Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/perf/imc-pmu.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* In-Memory Collection (IMC) Performance Monitor counter support.
4
*
5
* Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6
* (C) 2017 Anju T Sudhakar, IBM Corporation.
7
* (C) 2017 Hemant K Shaw, IBM Corporation.
8
*/
9
#include <linux/of.h>
10
#include <linux/perf_event.h>
11
#include <linux/slab.h>
12
#include <asm/opal.h>
13
#include <asm/imc-pmu.h>
14
#include <asm/cputhreads.h>
15
#include <asm/smp.h>
16
#include <linux/string.h>
17
#include <linux/spinlock.h>
18
19
/* Nest IMC data structures and variables */
20
21
/*
22
* Used to avoid races in counting the nest-pmu units during hotplug
23
* register and unregister
24
*/
25
static DEFINE_MUTEX(nest_init_lock);
26
static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27
static struct imc_pmu **per_nest_pmu_arr;
28
static cpumask_t nest_imc_cpumask;
29
static struct imc_pmu_ref *nest_imc_refc;
30
static int nest_pmus;
31
32
/* Core IMC data structures and variables */
33
34
static cpumask_t core_imc_cpumask;
35
static struct imc_pmu_ref *core_imc_refc;
36
static struct imc_pmu *core_imc_pmu;
37
38
/* Thread IMC data structures and variables */
39
40
static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41
static struct imc_pmu *thread_imc_pmu;
42
static int thread_imc_mem_size;
43
44
/* Trace IMC data structures */
45
static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46
static struct imc_pmu_ref *trace_imc_refc;
47
static int trace_imc_mem_size;
48
49
/*
50
* Global data structure used to avoid races between thread,
51
* core and trace-imc
52
*/
53
static struct imc_pmu_ref imc_global_refc = {
54
.lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
55
.id = 0,
56
.refc = 0,
57
};
58
59
static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60
{
61
return container_of(event->pmu, struct imc_pmu, pmu);
62
}
63
64
PMU_FORMAT_ATTR(event, "config:0-61");
65
PMU_FORMAT_ATTR(offset, "config:0-31");
66
PMU_FORMAT_ATTR(rvalue, "config:32");
67
PMU_FORMAT_ATTR(mode, "config:33-40");
68
static struct attribute *imc_format_attrs[] = {
69
&format_attr_event.attr,
70
&format_attr_offset.attr,
71
&format_attr_rvalue.attr,
72
&format_attr_mode.attr,
73
NULL,
74
};
75
76
static const struct attribute_group imc_format_group = {
77
.name = "format",
78
.attrs = imc_format_attrs,
79
};
80
81
/* Format attribute for imc trace-mode */
82
PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83
PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84
PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85
PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86
static struct attribute *trace_imc_format_attrs[] = {
87
&format_attr_event.attr,
88
&format_attr_cpmc_reserved.attr,
89
&format_attr_cpmc_event.attr,
90
&format_attr_cpmc_samplesel.attr,
91
&format_attr_cpmc_load.attr,
92
NULL,
93
};
94
95
static const struct attribute_group trace_imc_format_group = {
96
.name = "format",
97
.attrs = trace_imc_format_attrs,
98
};
99
100
/* Get the cpumask printed to a buffer "buf" */
101
static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102
struct device_attribute *attr,
103
char *buf)
104
{
105
struct pmu *pmu = dev_get_drvdata(dev);
106
struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107
cpumask_t *active_mask;
108
109
switch(imc_pmu->domain){
110
case IMC_DOMAIN_NEST:
111
active_mask = &nest_imc_cpumask;
112
break;
113
case IMC_DOMAIN_CORE:
114
active_mask = &core_imc_cpumask;
115
break;
116
default:
117
return 0;
118
}
119
120
return cpumap_print_to_pagebuf(true, buf, active_mask);
121
}
122
123
static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124
125
static struct attribute *imc_pmu_cpumask_attrs[] = {
126
&dev_attr_cpumask.attr,
127
NULL,
128
};
129
130
static const struct attribute_group imc_pmu_cpumask_attr_group = {
131
.attrs = imc_pmu_cpumask_attrs,
132
};
133
134
/* device_str_attr_create : Populate event "name" and string "str" in attribute */
135
static struct attribute *device_str_attr_create(const char *name, const char *str)
136
{
137
struct perf_pmu_events_attr *attr;
138
139
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140
if (!attr)
141
return NULL;
142
sysfs_attr_init(&attr->attr.attr);
143
144
attr->event_str = str;
145
attr->attr.attr.name = name;
146
attr->attr.attr.mode = 0444;
147
attr->attr.show = perf_event_sysfs_show;
148
149
return &attr->attr.attr;
150
}
151
152
static int imc_parse_event(struct device_node *np, const char *scale,
153
const char *unit, const char *prefix,
154
u32 base, struct imc_events *event)
155
{
156
const char *s;
157
u32 reg;
158
159
if (of_property_read_u32(np, "reg", &reg))
160
goto error;
161
/* Add the base_reg value to the "reg" */
162
event->value = base + reg;
163
164
if (of_property_read_string(np, "event-name", &s))
165
goto error;
166
167
event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168
if (!event->name)
169
goto error;
170
171
if (of_property_read_string(np, "scale", &s))
172
s = scale;
173
174
if (s) {
175
event->scale = kstrdup(s, GFP_KERNEL);
176
if (!event->scale)
177
goto error;
178
}
179
180
if (of_property_read_string(np, "unit", &s))
181
s = unit;
182
183
if (s) {
184
event->unit = kstrdup(s, GFP_KERNEL);
185
if (!event->unit)
186
goto error;
187
}
188
189
return 0;
190
error:
191
kfree(event->unit);
192
kfree(event->scale);
193
kfree(event->name);
194
return -EINVAL;
195
}
196
197
/*
198
* imc_free_events: Function to cleanup the events list, having
199
* "nr_entries".
200
*/
201
static void imc_free_events(struct imc_events *events, int nr_entries)
202
{
203
int i;
204
205
/* Nothing to clean, return */
206
if (!events)
207
return;
208
for (i = 0; i < nr_entries; i++) {
209
kfree(events[i].unit);
210
kfree(events[i].scale);
211
kfree(events[i].name);
212
}
213
214
kfree(events);
215
}
216
217
/*
218
* update_events_in_group: Update the "events" information in an attr_group
219
* and assign the attr_group to the pmu "pmu".
