Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/perf/isa207-common.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Common Performance counter support functions for PowerISA v2.07 processors.
4
*
5
* Copyright 2009 Paul Mackerras, IBM Corporation.
6
* Copyright 2013 Michael Ellerman, IBM Corporation.
7
* Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8
*/
9
#include "isa207-common.h"
10
11
PMU_FORMAT_ATTR(event, "config:0-49");
12
PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
13
PMU_FORMAT_ATTR(mark, "config:8");
14
PMU_FORMAT_ATTR(combine, "config:11");
15
PMU_FORMAT_ATTR(unit, "config:12-15");
16
PMU_FORMAT_ATTR(pmc, "config:16-19");
17
PMU_FORMAT_ATTR(cache_sel, "config:20-23");
18
PMU_FORMAT_ATTR(sample_mode, "config:24-28");
19
PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
20
PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
21
PMU_FORMAT_ATTR(thresh_start, "config:36-39");
22
PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
23
24
static struct attribute *isa207_pmu_format_attr[] = {
25
&format_attr_event.attr,
26
&format_attr_pmcxsel.attr,
27
&format_attr_mark.attr,
28
&format_attr_combine.attr,
29
&format_attr_unit.attr,
30
&format_attr_pmc.attr,
31
&format_attr_cache_sel.attr,
32
&format_attr_sample_mode.attr,
33
&format_attr_thresh_sel.attr,
34
&format_attr_thresh_stop.attr,
35
&format_attr_thresh_start.attr,
36
&format_attr_thresh_cmp.attr,
37
NULL,
38
};
39
40
const struct attribute_group isa207_pmu_format_group = {
41
.name = "format",
42
.attrs = isa207_pmu_format_attr,
43
};
44
45
static inline bool event_is_fab_match(u64 event)
46
{
47
/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48
event &= 0xff0fe;
49
50
/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51
return (event == 0x30056 || event == 0x4f052);
52
}
53
54
static bool is_event_valid(u64 event)
55
{
56
u64 valid_mask = EVENT_VALID_MASK;
57
58
if (cpu_has_feature(CPU_FTR_ARCH_31))
59
valid_mask = p10_EVENT_VALID_MASK;
60
else if (cpu_has_feature(CPU_FTR_ARCH_300))
61
valid_mask = p9_EVENT_VALID_MASK;
62
63
return !(event & ~valid_mask);
64
}
65
66
static inline bool is_event_marked(u64 event)
67
{
68
if (event & EVENT_IS_MARKED)
69
return true;
70
71
return false;
72
}
73
74
static unsigned long sdar_mod_val(u64 event)
75
{
76
if (cpu_has_feature(CPU_FTR_ARCH_31))
77
return p10_SDAR_MODE(event);
78
79
return p9_SDAR_MODE(event);
80
}
81
82
static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83
{
84
/*
85
* MMCRA[SDAR_MODE] specifies how the SDAR should be updated in
86
* continuous sampling mode.
87
*
88
* Incase of Power8:
89
* MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling
90
* mode and will be un-changed when setting MMCRA[63] (Marked events).
91
*
92
* Incase of Power9/power10:
93
* Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94
* or if group already have any marked events.
95
* For rest
96
* MMCRA[SDAR_MODE] will be set from event code.
97
* If sdar_mode from event is zero, default to 0b01. Hardware
98
* requires that we set a non-zero value.
99
*/
100
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101
if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102
*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103
else if (sdar_mod_val(event))
104
*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105
else
106
*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107
} else
108
*mmcra |= MMCRA_SDAR_MODE_TLB;
109
}
110
111
static int p10_thresh_cmp_val(u64 value)
112
{
113
int exp = 0;
114
u64 result = value;
115
116
if (!value)
117
return value;
118
119
/*
120
* Incase of P10, thresh_cmp value is not part of raw event code
121
* and provided via attr.config1 parameter. To program threshold in MMCRA,
122
* take a 18 bit number N and shift right 2 places and increment
123
* the exponent E by 1 until the upper 10 bits of N are zero.
124
* Write E to the threshold exponent and write the lower 8 bits of N
125
* to the threshold mantissa.
126
* The max threshold that can be written is 261120.
