Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/cell/spufs/switch.c
26498 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* spu_switch.c
4
*
5
* (C) Copyright IBM Corp. 2005
6
*
7
* Author: Mark Nutter <[email protected]>
8
*
9
* Host-side part of SPU context switch sequence outlined in
10
* Synergistic Processor Element, Book IV.
11
*
12
* A fully premptive switch of an SPE is very expensive in terms
13
* of time and system resources. SPE Book IV indicates that SPE
14
* allocation should follow a "serially reusable device" model,
15
* in which the SPE is assigned a task until it completes. When
16
* this is not possible, this sequence may be used to premptively
17
* save, and then later (optionally) restore the context of a
18
* program executing on an SPE.
19
*/
20
21
#include <linux/export.h>
22
#include <linux/errno.h>
23
#include <linux/hardirq.h>
24
#include <linux/sched.h>
25
#include <linux/kernel.h>
26
#include <linux/mm.h>
27
#include <linux/vmalloc.h>
28
#include <linux/smp.h>
29
#include <linux/stddef.h>
30
#include <linux/unistd.h>
31
32
#include <asm/io.h>
33
#include <asm/spu.h>
34
#include <asm/spu_priv1.h>
35
#include <asm/spu_csa.h>
36
#include <asm/mmu_context.h>
37
38
#include "spufs.h"
39
40
#include "spu_save_dump.h"
41
#include "spu_restore_dump.h"
42
43
#if 0
44
#define POLL_WHILE_TRUE(_c) { \
45
do { \
46
} while (_c); \
47
}
48
#else
49
#define RELAX_SPIN_COUNT 1000
50
#define POLL_WHILE_TRUE(_c) { \
51
do { \
52
int _i; \
53
for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
54
cpu_relax(); \
55
} \
56
if (unlikely(_c)) yield(); \
57
else break; \
58
} while (_c); \
59
}
60
#endif /* debug */
61
62
#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
63
64
static inline void acquire_spu_lock(struct spu *spu)
65
{
66
/* Save, Step 1:
67
* Restore, Step 1:
68
* Acquire SPU-specific mutual exclusion lock.
69
* TBD.
70
*/
71
}
72
73
static inline void release_spu_lock(struct spu *spu)
74
{
75
/* Restore, Step 76:
76
* Release SPU-specific mutual exclusion lock.
77
* TBD.
78
*/
79
}
80
81
static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
82
{
83
struct spu_problem __iomem *prob = spu->problem;
84
u32 isolate_state;
85
86
/* Save, Step 2:
87
* Save, Step 6:
88
* If SPU_Status[E,L,IS] any field is '1', this
89
* SPU is in isolate state and cannot be context
90
* saved at this time.
91
*/
92
isolate_state = SPU_STATUS_ISOLATED_STATE |
93
SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
94
return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
95
}
96
97
static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
98
{
99
/* Save, Step 3:
100
* Restore, Step 2:
101
* Save INT_Mask_class0 in CSA.
102
* Write INT_MASK_class0 with value of 0.
103
* Save INT_Mask_class1 in CSA.
104
* Write INT_MASK_class1 with value of 0.
105
* Save INT_Mask_class2 in CSA.
106
* Write INT_MASK_class2 with value of 0.
107
* Synchronize all three interrupts to be sure
108
* we no longer execute a handler on another CPU.
109
*/
110
spin_lock_irq(&spu->register_lock);
111
if (csa) {
112
csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
113
csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
114
csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
115
}
116
spu_int_mask_set(spu, 0, 0ul);
117
spu_int_mask_set(spu, 1, 0ul);
118
spu_int_mask_set(spu, 2, 0ul);
119
eieio();
120
spin_unlock_irq(&spu->register_lock);
121
122
/*
123
* This flag needs to be set before calling synchronize_irq so
124
* that the update will be visible to the relevant handlers
125
* via a simple load.