220
*/
221
static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222
{
223
struct attribute_group *attr_group;
224
struct attribute **attrs, *dev_str;
225
struct device_node *np, *pmu_events;
226
u32 handle, base_reg;
227
int i = 0, j = 0, ct, ret;
228
const char *prefix, *g_scale, *g_unit;
229
const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230
231
if (!of_property_read_u32(node, "events", &handle))
232
pmu_events = of_find_node_by_phandle(handle);
233
else
234
return 0;
235
236
/* Did not find any node with a given phandle */
237
if (!pmu_events)
238
return 0;
239
240
/* Get a count of number of child nodes */
241
ct = of_get_child_count(pmu_events);
242
243
/* Get the event prefix */
244
if (of_property_read_string(node, "events-prefix", &prefix)) {
245
of_node_put(pmu_events);
246
return 0;
247
}
248
249
/* Get a global unit and scale data if available */
250
if (of_property_read_string(node, "scale", &g_scale))
251
g_scale = NULL;
252
253
if (of_property_read_string(node, "unit", &g_unit))
254
g_unit = NULL;
255
256
/* "reg" property gives out the base offset of the counters data */
257
of_property_read_u32(node, "reg", &base_reg);
258
259
/* Allocate memory for the events */
260
pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261
if (!pmu->events) {
262
of_node_put(pmu_events);
263
return -ENOMEM;
264
}
265
266
ct = 0;
267
/* Parse the events and update the struct */
268
for_each_child_of_node(pmu_events, np) {
269
ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270
if (!ret)
271
ct++;
272
}
273
274
of_node_put(pmu_events);
275
276
/* Allocate memory for attribute group */
277
attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278
if (!attr_group) {
279
imc_free_events(pmu->events, ct);
280
return -ENOMEM;
281
}
282
283
/*
284
* Allocate memory for attributes.
285
* Since we have count of events for this pmu, we also allocate
286
* memory for the scale and unit attribute for now.
287
* "ct" has the total event structs added from the events-parent node.
288
* So allocate three times the "ct" (this includes event, event_scale and
289
* event_unit).
290
*/
291
attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292
if (!attrs) {
293
kfree(attr_group);
294
imc_free_events(pmu->events, ct);
295
return -ENOMEM;
296
}
297
298
attr_group->name = "events";
299
attr_group->attrs = attrs;
300
do {
301
ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302
if (!ev_val_str)
303
continue;
304
dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
305
if (!dev_str)
306
continue;
307
308
attrs[j++] = dev_str;
309
if (pmu->events[i].scale) {
310
ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
311
if (!ev_scale_str)
312
continue;
313
dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
314
if (!dev_str)
315
continue;
316
317
attrs[j++] = dev_str;
318
}
319
320
if (pmu->events[i].unit) {
321
ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
322
if (!ev_unit_str)
323
continue;
324
dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
325
if (!dev_str)
326
continue;
327
328
attrs[j++] = dev_str;
329
}
330
} while (++i < ct);
331
332
/* Save the event attribute */
333
pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
334
335
return 0;
336
}
337
338
/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
339
static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
340
{
341
return per_cpu(local_nest_imc_refc, cpu);
342
}
343
344
static void nest_change_cpu_context(int old_cpu, int new_cpu)
345
{
346
struct imc_pmu **pn = per_nest_pmu_arr;
347
348
if (old_cpu < 0 || new_cpu < 0)
349
return;
350
351
while (*pn) {
352
perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
353
pn++;
354
}
355
}
356
357
static int ppc_nest_imc_cpu_offline(unsigned int cpu)
358
{
359
int nid, target = -1;
360
const struct cpumask *l_cpumask;
361
struct imc_pmu_ref *ref;
362
363
/*
364
* Check in the designated list for this cpu. Dont bother
365
* if not one of them.
366
*/
367
if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
368
return 0;
369
370
/*
371
* Check whether nest_imc is registered. We could end up here if the
372
* cpuhotplug callback registration fails. i.e, callback invokes the
373
* offline path for all successfully registered nodes. At this stage,
374
* nest_imc pmu will not be registered and we should return here.
375
*
376
* We return with a zero since this is not an offline failure. And
377
* cpuhp_setup_state() returns the actual failure reason to the caller,
378
* which in turn will call the cleanup routine.
379
*/
380
if (!nest_pmus)
381
return 0;
382
383
/*
384
* Now that this cpu is one of the designated,
385
* find a next cpu a) which is online and b) in same chip.
386
*/
387
nid = cpu_to_node(cpu);
388
l_cpumask = cpumask_of_node(nid);
389
target = cpumask_last(l_cpumask);
390
391
/*
392
* If this(target) is the last cpu in the cpumask for this chip,
393
* check for any possible online cpu in the chip.
394
*/
395
if (unlikely(target == cpu))
396
target = cpumask_any_but(l_cpumask, cpu);
397
398
/*
399
* Update the cpumask with the target cpu and
400
* migrate the context if needed
401
*/
402
if (target >= 0 && target < nr_cpu_ids) {
403
cpumask_set_cpu(target, &nest_imc_cpumask);
404
nest_change_cpu_context(cpu, target);
405
} else {
406
opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
407
get_hard_smp_processor_id(cpu));
408
/*
409
* If this is the last cpu in this chip then, skip the reference
410
* count lock and make the reference count on this chip zero.
411
*/
412
ref = get_nest_pmu_ref(cpu);
413
if (!ref)
414
return -EINVAL;
415
416
ref->refc = 0;
417
}
418
return 0;
419
}
420
421
static int ppc_nest_imc_cpu_online(unsigned int cpu)
422
{
423
const struct cpumask *l_cpumask;
424
static struct cpumask tmp_mask;
425
int res;
426
427
/* Get the cpumask of this node */
428
l_cpumask = cpumask_of_node(cpu_to_node(cpu));
429
430
/*
431
* If this is not the first online CPU on this node, then
432
* just return.
433
*/
434
if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
435
return 0;
436
437
/*
438
* If this is the first online cpu on this node
439
* disable the nest counters by making an OPAL call.
440
*/
441
res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
442
get_hard_smp_processor_id(cpu));
443
if (res)
444
return res;
445
446
/* Make this CPU the designated target for counter collection */
447
cpumask_set_cpu(cpu, &nest_imc_cpumask);
448
return 0;
449
}
450
451
static int nest_pmu_cpumask_init(void)
452
{
453
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
454
"perf/powerpc/imc:online",
455
ppc_nest_imc_cpu_online,
456
ppc_nest_imc_cpu_offline);
457
}
458
459
static void nest_imc_counters_release(struct perf_event *event)
460
{
461
int rc, node_id;
462
struct imc_pmu_ref *ref;
463
464
if (event->cpu < 0)
465
return;
466
467
node_id = cpu_to_node(event->cpu);
468
469
/*
470
* See if we need to disable the nest PMU.
471
* If no events are currently in use, then we have to take a
472
* lock to ensure that we don't race with another task doing
473
* enable or disable the nest counters.
474
*/
475
ref = get_nest_pmu_ref(event->cpu);
476
if (!ref)
477
return;
478
479
/* Take the lock for this node and then decrement the reference count */
480
spin_lock(&ref->lock);
481
if (ref->refc == 0) {
482
/*
483
* The scenario where this is true is, when perf session is
484
* started, followed by offlining of all cpus in a given node.
485
*
486
* In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
487
* function set the ref->count to zero, if the cpu which is
488
* about to offline is the last cpu in a given node and make
489
* an OPAL call to disable the engine in that node.