127
*/
128
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129
if (value > 261120)
130
value = 261120;
131
while ((64 - __builtin_clzl(value)) > 8) {
132
exp++;
133
value >>= 2;
134
}
135
136
/*
137
* Note that it is invalid to write a mantissa with the
138
* upper 2 bits of mantissa being zero, unless the
139
* exponent is also zero.
140
*/
141
if (!(value & 0xC0) && exp)
142
result = -1;
143
else
144
result = (exp << 8) | value;
145
}
146
return result;
147
}
148
149
static u64 thresh_cmp_val(u64 value)
150
{
151
if (cpu_has_feature(CPU_FTR_ARCH_31))
152
value = p10_thresh_cmp_val(value);
153
154
/*
155
* Since location of threshold compare bits in MMCRA
156
* is different for p8, using different shift value.
157
*/
158
if (cpu_has_feature(CPU_FTR_ARCH_300))
159
return value << p9_MMCRA_THR_CMP_SHIFT;
160
else
161
return value << MMCRA_THR_CMP_SHIFT;
162
}
163
164
static unsigned long combine_from_event(u64 event)
165
{
166
if (cpu_has_feature(CPU_FTR_ARCH_300))
167
return p9_EVENT_COMBINE(event);
168
169
return EVENT_COMBINE(event);
170
}
171
172
static unsigned long combine_shift(unsigned long pmc)
173
{
174
if (cpu_has_feature(CPU_FTR_ARCH_300))
175
return p9_MMCR1_COMBINE_SHIFT(pmc);
176
177
return MMCR1_COMBINE_SHIFT(pmc);
178
}
179
180
static inline bool event_is_threshold(u64 event)
181
{
182
return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183
}
184
185
static bool is_thresh_cmp_valid(u64 event)
186
{
187
unsigned int cmp, exp;
188
189
if (cpu_has_feature(CPU_FTR_ARCH_31))
190
return p10_thresh_cmp_val(event) >= 0;
191
192
/*
193
* Check the mantissa upper two bits are not zero, unless the
194
* exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195
*/
196
197
cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198
exp = cmp >> 7;
199
200
if (exp && (cmp & 0x60) == 0)
201
return false;
202
203
return true;
204
}
205
206
static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207
{
208
unsigned int cache;
209
210
cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211
return cache;
212
}
213
214
static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215
{
216
u64 ret = PERF_MEM_NA;
217
218
switch(idx) {
219
case 0:
220
/* Nothing to do */
221
break;
222
case 1:
223
ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT);
224
break;
225
case 2:
226
ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
227
break;
228
case 3:
229
ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
230
break;
231
case 4:
232
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
233
ret = P(SNOOP, HIT);
234
235
if (sub_idx == 1)
236
ret |= PH(LVL, LOC_RAM) | LEVEL(RAM);
237
else if (sub_idx == 2 || sub_idx == 3)
238
ret |= P(LVL, HIT) | LEVEL(PMEM);
239
else if (sub_idx == 4)
240
ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2);
241
else if (sub_idx == 5 || sub_idx == 7)
242
ret |= P(LVL, HIT) | LEVEL(PMEM) | REM;
243
else if (sub_idx == 6)
244
ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3);
245
} else {
246
if (sub_idx <= 1)
247
ret = PH(LVL, LOC_RAM);
248
else if (sub_idx > 1 && sub_idx <= 2)
249
ret = PH(LVL, REM_RAM1);
250
else
251
ret = PH(LVL, REM_RAM2);
252
ret |= P(SNOOP, HIT);
253
}
254
break;
255
case 5:
256
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
257
ret = REM | P(HOPS, 0);
258
259
if (sub_idx == 0 || sub_idx == 4)
260
ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
261
else if (sub_idx == 1 || sub_idx == 5)
262
ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
263
else if (sub_idx == 2 || sub_idx == 6)
264
ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
265
else if (sub_idx == 3 || sub_idx == 7)
266
ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
267
} else {
268
if (sub_idx == 0)
269
ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
270
else if (sub_idx == 1)
271
ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
272
else if (sub_idx == 2 || sub_idx == 4)
273
ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
274
else if (sub_idx == 3 || sub_idx == 5)
275
ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
276
}
277
break;
278
case 6:
279
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280
if (sub_idx == 0)
281
ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
282
P(SNOOP, HIT) | P(HOPS, 2);
283
else if (sub_idx == 1)
284
ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
285
P(SNOOP, HITM) | P(HOPS, 2);
286
else if (sub_idx == 2)
287
ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
288
P(SNOOP, HIT) | P(HOPS, 3);
289
else if (sub_idx == 3)
290
ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
291
P(SNOOP, HITM) | P(HOPS, 3);
292
} else {
293
ret = PH(LVL, REM_CCE2);
294
if (sub_idx == 0 || sub_idx == 2)
295
ret |= P(SNOOP, HIT);
296
else if (sub_idx == 1 || sub_idx == 3)
297
ret |= P(SNOOP, HITM);
298
}
299
break;
300
case 7:
301
ret = PM(LVL, L1);
302
break;
303
}
304
305
return ret;
306
}
307
308
void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
309
struct pt_regs *regs)
310
{
311
u64 idx;
312
u32 sub_idx;
313
u64 sier;
314
u64 val;
315
316
/* Skip if no SIER support */
317
if (!(flags & PPMU_HAS_SIER)) {
318
dsrc->val = 0;
319
return;
320
}
321
322
/*
323
* Use regs-dar for SPRN_SIER which is saved
324
* during perf_read_regs at the beginning
325
* of the PMU interrupt handler to avoid multiple
326
* reads of SPRN_SIER
327
*/
328
sier = regs->dar;
329
val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
330
if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31))) {
331
dsrc->val = 0;
332
return;
333
}
334
335
idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
336
sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
337
338
dsrc->val = isa207_find_source(idx, sub_idx);
339
if (val == 7) {
340
u64 mmcra;
341
u32 op_type;
342
343
/*
344
* Type 0b111 denotes either larx or stcx instruction. Use the
345
* MMCRA sampling bits [57:59] along with the type value
346
* to determine the exact instruction type. If the sampling
347
* criteria is neither load or store, set the type as default
348
* to NA.
349
*
350
* Use regs->dsisr for MMCRA which is saved during perf_read_regs
351
* at the beginning of the PMU interrupt handler to avoid
352
* multiple reads of SPRN_MMCRA
353
*/
354
mmcra = regs->dsisr;
355
356
op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
357
switch (op_type) {
358
case 5:
359
dsrc->val |= P(OP, LOAD);
360
break;
361
case 7:
362
dsrc->val |= P(OP, STORE);
363
break;
364
default:
365
dsrc->val |= P(OP, NA);
366
break;
367
}
368
} else {
369
dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
370
}
371
}
372
373
void isa207_get_mem_weight(u64 *weight, u64 type)
374
{
375
union perf_sample_weight *weight_fields;
376
u64 weight_lat;
377
u64 mmcra = mfspr(SPRN_MMCRA);
378
u64 exp = MMCRA_THR_CTR_EXP(mmcra);
379
u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
380
u64 sier = mfspr(SPRN_SIER);
381
u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
382
383
if (cpu_has_feature(CPU_FTR_ARCH_31))
384
mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
385
386
if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
387
weight_lat = 0;
388
else
389
weight_lat = mantissa << (2 * exp);
390
391
/*
392
* Use 64 bit weight field (full) if sample type is
393
* WEIGHT.
394
*
395
* if sample type is WEIGHT_STRUCT:
396
* - store memory latency in the lower 32 bits.
397
* - For ISA v3.1, use remaining two 16 bit fields of
398
* perf_sample_weight to store cycle counter values
399
* from sier2.
