
pr_devel("Too many requests for 24x7 HCALL %d\n",
1223
request_buffer->num_requests);
1224
return -EINVAL;
1225
}
1226
1227
switch (event_get_domain(event)) {
1228
case HV_PERF_DOMAIN_PHYS_CHIP:
1229
idx = event_get_chip(event);
1230
break;
1231
case HV_PERF_DOMAIN_PHYS_CORE:
1232
idx = event_get_core(event);
1233
break;
1234
default:
1235
idx = event_get_vcpu(event);
1236
}
1237
1238
req_size = H24x7_REQUEST_SIZE(request_buffer->interface_version);
1239
1240
i = request_buffer->num_requests++;
1241
req = (void *) request_buffer->requests + i * req_size;
1242
1243
req->performance_domain = event_get_domain(event);
1244
req->data_size = cpu_to_be16(8);
1245
req->data_offset = cpu_to_be32(event_get_offset(event));
1246
req->starting_lpar_ix = cpu_to_be16(event_get_lpar(event));
1247
req->max_num_lpars = cpu_to_be16(1);
1248
req->starting_ix = cpu_to_be16(idx);
1249
req->max_ix = cpu_to_be16(1);
1250
1251
if (request_buffer->interface_version > 1) {
1252
if (domain_needs_aggregation(req->performance_domain))
1253
req->max_num_thread_groups = -1;
1254
else if (req->performance_domain != HV_PERF_DOMAIN_PHYS_CHIP) {
1255
req->starting_thread_group_ix = idx % 2;
1256
req->max_num_thread_groups = 1;
1257
}
1258
}
1259
1260
return 0;
1261
}
1262
1263
/**
1264
* get_count_from_result - get event count from all result elements in result
1265
*
1266
* If the event corresponding to this result needs aggregation of the result
1267
* element values, then this function does that.
1268
*
1269
* @event: Event associated with @res.
1270
* @resb: Result buffer containing @res.
1271
* @res: Result to work on.
1272
* @countp: Output variable containing the event count.
1273
* @next: Optional output variable pointing to the next result in @resb.
1274
*/
1275
static int get_count_from_result(struct perf_event *event,
1276
struct hv_24x7_data_result_buffer *resb,
1277
struct hv_24x7_result *res, u64 *countp,
1278
struct hv_24x7_result **next)
1279
{
1280
u16 num_elements = be16_to_cpu(res->num_elements_returned);
1281
u16 data_size = be16_to_cpu(res->result_element_data_size);
1282
unsigned int data_offset;
1283
void *element_data;
1284
int i;
1285
u64 count;
1286
1287
/*
1288
* We can bail out early if the result is empty.
1289
*/
1290
if (!num_elements) {
1291
pr_debug("Result of request %hhu is empty, nothing to do\n",
1292
res->result_ix);
1293
1294
if (next)
1295
*next = (struct hv_24x7_result *) res->elements;
1296
1297
return -ENODATA;
1298
}
1299
1300
/*
1301
* Since we always specify 1 as the maximum for the smallest resource
1302
* we're requesting, there should to be only one element per result.
1303
* Except when an event needs aggregation, in which case there are more.
1304
*/
1305
if (num_elements != 1 &&
1306
!domain_needs_aggregation(event_get_domain(event))) {
1307
pr_err("Error: result of request %hhu has %hu elements\n",
1308
res->result_ix, num_elements);
1309
1310
return -EIO;
1311
}
1312
1313
if (data_size != sizeof(u64)) {
1314
pr_debug("Error: result of request %hhu has data of %hu bytes\n",
1315
res->result_ix, data_size);
1316
1317
return -ENOTSUPP;
1318
}
1319
1320
if (resb->interface_version == 1)
1321
data_offset = offsetof(struct hv_24x7_result_element_v1,
1322
element_data);
1323
else
1324
data_offset = offsetof(struct hv_24x7_result_element_v2,
1325
element_data);
1326
1327
/* Go through the result elements in the result. */
1328
for (i = count = 0, element_data = res->elements + data_offset;
1329
i < num_elements;
1330
i++, element_data += data_size + data_offset)
1331
count += be64_to_cpu(*((__be64 *)element_data));
1332
1333
*countp = count;
1334
1335
/* The next result is after the last result element. */
1336
if (next)
1337
*next = element_data - data_offset;
1338
1339
return 0;
1340
}
1341
1342
static int single_24x7_request(struct perf_event *event, u64 *count)
1343
{
1344
int ret;
1345
struct hv_24x7_request_buffer *request_buffer;
1346
struct hv_24x7_data_result_buffer *result_buffer;
1347
1348
BUILD_BUG_ON(sizeof(*request_buffer) > 4096);