490
*
491
*/
492
spin_unlock(&ref->lock);
493
return;
494
}
495
ref->refc--;
496
if (ref->refc == 0) {
497
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
498
get_hard_smp_processor_id(event->cpu));
499
if (rc) {
500
spin_unlock(&ref->lock);
501
pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
502
return;
503
}
504
} else if (ref->refc < 0) {
505
WARN(1, "nest-imc: Invalid event reference count\n");
506
ref->refc = 0;
507
}
508
spin_unlock(&ref->lock);
509
}
510
511
static int nest_imc_event_init(struct perf_event *event)
512
{
513
int chip_id, rc, node_id;
514
u32 l_config, config = event->attr.config;
515
struct imc_mem_info *pcni;
516
struct imc_pmu *pmu;
517
struct imc_pmu_ref *ref;
518
bool flag = false;
519
520
if (event->attr.type != event->pmu->type)
521
return -ENOENT;
522
523
/* Sampling not supported */
524
if (event->hw.sample_period)
525
return -EINVAL;
526
527
if (event->cpu < 0)
528
return -EINVAL;
529
530
pmu = imc_event_to_pmu(event);
531
532
/* Sanity check for config (event offset) */
533
if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
534
return -EINVAL;
535
536
/*
537
* Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
538
* Get the base memory address for this cpu.
539
*/
540
chip_id = cpu_to_chip_id(event->cpu);
541
542
/* Return, if chip_id is not valid */
543
if (chip_id < 0)
544
return -ENODEV;
545
546
pcni = pmu->mem_info;
547
do {
548
if (pcni->id == chip_id) {
549
flag = true;
550
break;
551
}
552
pcni++;
553
} while (pcni->vbase);
554
555
if (!flag)
556
return -ENODEV;
557
558
/*
559
* Add the event offset to the base address.
560
*/
561
l_config = config & IMC_EVENT_OFFSET_MASK;
562
event->hw.event_base = (u64)pcni->vbase + l_config;
563
node_id = cpu_to_node(event->cpu);
564
565
/*
566
* Get the imc_pmu_ref struct for this node.
567
* Take the lock and then increment the count of nest pmu events inited.
568
*/
569
ref = get_nest_pmu_ref(event->cpu);
570
if (!ref)
571
return -EINVAL;
572
573
spin_lock(&ref->lock);
574
if (ref->refc == 0) {
575
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
576
get_hard_smp_processor_id(event->cpu));
577
if (rc) {
578
spin_unlock(&ref->lock);
579
pr_err("nest-imc: Unable to start the counters for node %d\n",
580
node_id);
581
return rc;
582
}
583
}
584
++ref->refc;
585
spin_unlock(&ref->lock);
586
587
event->destroy = nest_imc_counters_release;
588
return 0;
589
}
590
591
/*
592
* core_imc_mem_init : Initializes memory for the current core.
593
*
594
* Uses alloc_pages_node() and uses the returned address as an argument to
595
* an opal call to configure the pdbar. The address sent as an argument is
596
* converted to physical address before the opal call is made. This is the
597
* base address at which the core imc counters are populated.
598
*/
599
static int core_imc_mem_init(int cpu, int size)
600
{
601
int nid, rc = 0, core_id = (cpu / threads_per_core);
602
struct imc_mem_info *mem_info;
603
struct page *page;
604
605
/*
606
* alloc_pages_node() will allocate memory for core in the
607
* local node only.
608
*/
609
nid = cpu_to_node(cpu);
610
mem_info = &core_imc_pmu->mem_info[core_id];
611
mem_info->id = core_id;
612
613
/* We need only vbase for core counters */
614
page = alloc_pages_node(nid,
615
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
616
__GFP_NOWARN, get_order(size));
617
if (!page)
618
return -ENOMEM;
619
mem_info->vbase = page_address(page);
620
621
core_imc_refc[core_id].id = core_id;
622
spin_lock_init(&core_imc_refc[core_id].lock);
623
624
rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
625
__pa((void *)mem_info->vbase),
626
get_hard_smp_processor_id(cpu));
627
if (rc) {
628
free_pages((u64)mem_info->vbase, get_order(size));
629
mem_info->vbase = NULL;
630
}
631
632
return rc;
633
}
634
635
static bool is_core_imc_mem_inited(int cpu)
636
{
637
struct imc_mem_info *mem_info;
638
int core_id = (cpu / threads_per_core);
639
640
mem_info = &core_imc_pmu->mem_info[core_id];
641
if (!mem_info->vbase)
642
return false;
643
644
return true;
645
}
646
647
static int ppc_core_imc_cpu_online(unsigned int cpu)
648
{
649
const struct cpumask *l_cpumask;
650
static struct cpumask tmp_mask;
651
int ret = 0;
652
653
/* Get the cpumask for this core */
654
l_cpumask = cpu_sibling_mask(cpu);
655
656
/* If a cpu for this core is already set, then, don't do anything */
657
if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
658
return 0;
659
660
if (!is_core_imc_mem_inited(cpu)) {
661
ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
662
if (ret) {
663
pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
664
return ret;
665
}
666
}
667
668
/* set the cpu in the mask */
669
cpumask_set_cpu(cpu, &core_imc_cpumask);
670
return 0;
671
}
672
673
static int ppc_core_imc_cpu_offline(unsigned int cpu)
674
{
675
unsigned int core_id;
676
int ncpu;
677
struct imc_pmu_ref *ref;
678
679
/*
680
* clear this cpu out of the mask, if not present in the mask,
681
* don't bother doing anything.
682
*/
683
if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
684
return 0;
685
686
/*
687
* Check whether core_imc is registered. We could end up here
688
* if the cpuhotplug callback registration fails. i.e, callback
689
* invokes the offline path for all successfully registered cpus.
690
* At this stage, core_imc pmu will not be registered and we
691
* should return here.
692
*
693
* We return with a zero since this is not an offline failure.
694
* And cpuhp_setup_state() returns the actual failure reason
695
* to the caller, which inturn will call the cleanup routine.
696
*/
697
if (!core_imc_pmu->pmu.event_init)
698
return 0;
699
700
/* Find any online cpu in that core except the current "cpu" */
701
ncpu = cpumask_last(cpu_sibling_mask(cpu));
702
703
if (unlikely(ncpu == cpu))
704
ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
705
706
if (ncpu >= 0 && ncpu < nr_cpu_ids) {
707
cpumask_set_cpu(ncpu, &core_imc_cpumask);
708
perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
709
} else {
710
/*
711
* If this is the last cpu in this core then skip taking reference
712
* count lock for this core and directly zero "refc" for this core.
713
*/
714
opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
715
get_hard_smp_processor_id(cpu));
716
core_id = cpu / threads_per_core;
717
ref = &core_imc_refc[core_id];
718
if (!ref)
719
return -EINVAL;
720
721
ref->refc = 0;
722
/*
723
* Reduce the global reference count, if this is the
724
* last cpu in this core and core-imc event running
725
* in this cpu.