400
*/
401
weight_fields = (union perf_sample_weight *)weight;
402
if (type & PERF_SAMPLE_WEIGHT)
403
weight_fields->full = weight_lat;
404
else {
405
weight_fields->var1_dw = (u32)weight_lat;
406
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
407
weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
408
weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
409
}
410
}
411
}
412
413
int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
414
{
415
unsigned int unit, pmc, cache, ebb;
416
unsigned long mask, value;
417
418
mask = value = 0;
419
420
if (!is_event_valid(event))
421
return -1;
422
423
pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
424
unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
425
if (cpu_has_feature(CPU_FTR_ARCH_31))
426
cache = (event >> EVENT_CACHE_SEL_SHIFT) &
427
p10_EVENT_CACHE_SEL_MASK;
428
else
429
cache = (event >> EVENT_CACHE_SEL_SHIFT) &
430
EVENT_CACHE_SEL_MASK;
431
ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK;
432
433
if (pmc) {
434
u64 base_event;
435
436
if (pmc > 6)
437
return -1;
438
439
/* Ignore Linux defined bits when checking event below */
440
base_event = event & ~EVENT_LINUX_MASK;
441
442
if (pmc >= 5 && base_event != 0x500fa &&
443
base_event != 0x600f4)
444
return -1;
445
446
mask |= CNST_PMC_MASK(pmc);
447
value |= CNST_PMC_VAL(pmc);
448
449
/*
450
* PMC5 and PMC6 are used to count cycles and instructions and
451
* they do not support most of the constraint bits. Add a check
452
* to exclude PMC5/6 from most of the constraints except for
453
* EBB/BHRB.
454
*/
455
if (pmc >= 5)
456
goto ebb_bhrb;
457
}
458
459
if (pmc <= 4) {
460
/*
461
* Add to number of counters in use. Note this includes events with
462
* a PMC of 0 - they still need a PMC, it's just assigned later.
463
* Don't count events on PMC 5 & 6, there is only one valid event
464
* on each of those counters, and they are handled above.
465
*/
466
mask |= CNST_NC_MASK;
467
value |= CNST_NC_VAL;
468
}
469
470
if (unit >= 6 && unit <= 9) {
471
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
472
if (unit == 6) {
473
mask |= CNST_L2L3_GROUP_MASK;
474
value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
475
}
476
} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
477
mask |= CNST_CACHE_GROUP_MASK;
478
value |= CNST_CACHE_GROUP_VAL(event & 0xff);
479
480
mask |= CNST_CACHE_PMC4_MASK;
481
if (pmc == 4)
482
value |= CNST_CACHE_PMC4_VAL;
483
} else if (cache & 0x7) {
484
/*
485
* L2/L3 events contain a cache selector field, which is
486
* supposed to be programmed into MMCRC. However MMCRC is only
487
* HV writable, and there is no API for guest kernels to modify
488
* it. The solution is for the hypervisor to initialise the
489
* field to zeroes, and for us to only ever allow events that
490
* have a cache selector of zero. The bank selector (bit 3) is
491
* irrelevant, as long as the rest of the value is 0.
492
*/
493
return -1;
494
}
495
496
} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
497
mask |= CNST_L1_QUAL_MASK;
498
value |= CNST_L1_QUAL_VAL(cache);
499
}
500
501
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
502
mask |= CNST_RADIX_SCOPE_GROUP_MASK;
503
value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
504
}
505
506
if (is_event_marked(event)) {
507
mask |= CNST_SAMPLE_MASK;
508
value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
509
}
510
511
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
512
if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
513
mask |= CNST_THRESH_CTL_SEL_MASK;
514
value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
515
mask |= p10_CNST_THRESH_CMP_MASK;
516
value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
517
} else if (event_is_threshold(event))
518
return -1;
519
} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
520
if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
521
mask |= CNST_THRESH_MASK;
522
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
523
} else if (event_is_threshold(event))
524
return -1;
525
} else {
526
/*
527
* Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
528
* the threshold control bits are used for the match value.
529
*/
530
if (event_is_fab_match(event)) {
531
mask |= CNST_FAB_MATCH_MASK;
532
value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
533
} else {
534
if (!is_thresh_cmp_valid(event))
535
return -1;
536
537
mask |= CNST_THRESH_MASK;
538
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
539
}
540
}
541
542
ebb_bhrb:
543
if (!pmc && ebb)
544
/* EBB events must specify the PMC */
545
return -1;
546
547
if (event & EVENT_WANTS_BHRB) {
548
if (!ebb)
549
/* Only EBB events can request BHRB */
550
return -1;
551
552
mask |= CNST_IFM_MASK;
553
value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
554
}
555
556
/*
557
* All events must agree on EBB, either all request it or none.
558
* EBB events are pinned & exclusive, so this should never actually
559
* hit, but we leave it as a fallback in case.