1349
BUILD_BUG_ON(sizeof(*result_buffer) > 4096);
1350
1351
request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1352
result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1353
1354
init_24x7_request(request_buffer, result_buffer);
1355
1356
ret = add_event_to_24x7_request(event, request_buffer);
1357
if (ret)
1358
goto out;
1359
1360
ret = make_24x7_request(request_buffer, result_buffer);
1361
if (ret)
1362
goto out;
1363
1364
/* process result from hcall */
1365
ret = get_count_from_result(event, result_buffer,
1366
result_buffer->results, count, NULL);
1367
1368
out:
1369
put_cpu_var(hv_24x7_reqb);
1370
put_cpu_var(hv_24x7_resb);
1371
return ret;
1372
}
1373
1374
1375
static int h_24x7_event_init(struct perf_event *event)
1376
{
1377
struct hv_perf_caps caps;
1378
unsigned int domain;
1379
unsigned long hret;
1380
u64 ct;
1381
1382
/* Not our event */
1383
if (event->attr.type != event->pmu->type)
1384
return -ENOENT;
1385
1386
/* Unused areas must be 0 */
1387
if (event_get_reserved1(event) ||
1388
event_get_reserved2(event) ||
1389
event_get_reserved3(event)) {
1390
pr_devel("reserved set when forbidden 0x%llx(0x%llx) 0x%llx(0x%llx) 0x%llx(0x%llx)\n",
1391
event->attr.config,
1392
event_get_reserved1(event),
1393
event->attr.config1,
1394
event_get_reserved2(event),
1395
event->attr.config2,
1396
event_get_reserved3(event));
1397
return -EINVAL;
1398
}
1399
1400
/* no branch sampling */
1401
if (has_branch_stack(event))
1402
return -EOPNOTSUPP;
1403
1404
/* offset must be 8 byte aligned */
1405
if (event_get_offset(event) % 8) {
1406
pr_devel("bad alignment\n");
1407
return -EINVAL;
1408
}
1409
1410
domain = event_get_domain(event);
1411
if (domain == 0 || domain >= HV_PERF_DOMAIN_MAX) {
1412
pr_devel("invalid domain %d\n", domain);
1413
return -EINVAL;
1414
}
1415
1416
hret = hv_perf_caps_get(&caps);
1417
if (hret) {
1418
pr_devel("could not get capabilities: rc=%ld\n", hret);
1419
return -EIO;
1420
}
1421
1422
/* Physical domains & other lpars require extra capabilities */
1423
if (!caps.collect_privileged && (is_physical_domain(domain) ||
1424
(event_get_lpar(event) != event_get_lpar_max()))) {
1425
pr_devel("hv permissions disallow: is_physical_domain:%d, lpar=0x%llx\n",
1426
is_physical_domain(domain),
1427
event_get_lpar(event));
1428
return -EACCES;
1429
}
1430
1431
/* Get the initial value of the counter for this event */
1432
if (single_24x7_request(event, &ct)) {
1433
pr_devel("test hcall failed\n");
1434
return -EIO;
1435
}
1436
(void)local64_xchg(&event->hw.prev_count, ct);
1437
1438
return 0;
1439
}
1440
1441
static u64 h_24x7_get_value(struct perf_event *event)
1442
{
1443
u64 ct;
1444
1445
if (single_24x7_request(event, &ct))
1446
/* We checked this in event init, shouldn't fail here... */
1447
return 0;
1448
1449
return ct;
1450
}
1451
1452
static void update_event_count(struct perf_event *event, u64 now)
1453
{
1454
s64 prev;
1455
1456
prev = local64_xchg(&event->hw.prev_count, now);
1457
local64_add(now - prev, &event->count);
1458
}
1459
1460
static void h_24x7_event_read(struct perf_event *event)
1461
{
1462
u64 now;
1463
struct hv_24x7_request_buffer *request_buffer;
1464
struct hv_24x7_hw *h24x7hw;
1465
int txn_flags;
1466
1467
txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1468
1469
/*
1470
* If in a READ transaction, add this counter to the list of
1471
* counters to read during the next HCALL (i.e commit_txn()).
1472
* If not in a READ transaction, go ahead and make the HCALL
1473
* to read this counter by itself.
1474
*/
1475
1476
if (txn_flags & PERF_PMU_TXN_READ) {
1477
int i;
1478
int ret;
1479
1480
if (__this_cpu_read(hv_24x7_txn_err))
1481
return;
1482
1483
request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1484
1485
ret = add_event_to_24x7_request(event, request_buffer);
1486
if (ret) {
1487
__this_cpu_write(hv_24x7_txn_err, ret);
1488
} else {
1489
/*
1490
* Associate the event with the HCALL request index,
1491
* so ->commit_txn() can quickly find/update count.