726
*/
727
spin_lock(&imc_global_refc.lock);
728
if (imc_global_refc.id == IMC_DOMAIN_CORE)
729
imc_global_refc.refc--;
730
731
spin_unlock(&imc_global_refc.lock);
732
}
733
return 0;
734
}
735
736
static int core_imc_pmu_cpumask_init(void)
737
{
738
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
739
"perf/powerpc/imc_core:online",
740
ppc_core_imc_cpu_online,
741
ppc_core_imc_cpu_offline);
742
}
743
744
static void reset_global_refc(struct perf_event *event)
745
{
746
spin_lock(&imc_global_refc.lock);
747
imc_global_refc.refc--;
748
749
/*
750
* If no other thread is running any
751
* event for this domain(thread/core/trace),
752
* set the global id to zero.
753
*/
754
if (imc_global_refc.refc <= 0) {
755
imc_global_refc.refc = 0;
756
imc_global_refc.id = 0;
757
}
758
spin_unlock(&imc_global_refc.lock);
759
}
760
761
static void core_imc_counters_release(struct perf_event *event)
762
{
763
int rc, core_id;
764
struct imc_pmu_ref *ref;
765
766
if (event->cpu < 0)
767
return;
768
/*
769
* See if we need to disable the IMC PMU.
770
* If no events are currently in use, then we have to take a
771
* lock to ensure that we don't race with another task doing
772
* enable or disable the core counters.
773
*/
774
core_id = event->cpu / threads_per_core;
775
776
/* Take the lock and decrement the refernce count for this core */
777
ref = &core_imc_refc[core_id];
778
if (!ref)
779
return;
780
781
spin_lock(&ref->lock);
782
if (ref->refc == 0) {
783
/*
784
* The scenario where this is true is, when perf session is
785
* started, followed by offlining of all cpus in a given core.
786
*
787
* In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
788
* function set the ref->count to zero, if the cpu which is
789
* about to offline is the last cpu in a given core and make
790
* an OPAL call to disable the engine in that core.
791
*
792
*/
793
spin_unlock(&ref->lock);
794
return;
795
}
796
ref->refc--;
797
if (ref->refc == 0) {
798
rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
799
get_hard_smp_processor_id(event->cpu));
800
if (rc) {
801
spin_unlock(&ref->lock);
802
pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
803
return;
804
}
805
} else if (ref->refc < 0) {
806
WARN(1, "core-imc: Invalid event reference count\n");
807
ref->refc = 0;
808
}
809
spin_unlock(&ref->lock);
810
811
reset_global_refc(event);
812
}
813
814
static int core_imc_event_init(struct perf_event *event)
815
{
816
int core_id, rc;
817
u64 config = event->attr.config;
818
struct imc_mem_info *pcmi;
819
struct imc_pmu *pmu;
820
struct imc_pmu_ref *ref;
821
822
if (event->attr.type != event->pmu->type)
823
return -ENOENT;
824
825
/* Sampling not supported */
826
if (event->hw.sample_period)
827
return -EINVAL;
828
829
if (event->cpu < 0)
830
return -EINVAL;
831
832
event->hw.idx = -1;
833
pmu = imc_event_to_pmu(event);
834
835
/* Sanity check for config (event offset) */
836
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
837
return -EINVAL;
838
839
if (!is_core_imc_mem_inited(event->cpu))
840
return -ENODEV;
841
842
core_id = event->cpu / threads_per_core;
843
pcmi = &core_imc_pmu->mem_info[core_id];
844
if ((!pcmi->vbase))
845
return -ENODEV;
846
847
ref = &core_imc_refc[core_id];
848
if (!ref)
849
return -EINVAL;
850
851
/*
852
* Core pmu units are enabled only when it is used.
853
* See if this is triggered for the first time.
854
* If yes, take the lock and enable the core counters.
855
* If not, just increment the count in core_imc_refc struct.
856
*/
857
spin_lock(&ref->lock);
858
if (ref->refc == 0) {
859
rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
860
get_hard_smp_processor_id(event->cpu));
861
if (rc) {
862
spin_unlock(&ref->lock);
863
pr_err("core-imc: Unable to start the counters for core %d\n",
864
core_id);
865
return rc;
866
}
867
}
868
++ref->refc;
869
spin_unlock(&ref->lock);
870
871
/*
872
* Since the system can run either in accumulation or trace-mode
873
* of IMC at a time, core-imc events are allowed only if no other
874
* trace/thread imc events are enabled/monitored.
875
*
876
* Take the global lock, and check the refc.id
877
* to know whether any other trace/thread imc
878
* events are running.
879
*/
880
spin_lock(&imc_global_refc.lock);
881
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
882
/*
883
* No other trace/thread imc events are running in
884
* the system, so set the refc.id to core-imc.
885
*/
886
imc_global_refc.id = IMC_DOMAIN_CORE;
887
imc_global_refc.refc++;
888
} else {
889
spin_unlock(&imc_global_refc.lock);
890
return -EBUSY;
891
}
892
spin_unlock(&imc_global_refc.lock);
893
894
event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
895
event->destroy = core_imc_counters_release;
896
return 0;
897
}
898
899
/*
900
* Allocates a page of memory for each of the online cpus, and load
901
* LDBAR with 0.
902
* The physical base address of the page allocated for a cpu will be
903
* written to the LDBAR for that cpu, when the thread-imc event
904
* is added.
905
*
906
* LDBAR Register Layout:
907
*
908
* 0 4 8 12 16 20 24 28
909
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910
* | | [ ] [ Counter Address [8:50]
911
* | * Mode |
912
* | * PB Scope
913
* * Enable/Disable
914
*
915
* 32 36 40 44 48 52 56 60
916
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
917
* Counter Address [8:50] ]
918
*
919
*/
920
static int thread_imc_mem_alloc(int cpu_id, int size)
921
{
922
u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
923
int nid = cpu_to_node(cpu_id);
924
925
if (!local_mem) {
926
struct page *page;
927
/*
928
* This case could happen only once at start, since we dont
929
* free the memory in cpu offline path.
930
*/
931
page = alloc_pages_node(nid,
932
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
933
__GFP_NOWARN, get_order(size));
934
if (!page)
935
return -ENOMEM;
936
local_mem = page_address(page);
937
938
per_cpu(thread_imc_mem, cpu_id) = local_mem;
939
}
940
941
mtspr(SPRN_LDBAR, 0);
942
return 0;
943
}
944
945
static int ppc_thread_imc_cpu_online(unsigned int cpu)
946
{
947
return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
948
}
949
950
static int ppc_thread_imc_cpu_offline(unsigned int cpu)
951
{
952
/*
953
* Set the bit 0 of LDBAR to zero.
954
*
955
* If bit 0 of LDBAR is unset, it will stop posting
956
* the counter data to memory.
957
* For thread-imc, bit 0 of LDBAR will be set to 1 in the
958
* event_add function. So reset this bit here, to stop the updates
959
* to memory in the cpu_offline path.