560
*/
561
mask |= CNST_EBB_MASK;
562
value |= CNST_EBB_VAL(ebb);
563
564
*maskp = mask;
565
*valp = value;
566
567
return 0;
568
}
569
570
int isa207_compute_mmcr(u64 event[], int n_ev,
571
unsigned int hwc[], struct mmcr_regs *mmcr,
572
struct perf_event *pevents[], u32 flags)
573
{
574
unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
575
unsigned long mmcr3;
576
unsigned int pmc, pmc_inuse;
577
int i;
578
579
pmc_inuse = 0;
580
581
/* First pass to count resource use */
582
for (i = 0; i < n_ev; ++i) {
583
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
584
if (pmc)
585
pmc_inuse |= 1 << pmc;
586
}
587
588
mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
589
590
/*
591
* Disable bhrb unless explicitly requested
592
* by setting MMCRA (BHRBRD) bit.
593
*/
594
if (cpu_has_feature(CPU_FTR_ARCH_31))
595
mmcra |= MMCRA_BHRB_DISABLE;
596
597
/* Second pass: assign PMCs, set all MMCR1 fields */
598
for (i = 0; i < n_ev; ++i) {
599
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
600
unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
601
combine = combine_from_event(event[i]);
602
psel = event[i] & EVENT_PSEL_MASK;
603
604
if (!pmc) {
605
for (pmc = 1; pmc <= 4; ++pmc) {
606
if (!(pmc_inuse & (1 << pmc)))
607
break;
608
}
609
610
pmc_inuse |= 1 << pmc;
611
}
612
613
if (pmc <= 4) {
614
mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
615
mmcr1 |= combine << combine_shift(pmc);
616
mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
617
}
618
619
/* In continuous sampling mode, update SDAR on TLB miss */
620
mmcra_sdar_mode(event[i], &mmcra);
621
622
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
623
cache = dc_ic_rld_quad_l1_sel(event[i]);
624
mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
625
} else {
626
if (event[i] & EVENT_IS_L1) {
627
cache = dc_ic_rld_quad_l1_sel(event[i]);
628
mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
629
}
630
}
631
632
/* Set RADIX_SCOPE_QUAL bit */
633
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
634
val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
635
p10_EVENT_RADIX_SCOPE_QUAL_MASK;
636
mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
637
}
638
639
if (is_event_marked(event[i])) {
640
mmcra |= MMCRA_SAMPLE_ENABLE;
641
642
val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
643
if (val) {
644
mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
645
mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
646
}
647
}
648
649
/*
650
* PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
651
* the threshold bits are used for the match value.
652
*/
653
if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
654
mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
655
EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
656
} else {
657
val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
658
mmcra |= val << MMCRA_THR_CTL_SHIFT;
659
val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
660
mmcra |= val << MMCRA_THR_SEL_SHIFT;
661
if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
662
val = (event[i] >> EVENT_THR_CMP_SHIFT) &
663
EVENT_THR_CMP_MASK;
664
mmcra |= thresh_cmp_val(val);
665
} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
666
val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
667
p10_EVENT_THR_CMP_MASK;
668
mmcra |= thresh_cmp_val(val);
669
}
670
}
671
672
if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
673
val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
674
p10_EVENT_L2L3_SEL_MASK;
675
mmcr2 |= val << p10_L2L3_SEL_SHIFT;
676
}
677
678
if (event[i] & EVENT_WANTS_BHRB) {
679
val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
680
mmcra |= val << MMCRA_IFM_SHIFT;
681
}
682
683
/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
684
if (cpu_has_feature(CPU_FTR_ARCH_31) &&
685
(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
686
mmcra &= ~MMCRA_BHRB_DISABLE;
687
688
if (pevents[i]->attr.exclude_user)
689
mmcr2 |= MMCR2_FCP(pmc);
690
691
if (pevents[i]->attr.exclude_hv)
692
mmcr2 |= MMCR2_FCH(pmc);
693
694
if (pevents[i]->attr.exclude_kernel) {
695
if (cpu_has_feature(CPU_FTR_HVMODE))
696
mmcr2 |= MMCR2_FCH(pmc);
697
else
698
mmcr2 |= MMCR2_FCS(pmc);
699
}
700
701
if (pevents[i]->attr.exclude_idle)
702
mmcr2 |= MMCR2_FCWAIT(pmc);
703
704
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
705
if (pmc <= 4) {
706
val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
707
p10_EVENT_MMCR3_MASK;
708
mmcr3 |= val << MMCR3_SHIFT(pmc);
709
}
710
}
711
712
hwc[i] = pmc - 1;
713
}
714
715
/* Return MMCRx values */
716
mmcr->mmcr0 = 0;
717
718
/* pmc_inuse is 1-based */
719
if (pmc_inuse & 2)
720
mmcr->mmcr0 = MMCR0_PMC1CE;
721
722
if (pmc_inuse & 0x7c)
723
mmcr->mmcr0 |= MMCR0_PMCjCE;
724
725
/* If we're not using PMC 5 or 6, freeze them */
726
if (!(pmc_inuse & 0x60))
727
mmcr->mmcr0 |= MMCR0_FC56;
728
729
/*
730
* Set mmcr0 (PMCCEXT) for p10 which
731
* will restrict access to group B registers
732
* when MMCR0 PMCC=0b00.