1492
*/
1493
i = request_buffer->num_requests - 1;
1494
1495
h24x7hw = &get_cpu_var(hv_24x7_hw);
1496
h24x7hw->events[i] = event;
1497
put_cpu_var(h24x7hw);
1498
}
1499
1500
put_cpu_var(hv_24x7_reqb);
1501
} else {
1502
now = h_24x7_get_value(event);
1503
update_event_count(event, now);
1504
}
1505
}
1506
1507
static void h_24x7_event_start(struct perf_event *event, int flags)
1508
{
1509
if (flags & PERF_EF_RELOAD)
1510
local64_set(&event->hw.prev_count, h_24x7_get_value(event));
1511
}
1512
1513
static void h_24x7_event_stop(struct perf_event *event, int flags)
1514
{
1515
h_24x7_event_read(event);
1516
}
1517
1518
static int h_24x7_event_add(struct perf_event *event, int flags)
1519
{
1520
if (flags & PERF_EF_START)
1521
h_24x7_event_start(event, flags);
1522
1523
return 0;
1524
}
1525
1526
/*
1527
* 24x7 counters only support READ transactions. They are
1528
* always counting and dont need/support ADD transactions.
1529
* Cache the flags, but otherwise ignore transactions that
1530
* are not PERF_PMU_TXN_READ.
1531
*/
1532
static void h_24x7_event_start_txn(struct pmu *pmu, unsigned int flags)
1533
{
1534
struct hv_24x7_request_buffer *request_buffer;
1535
struct hv_24x7_data_result_buffer *result_buffer;
1536
1537
/* We should not be called if we are already in a txn */
1538
WARN_ON_ONCE(__this_cpu_read(hv_24x7_txn_flags));
1539
1540
__this_cpu_write(hv_24x7_txn_flags, flags);
1541
if (flags & ~PERF_PMU_TXN_READ)
1542
return;
1543
1544
request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1545
result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1546
1547
init_24x7_request(request_buffer, result_buffer);
1548
1549
put_cpu_var(hv_24x7_resb);
1550
put_cpu_var(hv_24x7_reqb);
1551
}
1552
1553
/*
1554
* Clean up transaction state.
1555
*
1556
* NOTE: Ignore state of request and result buffers for now.
1557
* We will initialize them during the next read/txn.
1558
*/
1559
static void reset_txn(void)
1560
{
1561
__this_cpu_write(hv_24x7_txn_flags, 0);
1562
__this_cpu_write(hv_24x7_txn_err, 0);
1563
}
1564
1565
/*
1566
* 24x7 counters only support READ transactions. They are always counting
1567
* and dont need/support ADD transactions. Clear ->txn_flags but otherwise
1568
* ignore transactions that are not of type PERF_PMU_TXN_READ.
1569
*
1570
* For READ transactions, submit all pending 24x7 requests (i.e requests
1571
* that were queued by h_24x7_event_read()), to the hypervisor and update
1572
* the event counts.
1573
*/
1574
static int h_24x7_event_commit_txn(struct pmu *pmu)
1575
{
1576
struct hv_24x7_request_buffer *request_buffer;
1577
struct hv_24x7_data_result_buffer *result_buffer;
1578
struct hv_24x7_result *res, *next_res;
1579
u64 count;
1580
int i, ret, txn_flags;
1581
struct hv_24x7_hw *h24x7hw;
1582
1583
txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1584
WARN_ON_ONCE(!txn_flags);
1585
1586
ret = 0;
1587
if (txn_flags & ~PERF_PMU_TXN_READ)
1588
goto out;
1589
1590
ret = __this_cpu_read(hv_24x7_txn_err);
1591
if (ret)
1592
goto out;
1593
1594
request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1595
result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1596
1597
ret = make_24x7_request(request_buffer, result_buffer);
1598
if (ret)
1599
goto put_reqb;
1600
1601
h24x7hw = &get_cpu_var(hv_24x7_hw);
1602
1603
/* Go through results in the result buffer to update event counts. */
1604
for (i = 0, res = result_buffer->results;
1605
i < result_buffer->num_results; i++, res = next_res) {
1606
struct perf_event *event = h24x7hw->events[res->result_ix];
1607
1608
ret = get_count_from_result(event, result_buffer, res, &count,
1609
&next_res);
1610
if (ret)
1611
break;
1612
1613
update_event_count(event, count);
1614
}
1615
1616
put_cpu_var(hv_24x7_hw);
1617
1618
put_reqb:
1619
put_cpu_var(hv_24x7_resb);
1620
put_cpu_var(hv_24x7_reqb);
1621
out:
1622
reset_txn();
1623
return ret;
1624
}
1625
1626
/*
1627
* 24x7 counters only support READ transactions. They are always counting
1628
* and dont need/support ADD transactions. However, regardless of type
1629
* of transaction, all we need to do is cleanup, so we don't have to check
1630
* the type of transaction.