960
*/
961
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
962
963
/* Reduce the refc if thread-imc event running on this cpu */
964
spin_lock(&imc_global_refc.lock);
965
if (imc_global_refc.id == IMC_DOMAIN_THREAD)
966
imc_global_refc.refc--;
967
spin_unlock(&imc_global_refc.lock);
968
969
return 0;
970
}
971
972
static int thread_imc_cpu_init(void)
973
{
974
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
975
"perf/powerpc/imc_thread:online",
976
ppc_thread_imc_cpu_online,
977
ppc_thread_imc_cpu_offline);
978
}
979
980
static int thread_imc_event_init(struct perf_event *event)
981
{
982
u32 config = event->attr.config;
983
struct task_struct *target;
984
struct imc_pmu *pmu;
985
986
if (event->attr.type != event->pmu->type)
987
return -ENOENT;
988
989
if (!perfmon_capable())
990
return -EACCES;
991
992
/* Sampling not supported */
993
if (event->hw.sample_period)
994
return -EINVAL;
995
996
event->hw.idx = -1;
997
pmu = imc_event_to_pmu(event);
998
999
/* Sanity check for config offset */
1000
if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
1001
return -EINVAL;
1002
1003
target = event->hw.target;
1004
if (!target)
1005
return -EINVAL;
1006
1007
spin_lock(&imc_global_refc.lock);
1008
/*
1009
* Check if any other trace/core imc events are running in the
1010
* system, if not set the global id to thread-imc.
1011
*/
1012
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1013
imc_global_refc.id = IMC_DOMAIN_THREAD;
1014
imc_global_refc.refc++;
1015
} else {
1016
spin_unlock(&imc_global_refc.lock);
1017
return -EBUSY;
1018
}
1019
spin_unlock(&imc_global_refc.lock);
1020
1021
event->pmu->task_ctx_nr = perf_sw_context;
1022
event->destroy = reset_global_refc;
1023
return 0;
1024
}
1025
1026
static bool is_thread_imc_pmu(struct perf_event *event)
1027
{
1028
if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1029
return true;
1030
1031
return false;
1032
}
1033
1034
static __be64 *get_event_base_addr(struct perf_event *event)
1035
{
1036
u64 addr;
1037
1038
if (is_thread_imc_pmu(event)) {
1039
addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1040
return (__be64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1041
}
1042
1043
return (__be64 *)event->hw.event_base;
1044
}
1045
1046
static void thread_imc_pmu_start_txn(struct pmu *pmu,
1047
unsigned int txn_flags)
1048
{
1049
if (txn_flags & ~PERF_PMU_TXN_ADD)
1050
return;
1051
perf_pmu_disable(pmu);
1052
}
1053
1054
static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1055
{
1056
perf_pmu_enable(pmu);
1057
}
1058
1059
static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1060
{
1061
perf_pmu_enable(pmu);
1062
return 0;
1063
}
1064
1065
static u64 imc_read_counter(struct perf_event *event)
1066
{
1067
__be64 *addr;
1068
u64 data;
1069
1070
/*
1071
* In-Memory Collection (IMC) counters are free flowing counters.
1072
* So we take a snapshot of the counter value on enable and save it
1073
* to calculate the delta at later stage to present the event counter
1074
* value.
1075
*/
1076
addr = get_event_base_addr(event);
1077
data = be64_to_cpu(READ_ONCE(*addr));
1078
local64_set(&event->hw.prev_count, data);
1079
1080
return data;
1081
}
1082
1083
static void imc_event_update(struct perf_event *event)
1084
{
1085
u64 counter_prev, counter_new, final_count;
1086
1087
counter_prev = local64_read(&event->hw.prev_count);
1088
counter_new = imc_read_counter(event);
1089
final_count = counter_new - counter_prev;
1090
1091
/* Update the delta to the event count */
1092
local64_add(final_count, &event->count);
1093
}
1094
1095
static void imc_event_start(struct perf_event *event, int flags)
1096
{
1097
/*
1098
* In Memory Counters are free flowing counters. HW or the microcode
1099
* keeps adding to the counter offset in memory. To get event
1100
* counter value, we snapshot the value here and we calculate
1101
* delta at later point.
1102
*/
1103
imc_read_counter(event);
1104
}
1105
1106
static void imc_event_stop(struct perf_event *event, int flags)
1107
{
1108
/*
1109
* Take a snapshot and calculate the delta and update
1110
* the event counter values.
1111
*/
1112
imc_event_update(event);
1113
}
1114
1115
static int imc_event_add(struct perf_event *event, int flags)
1116
{
1117
if (flags & PERF_EF_START)
1118
imc_event_start(event, flags);
1119
1120
return 0;
1121
}
1122
1123
static int thread_imc_event_add(struct perf_event *event, int flags)
1124
{
1125
int core_id;
1126
struct imc_pmu_ref *ref;
1127
u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1128
1129
if (flags & PERF_EF_START)
1130
imc_event_start(event, flags);
1131
1132
if (!is_core_imc_mem_inited(smp_processor_id()))
1133
return -EINVAL;
1134
1135
core_id = smp_processor_id() / threads_per_core;
1136
ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1137
mtspr(SPRN_LDBAR, ldbar_value);
1138
1139
/*
1140
* imc pmus are enabled only when it is used.
1141
* See if this is triggered for the first time.
1142
* If yes, take the lock and enable the counters.
1143
* If not, just increment the count in ref count struct.
1144
*/
1145
ref = &core_imc_refc[core_id];
1146
if (!ref)
1147
return -EINVAL;
1148
1149
spin_lock(&ref->lock);
1150
if (ref->refc == 0) {
1151
if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1152
get_hard_smp_processor_id(smp_processor_id()))) {
1153
spin_unlock(&ref->lock);
1154
pr_err("thread-imc: Unable to start the counter\
1155
for core %d\n", core_id);
1156
return -EINVAL;
1157
}
1158
}
1159
++ref->refc;
1160
spin_unlock(&ref->lock);
1161
return 0;
1162
}
1163
1164
static void thread_imc_event_del(struct perf_event *event, int flags)
1165
{
1166
1167
int core_id;
1168
struct imc_pmu_ref *ref;
1169
1170
core_id = smp_processor_id() / threads_per_core;
1171
ref = &core_imc_refc[core_id];
1172
if (!ref) {
1173
pr_debug("imc: Failed to get event reference count\n");
1174
return;
1175
}
1176
1177
spin_lock(&ref->lock);
1178
ref->refc--;
1179
if (ref->refc == 0) {
1180
if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1181
get_hard_smp_processor_id(smp_processor_id()))) {
1182
spin_unlock(&ref->lock);
1183
pr_err("thread-imc: Unable to stop the counters\
1184
for core %d\n", core_id);
1185
return;
1186
}
1187
} else if (ref->refc < 0) {
1188
ref->refc = 0;
1189
}
1190
spin_unlock(&ref->lock);
1191
1192
/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1193
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1194
1195
/*
1196
* Take a snapshot and calculate the delta and update
1197
* the event counter values.