733
*/
734
if (cpu_has_feature(CPU_FTR_ARCH_31))
735
mmcr->mmcr0 |= MMCR0_PMCCEXT;
736
737
mmcr->mmcr1 = mmcr1;
738
mmcr->mmcra = mmcra;
739
mmcr->mmcr2 = mmcr2;
740
mmcr->mmcr3 = mmcr3;
741
742
return 0;
743
}
744
745
void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
746
{
747
if (pmc <= 3)
748
mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
749
}
750
751
static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
752
{
753
int i, j;
754
755
for (i = 0; i < size; ++i) {
756
if (event < ev_alt[i][0])
757
break;
758
759
for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
760
if (event == ev_alt[i][j])
761
return i;
762
}
763
764
return -1;
765
}
766
767
int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
768
const unsigned int ev_alt[][MAX_ALT])
769
{
770
int i, j, num_alt = 0;
771
u64 alt_event;
772
773
alt[num_alt++] = event;
774
i = find_alternative(event, ev_alt, size);
775
if (i >= 0) {
776
/* Filter out the original event, it's already in alt[0] */
777
for (j = 0; j < MAX_ALT; ++j) {
778
alt_event = ev_alt[i][j];
779
if (alt_event && alt_event != event)
780
alt[num_alt++] = alt_event;
781
}
782
}
783
784
if (flags & PPMU_ONLY_COUNT_RUN) {
785
/*
786
* We're only counting in RUN state, so PM_CYC is equivalent to
787
* PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
788
*/
789
j = num_alt;
790
for (i = 0; i < num_alt; ++i) {
791
switch (alt[i]) {
792
case 0x1e: /* PMC_CYC */
793
alt[j++] = 0x600f4; /* PM_RUN_CYC */
794
break;
795
case 0x600f4:
796
alt[j++] = 0x1e;
797
break;
798
case 0x2: /* PM_INST_CMPL */
799
alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
800
break;
801
case 0x500fa:
802
alt[j++] = 0x2;
803
break;
804
}
805
}
806
num_alt = j;
807
}
808
809
return num_alt;
810
}
811
812
int isa3XX_check_attr_config(struct perf_event *ev)
813
{
814
u64 val, sample_mode;
815
u64 event = ev->attr.config;
816
817
val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
818
sample_mode = val & 0x3;
819
820
/*
821
* MMCRA[61:62] is Random Sampling Mode (SM).
822
* value of 0b11 is reserved.
823
*/
824
if (sample_mode == 0x3)
825
return -EINVAL;
826
827
/*
828
* Check for all reserved value
829
* Source: Performance Monitoring Unit User Guide
830
*/
831
switch (val) {
832
case 0x5:
833
case 0x9:
834
case 0xD:
835
case 0x19:
836
case 0x1D:
837
case 0x1A:
838
case 0x1E:
839
return -EINVAL;
840
}
841
842
/*
843
* MMCRA[48:51]/[52:55]) Threshold Start/Stop
844
* Events Selection.
845
* 0b11110000/0b00001111 is reserved.
846
*/
847
val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
848
if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
849
return -EINVAL;
850
851
return 0;
852
}
853
854