126
*/
127
set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
128
clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
129
synchronize_irq(spu->irqs[0]);
130
synchronize_irq(spu->irqs[1]);
131
synchronize_irq(spu->irqs[2]);
132
}
133
134
static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135
{
136
/* Save, Step 4:
137
* Restore, Step 25.
138
* Set a software watchdog timer, which specifies the
139
* maximum allowable time for a context save sequence.
140
*
141
* For present, this implementation will not set a global
142
* watchdog timer, as virtualization & variable system load
143
* may cause unpredictable execution times.
144
*/
145
}
146
147
static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148
{
149
/* Save, Step 5:
150
* Restore, Step 3:
151
* Inhibit user-space access (if provided) to this
152
* SPU by unmapping the virtual pages assigned to
153
* the SPU memory-mapped I/O (MMIO) for problem
154
* state. TBD.
155
*/
156
}
157
158
static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159
{
160
/* Save, Step 7:
161
* Restore, Step 5:
162
* Set a software context switch pending flag.
163
* Done above in Step 3 - disable_interrupts().
164
*/
165
}
166
167
static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168
{
169
struct spu_priv2 __iomem *priv2 = spu->priv2;
170
171
/* Save, Step 8:
172
* Suspend DMA and save MFC_CNTL.
173
*/
174
switch (in_be64(&priv2->mfc_control_RW) &
175
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176
case MFC_CNTL_SUSPEND_IN_PROGRESS:
177
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179
MFC_CNTL_SUSPEND_COMPLETE);
180
fallthrough;
181
case MFC_CNTL_SUSPEND_COMPLETE:
182
if (csa)
183
csa->priv2.mfc_control_RW =
184
in_be64(&priv2->mfc_control_RW) |
185
MFC_CNTL_SUSPEND_DMA_QUEUE;
186
break;
187
case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191
MFC_CNTL_SUSPEND_COMPLETE);
192
if (csa)
193
csa->priv2.mfc_control_RW =
194
in_be64(&priv2->mfc_control_RW) &
195
~MFC_CNTL_SUSPEND_DMA_QUEUE &
196
~MFC_CNTL_SUSPEND_MASK;
197
break;
198
}
199
}
200
201
static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
202
{
203
struct spu_problem __iomem *prob = spu->problem;
204
205
/* Save, Step 9:
206
* Save SPU_Runcntl in the CSA. This value contains
207
* the "Application Desired State".
208
*/
209
csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
210
}
211
212
static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
213
{
214
/* Save, Step 10:
215
* Save MFC_SR1 in the CSA.
216
*/
217
csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
218
}
219
220
static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
221
{
222
struct spu_problem __iomem *prob = spu->problem;
223
224
/* Save, Step 11:
225
* Read SPU_Status[R], and save to CSA.
226
*/
227
if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
228
csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229
} else {
230
u32 stopped;
231
232
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
233
eieio();
234
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
235
SPU_STATUS_RUNNING);
236
stopped =
237
SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
238
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
239
if ((in_be32(&prob->spu_status_R) & stopped) == 0)
240
csa->prob.spu_status_R = SPU_STATUS_RUNNING;
241
else
242
csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243
}
244
}
245
246
static inline void save_mfc_stopped_status(struct spu_state *csa,
247
struct spu *spu)
248
{
249
struct spu_priv2 __iomem *priv2 = spu->priv2;
250
const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
251
MFC_CNTL_DMA_QUEUES_EMPTY;
252
253
/* Save, Step 12:
254
* Read MFC_CNTL[Ds]. Update saved copy of
255
* CSA.MFC_CNTL[Ds].
256
*
257
* update: do the same with MFC_CNTL[Q].
258
*/
259
csa->priv2.mfc_control_RW &= ~mask;
260
csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
261
}
262
263
static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
264
{
265
struct spu_priv2 __iomem *priv2 = spu->priv2;
266
267
/* Save, Step 13:
268
* Write MFC_CNTL[Dh] set to a '1' to halt
269
* the decrementer.