1198
*/
1199
imc_event_update(event);
1200
}
1201
1202
/*
1203
* Allocate a page of memory for each cpu, and load LDBAR with 0.
1204
*/
1205
static int trace_imc_mem_alloc(int cpu_id, int size)
1206
{
1207
u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1208
int phys_id = cpu_to_node(cpu_id), rc = 0;
1209
int core_id = (cpu_id / threads_per_core);
1210
1211
if (!local_mem) {
1212
struct page *page;
1213
1214
page = alloc_pages_node(phys_id,
1215
GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1216
__GFP_NOWARN, get_order(size));
1217
if (!page)
1218
return -ENOMEM;
1219
local_mem = page_address(page);
1220
per_cpu(trace_imc_mem, cpu_id) = local_mem;
1221
1222
/* Initialise the counters for trace mode */
1223
rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1224
get_hard_smp_processor_id(cpu_id));
1225
if (rc) {
1226
pr_info("IMC:opal init failed for trace imc\n");
1227
return rc;
1228
}
1229
}
1230
1231
trace_imc_refc[core_id].id = core_id;
1232
spin_lock_init(&trace_imc_refc[core_id].lock);
1233
1234
mtspr(SPRN_LDBAR, 0);
1235
return 0;
1236
}
1237
1238
static int ppc_trace_imc_cpu_online(unsigned int cpu)
1239
{
1240
return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1241
}
1242
1243
static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1244
{
1245
/*
1246
* No need to set bit 0 of LDBAR to zero, as
1247
* it is set to zero for imc trace-mode
1248
*
1249
* Reduce the refc if any trace-imc event running
1250
* on this cpu.
1251
*/
1252
spin_lock(&imc_global_refc.lock);
1253
if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1254
imc_global_refc.refc--;
1255
spin_unlock(&imc_global_refc.lock);
1256
1257
return 0;
1258
}
1259
1260
static int trace_imc_cpu_init(void)
1261
{
1262
return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1263
"perf/powerpc/imc_trace:online",
1264
ppc_trace_imc_cpu_online,
1265
ppc_trace_imc_cpu_offline);
1266
}
1267
1268
static u64 get_trace_imc_event_base_addr(void)
1269
{
1270
return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1271
}
1272
1273
/*
1274
* Function to parse trace-imc data obtained
1275
* and to prepare the perf sample.
1276
*/
1277
static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1278
struct perf_sample_data *data,
1279
u64 *prev_tb,
1280
struct perf_event_header *header,
1281
struct perf_event *event)
1282
{
1283
/* Sanity checks for a valid record */
1284
if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1285
*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1286
else
1287
return -EINVAL;
1288
1289
if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1290
be64_to_cpu(READ_ONCE(mem->tb2)))
1291
return -EINVAL;
1292
1293
/* Prepare perf sample */
1294
data->ip = be64_to_cpu(READ_ONCE(mem->ip));
1295
data->period = event->hw.last_period;
1296
1297
header->type = PERF_RECORD_SAMPLE;
1298
header->size = sizeof(*header) + event->header_size;
1299
header->misc = 0;
1300
1301
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1302
switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1303
case 0:/* when MSR HV and PR not set in the trace-record */
1304
header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1305
break;
1306
case 1: /* MSR HV is 0 and PR is 1 */
1307
header->misc |= PERF_RECORD_MISC_GUEST_USER;
1308
break;
1309
case 2: /* MSR HV is 1 and PR is 0 */
1310
header->misc |= PERF_RECORD_MISC_KERNEL;
1311
break;
1312
case 3: /* MSR HV is 1 and PR is 1 */
1313
header->misc |= PERF_RECORD_MISC_USER;
1314
break;
1315
default:
1316
pr_info("IMC: Unable to set the flag based on MSR bits\n");
1317
break;
1318
}
1319
} else {
1320
if (is_kernel_addr(data->ip))
1321
header->misc |= PERF_RECORD_MISC_KERNEL;
1322
else
1323
header->misc |= PERF_RECORD_MISC_USER;
1324
}
1325
perf_event_header__init_id(header, data, event);
1326
1327
return 0;
1328
}
1329
1330
static void dump_trace_imc_data(struct perf_event *event)
1331
{
1332
struct trace_imc_data *mem;
1333
int i, ret;
1334
u64 prev_tb = 0;
1335
1336
mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1337
for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1338
i++, mem++) {
1339
struct perf_sample_data data;
1340
struct perf_event_header header;
1341
1342
ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1343
if (ret) /* Exit, if not a valid record */
1344
break;
1345
else {
1346
/* If this is a valid record, create the sample */
1347
struct perf_output_handle handle;
1348
1349
if (perf_output_begin(&handle, &data, event, header.size))
1350
return;
1351
1352
perf_output_sample(&handle, &header, &data, event);
1353
perf_output_end(&handle);
1354
}
1355
}
1356
}
1357
1358
static int trace_imc_event_add(struct perf_event *event, int flags)
1359
{
1360
int core_id = smp_processor_id() / threads_per_core;
1361
struct imc_pmu_ref *ref = NULL;
1362
u64 local_mem, ldbar_value;
1363
1364
/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1365
local_mem = get_trace_imc_event_base_addr();
1366
ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1367
1368
/* trace-imc reference count */
1369
if (trace_imc_refc)
1370
ref = &trace_imc_refc[core_id];
1371
if (!ref) {
1372
pr_debug("imc: Failed to get the event reference count\n");
1373
return -EINVAL;
1374
}
1375
1376
mtspr(SPRN_LDBAR, ldbar_value);
1377
spin_lock(&ref->lock);
1378
if (ref->refc == 0) {
1379
if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1380
get_hard_smp_processor_id(smp_processor_id()))) {
1381
spin_unlock(&ref->lock);
1382
pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1383
return -EINVAL;
1384
}
1385
}
1386
++ref->refc;
1387
spin_unlock(&ref->lock);
1388
return 0;
1389
}
1390
1391
static void trace_imc_event_read(struct perf_event *event)
1392
{
1393
return;
1394
}
1395
1396
static void trace_imc_event_stop(struct perf_event *event, int flags)
1397
{
1398
u64 local_mem = get_trace_imc_event_base_addr();
1399
dump_trace_imc_data(event);
1400
memset((void *)local_mem, 0, sizeof(u64));
1401
}
1402
1403
static void trace_imc_event_start(struct perf_event *event, int flags)
1404
{
1405
return;
1406
}
1407
1408
static void trace_imc_event_del(struct perf_event *event, int flags)
1409
{
1410
int core_id = smp_processor_id() / threads_per_core;
1411
struct imc_pmu_ref *ref = NULL;
1412
1413
if (trace_imc_refc)
1414
ref = &trace_imc_refc[core_id];
1415
if (!ref) {
1416
pr_debug("imc: Failed to get event reference count\n");
1417
return;
1418
}
1419
1420
spin_lock(&ref->lock);
1421
ref->refc--;
1422
if (ref->refc == 0) {
1423
if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1424
get_hard_smp_processor_id(smp_processor_id()))) {
1425
spin_unlock(&ref->lock);
1426
pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1427
return;
1428
}
1429
} else if (ref->refc < 0) {
1430
ref->refc = 0;
1431
}
1432
spin_unlock(&ref->lock);
1433
1434
trace_imc_event_stop(event, flags);
1435
}
1436
1437
static int trace_imc_event_init(struct perf_event *event)
1438
{
1439
if (event->attr.type != event->pmu->type)
1440
return -ENOENT;
1441
1442
if (!perfmon_capable())
1443
return -EACCES;
1444
1445
/* Return if this is a couting event */
1446
if (event->attr.sample_period == 0)
1447
return -ENOENT;
1448
1449
/*
1450
* Take the global lock, and make sure
1451
* no other thread is running any core/thread imc
1452
* events
1453
*/
1454
spin_lock(&imc_global_refc.lock);
1455
if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1456
/*
1457
* No core/thread imc events are running in the
1458
* system, so set the refc.id to trace-imc.