1631
*/
1632
static void h_24x7_event_cancel_txn(struct pmu *pmu)
1633
{
1634
WARN_ON_ONCE(!__this_cpu_read(hv_24x7_txn_flags));
1635
reset_txn();
1636
}
1637
1638
static struct pmu h_24x7_pmu = {
1639
.task_ctx_nr = perf_invalid_context,
1640
1641
.name = "hv_24x7",
1642
.attr_groups = attr_groups,
1643
.event_init = h_24x7_event_init,
1644
.add = h_24x7_event_add,
1645
.del = h_24x7_event_stop,
1646
.start = h_24x7_event_start,
1647
.stop = h_24x7_event_stop,
1648
.read = h_24x7_event_read,
1649
.start_txn = h_24x7_event_start_txn,
1650
.commit_txn = h_24x7_event_commit_txn,
1651
.cancel_txn = h_24x7_event_cancel_txn,
1652
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
1653
};
1654
1655
static int ppc_hv_24x7_cpu_online(unsigned int cpu)
1656
{
1657
if (cpumask_empty(&hv_24x7_cpumask))
1658
cpumask_set_cpu(cpu, &hv_24x7_cpumask);
1659
1660
return 0;
1661
}
1662
1663
static int ppc_hv_24x7_cpu_offline(unsigned int cpu)
1664
{
1665
int target;
1666
1667
/* Check if exiting cpu is used for collecting 24x7 events */
1668
if (!cpumask_test_and_clear_cpu(cpu, &hv_24x7_cpumask))
1669
return 0;
1670
1671
/* Find a new cpu to collect 24x7 events */
1672
target = cpumask_last(cpu_active_mask);
1673
1674
if (target < 0 || target >= nr_cpu_ids) {
1675
pr_err("hv_24x7: CPU hotplug init failed\n");
1676
return -1;
1677
}
1678
1679
/* Migrate 24x7 events to the new target */
1680
cpumask_set_cpu(target, &hv_24x7_cpumask);
1681
perf_pmu_migrate_context(&h_24x7_pmu, cpu, target);
1682
1683
return 0;
1684
}
1685
1686
static int hv_24x7_cpu_hotplug_init(void)
1687
{
1688
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_HV_24x7_ONLINE,
1689
"perf/powerpc/hv_24x7:online",
1690
ppc_hv_24x7_cpu_online,
1691
ppc_hv_24x7_cpu_offline);
1692
}
1693
1694
static int hv_24x7_init(void)
1695
{
1696
int r;
1697
unsigned long hret;
1698
unsigned int pvr = mfspr(SPRN_PVR);
1699
struct hv_perf_caps caps;
1700
1701
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1702
pr_debug("not a virtualized system, not enabling\n");
1703
return -ENODEV;
1704
}
1705
1706
/* POWER8 only supports v1, while POWER9 only supports v2. */
1707
if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
1708
PVR_VER(pvr) == PVR_POWER8NVL)
1709
interface_version = 1;
1710
else {
1711
interface_version = 2;
1712
1713
/* SMT8 in POWER9 needs to aggregate result elements. */
1714
if (threads_per_core == 8)
1715
aggregate_result_elements = true;
1716
}
1717
1718
hret = hv_perf_caps_get(&caps);
1719
if (hret) {
1720
pr_debug("could not obtain capabilities, not enabling, rc=%ld\n",
1721
hret);
1722
return -ENODEV;
1723
}
1724
1725
hv_page_cache = kmem_cache_create("hv-page-4096", 4096, 4096, 0, NULL);
1726
if (!hv_page_cache)
1727
return -ENOMEM;
1728
1729
/* sampling not supported */
1730
h_24x7_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1731
1732
r = create_events_from_catalog(&event_group.attrs,
1733
&event_desc_group.attrs,
1734
&event_long_desc_group.attrs);
1735
1736
if (r)
1737
return r;
1738
1739
/* init cpuhotplug */
1740
r = hv_24x7_cpu_hotplug_init();
1741
if (r)
1742
return r;
1743
1744
r = perf_pmu_register(&h_24x7_pmu, h_24x7_pmu.name, -1);
1745
if (r)
1746
return r;
1747
1748
read_24x7_sys_info();
1749
1750
return 0;
1751
}
1752
1753
device_initcall(hv_24x7_init);
1754
1755