270
*/
271
out_be64(&priv2->mfc_control_RW,
272
MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
273
eieio();
274
}
275
276
static inline void save_timebase(struct spu_state *csa, struct spu *spu)
277
{
278
/* Save, Step 14:
279
* Read PPE Timebase High and Timebase low registers
280
* and save in CSA. TBD.
281
*/
282
csa->suspend_time = get_cycles();
283
}
284
285
static inline void remove_other_spu_access(struct spu_state *csa,
286
struct spu *spu)
287
{
288
/* Save, Step 15:
289
* Remove other SPU access to this SPU by unmapping
290
* this SPU's pages from their address space. TBD.
291
*/
292
}
293
294
static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
295
{
296
struct spu_problem __iomem *prob = spu->problem;
297
298
/* Save, Step 16:
299
* Restore, Step 11.
300
* Write SPU_MSSync register. Poll SPU_MSSync[P]
301
* for a value of 0.
302
*/
303
out_be64(&prob->spc_mssync_RW, 1UL);
304
POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
305
}
306
307
static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
308
{
309
/* Save, Step 17:
310
* Restore, Step 12.
311
* Restore, Step 48.
312
* Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
313
* Then issue a PPE sync instruction.
314
*/
315
spu_tlb_invalidate(spu);
316
mb();
317
}
318
319
static inline void handle_pending_interrupts(struct spu_state *csa,
320
struct spu *spu)
321
{
322
/* Save, Step 18:
323
* Handle any pending interrupts from this SPU
324
* here. This is OS or hypervisor specific. One
325
* option is to re-enable interrupts to handle any
326
* pending interrupts, with the interrupt handlers
327
* recognizing the software Context Switch Pending
328
* flag, to ensure the SPU execution or MFC command
329
* queue is not restarted. TBD.
330
*/
331
}
332
333
static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
334
{
335
struct spu_priv2 __iomem *priv2 = spu->priv2;
336
int i;
337
338
/* Save, Step 19:
339
* If MFC_Cntl[Se]=0 then save
340
* MFC command queues.
341
*/
342
if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
343
for (i = 0; i < 8; i++) {
344
csa->priv2.puq[i].mfc_cq_data0_RW =
345
in_be64(&priv2->puq[i].mfc_cq_data0_RW);
346
csa->priv2.puq[i].mfc_cq_data1_RW =
347
in_be64(&priv2->puq[i].mfc_cq_data1_RW);
348
csa->priv2.puq[i].mfc_cq_data2_RW =
349
in_be64(&priv2->puq[i].mfc_cq_data2_RW);
350
csa->priv2.puq[i].mfc_cq_data3_RW =
351
in_be64(&priv2->puq[i].mfc_cq_data3_RW);
352
}
353
for (i = 0; i < 16; i++) {
354
csa->priv2.spuq[i].mfc_cq_data0_RW =
355
in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
356
csa->priv2.spuq[i].mfc_cq_data1_RW =
357
in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
358
csa->priv2.spuq[i].mfc_cq_data2_RW =
359
in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
360
csa->priv2.spuq[i].mfc_cq_data3_RW =
361
in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
362
}
363
}
364
}
365
366
static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
367
{
368
struct spu_problem __iomem *prob = spu->problem;
369
370
/* Save, Step 20:
371
* Save the PPU_QueryMask register
372
* in the CSA.
373
*/
374
csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
375
}
376
377
static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
378
{
379
struct spu_problem __iomem *prob = spu->problem;
380
381
/* Save, Step 21:
382
* Save the PPU_QueryType register
383
* in the CSA.
384
*/
385
csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
386
}
387
388
static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
389
{
390
struct spu_problem __iomem *prob = spu->problem;
391
392
/* Save the Prxy_TagStatus register in the CSA.