1459
*/
1460
imc_global_refc.id = IMC_DOMAIN_TRACE;
1461
imc_global_refc.refc++;
1462
} else {
1463
spin_unlock(&imc_global_refc.lock);
1464
return -EBUSY;
1465
}
1466
spin_unlock(&imc_global_refc.lock);
1467
1468
event->hw.idx = -1;
1469
1470
/*
1471
* There can only be a single PMU for perf_hw_context events which is assigned to
1472
* core PMU. Hence use "perf_sw_context" for trace_imc.
1473
*/
1474
event->pmu->task_ctx_nr = perf_sw_context;
1475
event->destroy = reset_global_refc;
1476
return 0;
1477
}
1478
1479
/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1480
static int update_pmu_ops(struct imc_pmu *pmu)
1481
{
1482
pmu->pmu.task_ctx_nr = perf_invalid_context;
1483
pmu->pmu.add = imc_event_add;
1484
pmu->pmu.del = imc_event_stop;
1485
pmu->pmu.start = imc_event_start;
1486
pmu->pmu.stop = imc_event_stop;
1487
pmu->pmu.read = imc_event_update;
1488
pmu->pmu.attr_groups = pmu->attr_groups;
1489
pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1490
pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1491
1492
switch (pmu->domain) {
1493
case IMC_DOMAIN_NEST:
1494
pmu->pmu.event_init = nest_imc_event_init;
1495
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1496
break;
1497
case IMC_DOMAIN_CORE:
1498
pmu->pmu.event_init = core_imc_event_init;
1499
pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1500
break;
1501
case IMC_DOMAIN_THREAD:
1502
pmu->pmu.event_init = thread_imc_event_init;
1503
pmu->pmu.add = thread_imc_event_add;
1504
pmu->pmu.del = thread_imc_event_del;
1505
pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1506
pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1507
pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1508
break;
1509
case IMC_DOMAIN_TRACE:
1510
pmu->pmu.event_init = trace_imc_event_init;
1511
pmu->pmu.add = trace_imc_event_add;
1512
pmu->pmu.del = trace_imc_event_del;
1513
pmu->pmu.start = trace_imc_event_start;
1514
pmu->pmu.stop = trace_imc_event_stop;
1515
pmu->pmu.read = trace_imc_event_read;
1516
pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1517
break;
1518
default:
1519
break;
1520
}
1521
1522
return 0;
1523
}
1524
1525
/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1526
static int init_nest_pmu_ref(void)
1527
{
1528
int nid, i, cpu;
1529
1530
nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1531
GFP_KERNEL);
1532
1533
if (!nest_imc_refc)
1534
return -ENOMEM;
1535
1536
i = 0;
1537
for_each_node(nid) {
1538
/*
1539
* Take the lock to avoid races while tracking the number of
1540
* sessions using the chip's nest pmu units.
1541
*/
1542
spin_lock_init(&nest_imc_refc[i].lock);
1543
1544
/*
1545
* Loop to init the "id" with the node_id. Variable "i" initialized to
1546
* 0 and will be used as index to the array. "i" will not go off the
1547
* end of the array since the "for_each_node" loops for "N_POSSIBLE"
1548
* nodes only.
1549
*/
1550
nest_imc_refc[i++].id = nid;
1551
}
1552
1553
/*
1554
* Loop to init the per_cpu "local_nest_imc_refc" with the proper
1555
* "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1556
*/
1557
for_each_possible_cpu(cpu) {
1558
nid = cpu_to_node(cpu);
1559
for (i = 0; i < num_possible_nodes(); i++) {
1560
if (nest_imc_refc[i].id == nid) {
1561
per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1562
break;
1563
}
1564
}
1565
}
1566
return 0;
1567
}
1568
1569
static void cleanup_all_core_imc_memory(void)
1570
{
1571
int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1572
struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1573
int size = core_imc_pmu->counter_mem_size;
1574
1575
/* mem_info will never be NULL */
1576
for (i = 0; i < nr_cores; i++) {
1577
if (ptr[i].vbase)
1578
free_pages((u64)ptr[i].vbase, get_order(size));
1579
}
1580
1581
kfree(ptr);
1582
kfree(core_imc_refc);
1583
}
1584
1585
static void thread_imc_ldbar_disable(void *dummy)
1586
{
1587
/*
1588
* By setting 0th bit of LDBAR to zero, we disable thread-imc
1589
* updates to memory.
1590
*/
1591
mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1592
}
1593
1594
void thread_imc_disable(void)
1595
{
1596
on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1597
}
1598
1599
static void cleanup_all_thread_imc_memory(void)
1600
{
1601
int i, order = get_order(thread_imc_mem_size);
1602
1603
for_each_online_cpu(i) {
1604
if (per_cpu(thread_imc_mem, i))
1605
free_pages((u64)per_cpu(thread_imc_mem, i), order);
1606
1607
}
1608
}
1609
1610
static void cleanup_all_trace_imc_memory(void)
1611
{
1612
int i, order = get_order(trace_imc_mem_size);
1613
1614
for_each_online_cpu(i) {
1615
if (per_cpu(trace_imc_mem, i))
1616
free_pages((u64)per_cpu(trace_imc_mem, i), order);
1617
1618
}
1619
kfree(trace_imc_refc);
1620
}
1621
1622
/* Function to free the attr_groups which are dynamically allocated */
1623
static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1624
{
1625
if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1626
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1627
kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1628
}
1629
1630
/*
1631
* Common function to unregister cpu hotplug callback and
1632
* free the memory.
1633
* TODO: Need to handle pmu unregistering, which will be
1634
* done in followup series.