393
*
394
* It is unnecessary to restore dma_tagstatus_R, however,
395
* dma_tagstatus_R in the CSA is accessed via backing_ops, so
396
* we must save it.
397
*/
398
csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
399
}
400
401
static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
402
{
403
struct spu_priv2 __iomem *priv2 = spu->priv2;
404
405
/* Save, Step 22:
406
* Save the MFC_CSR_TSQ register
407
* in the LSCSA.
408
*/
409
csa->priv2.spu_tag_status_query_RW =
410
in_be64(&priv2->spu_tag_status_query_RW);
411
}
412
413
static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
414
{
415
struct spu_priv2 __iomem *priv2 = spu->priv2;
416
417
/* Save, Step 23:
418
* Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
419
* registers in the CSA.
420
*/
421
csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
422
csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
423
}
424
425
static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
426
{
427
struct spu_priv2 __iomem *priv2 = spu->priv2;
428
429
/* Save, Step 24:
430
* Save the MFC_CSR_ATO register in
431
* the CSA.
432
*/
433
csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
434
}
435
436
static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437
{
438
/* Save, Step 25:
439
* Save the MFC_TCLASS_ID register in
440
* the CSA.
441
*/
442
csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
443
}
444
445
static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
446
{
447
/* Save, Step 26:
448
* Restore, Step 23.
449
* Write the MFC_TCLASS_ID register with
450
* the value 0x10000000.
451
*/
452
spu_mfc_tclass_id_set(spu, 0x10000000);
453
eieio();
454
}
455
456
static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
457
{
458
struct spu_priv2 __iomem *priv2 = spu->priv2;
459
460
/* Save, Step 27:
461
* Restore, Step 14.
462
* Write MFC_CNTL[Pc]=1 (purge queue).
463
*/
464
out_be64(&priv2->mfc_control_RW,
465
MFC_CNTL_PURGE_DMA_REQUEST |
466
MFC_CNTL_SUSPEND_MASK);
467
eieio();
468
}
469
470
static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
471
{
472
struct spu_priv2 __iomem *priv2 = spu->priv2;
473
474
/* Save, Step 28:
475
* Poll MFC_CNTL[Ps] until value '11' is read
476
* (purge complete).
477
*/
478
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
479
MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
480
MFC_CNTL_PURGE_DMA_COMPLETE);
481
}
482
483
static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
484
{
485
/* Save, Step 30:
486
* Restore, Step 18:
487
* Write MFC_SR1 with MFC_SR1[D=0,S=1] and
488
* MFC_SR1[TL,R,Pr,T] set correctly for the
489
* OS specific environment.
490
*
491
* Implementation note: The SPU-side code
492
* for save/restore is privileged, so the
493
* MFC_SR1[Pr] bit is not set.
494
*
495
*/
496
spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
497
MFC_STATE1_RELOCATE_MASK |
498
MFC_STATE1_BUS_TLBIE_MASK));
499
}
500
501
static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
502
{
503
struct spu_problem __iomem *prob = spu->problem;
504
505
/* Save, Step 31:
506
* Save SPU_NPC in the CSA.
507
*/
508
csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
509
}
510
511
static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
512
{
513
struct spu_priv2 __iomem *priv2 = spu->priv2;
514
515
/* Save, Step 32:
516
* Save SPU_PrivCntl in the CSA.
517
*/
518
csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
519
}
520
521
static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
522
{
523
struct spu_priv2 __iomem *priv2 = spu->priv2;
524
525
/* Save, Step 33:
526
* Restore, Step 16:
527
* Write SPU_PrivCntl[S,Le,A] fields reset to 0.
528
*/
529
out_be64(&priv2->spu_privcntl_RW, 0UL);
530
eieio();
531
}
532
533
static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
534
{
535
struct spu_priv2 __iomem *priv2 = spu->priv2;
536
537
/* Save, Step 34:
538
* Save SPU_LSLR in the CSA.
539
*/
540
csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
541
}
542
543
static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
544
{
545
struct spu_priv2 __iomem *priv2 = spu->priv2;
546
547
/* Save, Step 35:
548
* Restore, Step 17.
549
* Reset SPU_LSLR.
550
*/
551
out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
552
eieio();
553
}
554
555
static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
556
{
557
struct spu_priv2 __iomem *priv2 = spu->priv2;
558
559
/* Save, Step 36:
560
* Save SPU_Cfg in the CSA.
561
*/
562
csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
563
}
564
565
static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
566
{
567
/* Save, Step 37:
568
* Save PM_Trace_Tag_Wait_Mask in the CSA.
569
* Not performed by this implementation.
570
*/
571
}
572
573
static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
574
{
575
/* Save, Step 38:
576
* Save RA_GROUP_ID register and the
577
* RA_ENABLE reigster in the CSA.
578
*/
579
csa->priv1.resource_allocation_groupID_RW =
580
spu_resource_allocation_groupID_get(spu);
581
csa->priv1.resource_allocation_enable_RW =
582
spu_resource_allocation_enable_get(spu);
583
}
584
585
static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
586
{
587
struct spu_problem __iomem *prob = spu->problem;
588
589
/* Save, Step 39:
590
* Save MB_Stat register in the CSA.
591
*/
592
csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
593
}
594
595
static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
596
{
597
struct spu_problem __iomem *prob = spu->problem;
598
599
/* Save, Step 40:
600
* Save the PPU_MB register in the CSA.
601
*/
602
csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
603
}
604
605
static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
606
{
607
struct spu_priv2 __iomem *priv2 = spu->priv2;
608
609
/* Save, Step 41:
610
* Save the PPUINT_MB register in the CSA.
611
*/
612
csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
613
}
614
615
static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
616
{
617
struct spu_priv2 __iomem *priv2 = spu->priv2;
618
u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
619
int i;
620
621
/* Save, Step 42:
622
*/
623
624
/* Save CH 1, without channel count */
625
out_be64(&priv2->spu_chnlcntptr_RW, 1);
626
csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
627
628
/* Save the following CH: [0,3,4,24,25,27] */
629
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
630
idx = ch_indices[i];
631
out_be64(&priv2->spu_chnlcntptr_RW, idx);
632
eieio();
633
csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
634
csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
635
out_be64(&priv2->spu_chnldata_RW, 0UL);
636
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
637
eieio();
638
}
639
}
640
641
static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
642
{
643
struct spu_priv2 __iomem *priv2 = spu->priv2;
644
int i;
645
646
/* Save, Step 43:
647
* Save SPU Read Mailbox Channel.
648
*/
649
out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
650
eieio();
651
csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
652
for (i = 0; i < 4; i++) {
653
csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
654
}
655
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
656
eieio();
657
}
658
659
static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
660
{
661
struct spu_priv2 __iomem *priv2 = spu->priv2;
662
663
/* Save, Step 44:
664
* Save MFC_CMD Channel.
665
*/
666
out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
667
eieio();
668
csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
669
eieio();
670
}
671
672
static inline void reset_ch(struct spu_state *csa, struct spu *spu)
673
{
674
struct spu_priv2 __iomem *priv2 = spu->priv2;
675
u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
676
u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
677
u64 idx;
678
int i;
679
680
/* Save, Step 45:
681
* Reset the following CH: [21, 23, 28, 30]
682
*/
683
for (i = 0; i < 4; i++) {
684
idx = ch_indices[i];
685
out_be64(&priv2->spu_chnlcntptr_RW, idx);
686
eieio();
687
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
688
eieio();
689
}
690
}
691
692
static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
693
{
694
struct spu_priv2 __iomem *priv2 = spu->priv2;
695
696
/* Save, Step 46:
697
* Restore, Step 25.