1635
*/
1636
static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1637
{
1638
if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1639
mutex_lock(&nest_init_lock);
1640
if (nest_pmus == 1) {
1641
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1642
kfree(nest_imc_refc);
1643
kfree(per_nest_pmu_arr);
1644
per_nest_pmu_arr = NULL;
1645
}
1646
1647
if (nest_pmus > 0)
1648
nest_pmus--;
1649
mutex_unlock(&nest_init_lock);
1650
}
1651
1652
/* Free core_imc memory */
1653
if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1654
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1655
cleanup_all_core_imc_memory();
1656
}
1657
1658
/* Free thread_imc memory */
1659
if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1660
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1661
cleanup_all_thread_imc_memory();
1662
}
1663
1664
if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1665
cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1666
cleanup_all_trace_imc_memory();
1667
}
1668
}
1669
1670
/*
1671
* Function to unregister thread-imc if core-imc
1672
* is not registered.
1673
*/
1674
void unregister_thread_imc(void)
1675
{
1676
imc_common_cpuhp_mem_free(thread_imc_pmu);
1677
imc_common_mem_free(thread_imc_pmu);
1678
perf_pmu_unregister(&thread_imc_pmu->pmu);
1679
}
1680
1681
/*
1682
* imc_mem_init : Function to support memory allocation for core imc.
1683
*/
1684
static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1685
int pmu_index)
1686
{
1687
const char *s;
1688
int nr_cores, cpu, res = -ENOMEM;
1689
1690
if (of_property_read_string(parent, "name", &s))
1691
return -ENODEV;
1692
1693
switch (pmu_ptr->domain) {
1694
case IMC_DOMAIN_NEST:
1695
/* Update the pmu name */
1696
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1697
if (!pmu_ptr->pmu.name)
1698
goto err;
1699
1700
/* Needed for hotplug/migration */
1701
if (!per_nest_pmu_arr) {
1702
per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1703
sizeof(struct imc_pmu *),
1704
GFP_KERNEL);
1705
if (!per_nest_pmu_arr)
1706
goto err;
1707
}
1708
per_nest_pmu_arr[pmu_index] = pmu_ptr;
1709
break;
1710
case IMC_DOMAIN_CORE:
1711
/* Update the pmu name */
1712
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1713
if (!pmu_ptr->pmu.name)
1714
goto err;
1715
1716
nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1717
pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1718
GFP_KERNEL);
1719
1720
if (!pmu_ptr->mem_info)
1721
goto err;
1722
1723
core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1724
GFP_KERNEL);
1725
1726
if (!core_imc_refc) {
1727
kfree(pmu_ptr->mem_info);
1728
goto err;
1729
}
1730
1731
core_imc_pmu = pmu_ptr;
1732
break;
1733
case IMC_DOMAIN_THREAD:
1734
/* Update the pmu name */
1735
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1736
if (!pmu_ptr->pmu.name)
1737
goto err;
1738
1739
thread_imc_mem_size = pmu_ptr->counter_mem_size;
1740
for_each_online_cpu(cpu) {
1741
res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1742
if (res) {
1743
cleanup_all_thread_imc_memory();
1744
goto err;
1745
}
1746
}
1747
1748
thread_imc_pmu = pmu_ptr;
1749
break;
1750
case IMC_DOMAIN_TRACE:
1751
/* Update the pmu name */
1752
pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1753
if (!pmu_ptr->pmu.name)
1754
return -ENOMEM;
1755
1756
nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1757
trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1758
GFP_KERNEL);
1759
if (!trace_imc_refc)
1760
return -ENOMEM;
1761
1762
trace_imc_mem_size = pmu_ptr->counter_mem_size;
1763
for_each_online_cpu(cpu) {
1764
res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1765
if (res) {
1766
cleanup_all_trace_imc_memory();
1767
goto err;
1768
}
1769
}
1770
break;
1771
default:
1772
return -EINVAL;
1773
}
1774
1775
return 0;
1776
err:
1777
return res;
1778
}
1779
1780
/*
1781
* init_imc_pmu : Setup and register the IMC pmu device.
1782
*
1783
* @parent: Device tree unit node
1784
* @pmu_ptr: memory allocated for this pmu
1785
* @pmu_idx: Count of nest pmc registered
1786
*
1787
* init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1788
* Handles failure cases and accordingly frees memory.
1789
*/
1790
int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1791
{
1792
int ret;
1793
1794
ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1795
if (ret)
1796
goto err_free_mem;
1797
1798
switch (pmu_ptr->domain) {
1799
case IMC_DOMAIN_NEST:
1800
/*
1801
* Nest imc pmu need only one cpu per chip, we initialize the
1802
* cpumask for the first nest imc pmu and use the same for the
1803
* rest. To handle the cpuhotplug callback unregister, we track
1804
* the number of nest pmus in "nest_pmus".
1805
*/
1806
mutex_lock(&nest_init_lock);
1807
if (nest_pmus == 0) {
1808
ret = init_nest_pmu_ref();
1809
if (ret) {
1810
mutex_unlock(&nest_init_lock);
1811
kfree(per_nest_pmu_arr);
1812
per_nest_pmu_arr = NULL;
1813
goto err_free_mem;
1814
}
1815
/* Register for cpu hotplug notification. */
1816
ret = nest_pmu_cpumask_init();
1817
if (ret) {
1818
mutex_unlock(&nest_init_lock);
1819
kfree(nest_imc_refc);
1820
kfree(per_nest_pmu_arr);
1821
per_nest_pmu_arr = NULL;
1822
goto err_free_mem;
1823
}
1824
}
1825
nest_pmus++;
1826
mutex_unlock(&nest_init_lock);
1827
break;
1828
case IMC_DOMAIN_CORE:
1829
ret = core_imc_pmu_cpumask_init();
1830
if (ret) {
1831
cleanup_all_core_imc_memory();
1832
goto err_free_mem;
1833
}
1834
1835
break;
1836
case IMC_DOMAIN_THREAD:
1837
ret = thread_imc_cpu_init();
1838
if (ret) {
1839
cleanup_all_thread_imc_memory();
1840
goto err_free_mem;
1841
}
1842
1843
break;
1844
case IMC_DOMAIN_TRACE:
1845
ret = trace_imc_cpu_init();
1846
if (ret) {
1847
cleanup_all_trace_imc_memory();
1848
goto err_free_mem;
1849
}
1850
1851
break;
1852
default:
1853
return -EINVAL; /* Unknown domain */
1854
}
1855
1856
ret = update_events_in_group(parent, pmu_ptr);
1857
if (ret)
1858
goto err_free_cpuhp_mem;
1859
1860
ret = update_pmu_ops(pmu_ptr);
1861
if (ret)
1862
goto err_free_cpuhp_mem;
1863
1864
ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1865
if (ret)
1866
goto err_free_cpuhp_mem;
1867
1868
pr_debug("%s performance monitor hardware support registered\n",
1869
pmu_ptr->pmu.name);
1870
1871
return 0;
1872
1873
err_free_cpuhp_mem:
1874
imc_common_cpuhp_mem_free(pmu_ptr);
1875
err_free_mem:
1876
imc_common_mem_free(pmu_ptr);
1877
return ret;
1878
}
1879
1880