698
* Write MFC_CNTL[Sc]=0 (resume queue processing).
699
*/
700
out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
701
}
702
703
static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
704
unsigned int *code, int code_size)
705
{
706
/* Save, Step 47:
707
* Restore, Step 30.
708
* If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
709
* register, then initialize SLB_VSID and SLB_ESID
710
* to provide access to SPU context save code and
711
* LSCSA.
712
*
713
* This implementation places both the context
714
* switch code and LSCSA in kernel address space.
715
*
716
* Further this implementation assumes that the
717
* MFC_SR1[R]=1 (in other words, assume that
718
* translation is desired by OS environment).
719
*/
720
spu_invalidate_slbs(spu);
721
spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
722
}
723
724
static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
725
{
726
/* Save, Step 48:
727
* Restore, Step 23.
728
* Change the software context switch pending flag
729
* to context switch active. This implementation does
730
* not uses a switch active flag.
731
*
732
* Now that we have saved the mfc in the csa, we can add in the
733
* restart command if an exception occurred.
734
*/
735
if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
736
csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
737
clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
738
mb();
739
}
740
741
static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
742
{
743
unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
744
CLASS1_ENABLE_STORAGE_FAULT_INTR;
745
746
/* Save, Step 49:
747
* Restore, Step 22:
748
* Reset and then enable interrupts, as
749
* needed by OS.
750
*
751
* This implementation enables only class1
752
* (translation) interrupts.
753
*/
754
spin_lock_irq(&spu->register_lock);
755
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
756
spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
757
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
758
spu_int_mask_set(spu, 0, 0ul);
759
spu_int_mask_set(spu, 1, class1_mask);
760
spu_int_mask_set(spu, 2, 0ul);
761
spin_unlock_irq(&spu->register_lock);
762
}
763
764
static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
765
unsigned int ls_offset, unsigned int size,
766
unsigned int tag, unsigned int rclass,
767
unsigned int cmd)
768
{
769
struct spu_problem __iomem *prob = spu->problem;
770
union mfc_tag_size_class_cmd command;
771
unsigned int transfer_size;
772
volatile unsigned int status = 0x0;
773
774
while (size > 0) {
775
transfer_size =
776
(size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
777
command.u.mfc_size = transfer_size;
778
command.u.mfc_tag = tag;
779
command.u.mfc_rclassid = rclass;
780
command.u.mfc_cmd = cmd;
781
do {
782
out_be32(&prob->mfc_lsa_W, ls_offset);
783
out_be64(&prob->mfc_ea_W, ea);
784
out_be64(&prob->mfc_union_W.all64, command.all64);
785
status =
786
in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
787
if (unlikely(status & 0x2)) {
788
cpu_relax();
789
}
790
} while (status & 0x3);
791
size -= transfer_size;
792
ea += transfer_size;
793
ls_offset += transfer_size;
794
}
795
return 0;
796
}
797
798
static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
799
{
800
unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
801
unsigned int ls_offset = 0x0;
802
unsigned int size = 16384;
803
unsigned int tag = 0;
804
unsigned int rclass = 0;
805
unsigned int cmd = MFC_PUT_CMD;
806
807
/* Save, Step 50:
808
* Issue a DMA command to copy the first 16K bytes
809
* of local storage to the CSA.
810
*/
811
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
812
}
813
814
static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
815
{
816
struct spu_problem __iomem *prob = spu->problem;
817
818
/* Save, Step 51:
819
* Restore, Step 31.
820
* Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
821
* point address of context save code in local
822
* storage.
823
*
824
* This implementation uses SPU-side save/restore
825
* programs with entry points at LSA of 0.
826
*/
827
out_be32(&prob->spu_npc_RW, 0);
828
eieio();
829
}
830
831
static inline void set_signot1(struct spu_state *csa, struct spu *spu)
832
{
833
struct spu_problem __iomem *prob = spu->problem;
834
union {
835
u64 ull;
836
u32 ui[2];
837
} addr64;
838
839
/* Save, Step 52:
840
* Restore, Step 32:
841
* Write SPU_Sig_Notify_1 register with upper 32-bits
842
* of the CSA.LSCSA effective address.
843
*/
844
addr64.ull = (u64) csa->lscsa;
845
out_be32(&prob->signal_notify1, addr64.ui[0]);
846
eieio();
847
}
848
849
static inline void set_signot2(struct spu_state *csa, struct spu *spu)
850
{
851
struct spu_problem __iomem *prob = spu->problem;
852
union {
853
u64 ull;
854
u32 ui[2];
855
} addr64;
856
857
/* Save, Step 53:
858
* Restore, Step 33:
859
* Write SPU_Sig_Notify_2 register with lower 32-bits
860
* of the CSA.LSCSA effective address.
861
*/
862
addr64.ull = (u64) csa->lscsa;
863
out_be32(&prob->signal_notify2, addr64.ui[1]);
864
eieio();
865
}
866
867
static inline void send_save_code(struct spu_state *csa, struct spu *spu)
868
{
869
unsigned long addr = (unsigned long)&spu_save_code[0];
870
unsigned int ls_offset = 0x0;
871
unsigned int size = sizeof(spu_save_code);
872
unsigned int tag = 0;
873
unsigned int rclass = 0;
874
unsigned int cmd = MFC_GETFS_CMD;
875
876
/* Save, Step 54:
877
* Issue a DMA command to copy context save code
878
* to local storage and start SPU.
879
*/
880
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
881
}
882
883
static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
884
{
885
struct spu_problem __iomem *prob = spu->problem;
886
887
/* Save, Step 55:
888
* Restore, Step 38.
889
* Write PPU_QueryMask=1 (enable Tag Group 0)
890
* and issue eieio instruction.
891
*/
892
out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
893
eieio();
894
}
895
896
static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
897
{
898
struct spu_problem __iomem *prob = spu->problem;
899
u32 mask = MFC_TAGID_TO_TAGMASK(0);
900
unsigned long flags;
901
902
/* Save, Step 56:
903
* Restore, Step 39.
904
* Restore, Step 39.
905
* Restore, Step 46.
906
* Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
907
* or write PPU_QueryType[TS]=01 and wait for Tag Group
908
* Complete Interrupt. Write INT_Stat_Class0 or
909
* INT_Stat_Class2 with value of 'handled'.
910
*/
911
POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
912
913
local_irq_save(flags);
914
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
915
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
916
local_irq_restore(flags);
917
}
918
919
static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
920
{
921
struct spu_problem __iomem *prob = spu->problem;
922
unsigned long flags;
923
924
/* Save, Step 57:
925
* Restore, Step 40.
926
* Poll until SPU_Status[R]=0 or wait for SPU Class 0
927
* or SPU Class 2 interrupt. Write INT_Stat_class0
928
* or INT_Stat_class2 with value of handled.
929
*/
930
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
931
932
local_irq_save(flags);
933
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
934
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
935
local_irq_restore(flags);
936
}
937
938
static inline int check_save_status(struct spu_state *csa, struct spu *spu)
939
{
940
struct spu_problem __iomem *prob = spu->problem;
941
u32 complete;
942
943
/* Save, Step 54:
944
* If SPU_Status[P]=1 and SPU_Status[SC] = "success",
945
* context save succeeded, otherwise context save
946
* failed.
947
*/
948
complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
949
SPU_STATUS_STOPPED_BY_STOP);
950
return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
951
}
952
953
static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
954
{
955
/* Restore, Step 4:
956
* If required, notify the "using application" that
957
* the SPU task has been terminated. TBD.
958
*/
959
}
960
961
static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
962
struct spu *spu)
963
{
964
struct spu_priv2 __iomem *priv2 = spu->priv2;
965
966
/* Restore, Step 7:
967
* Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
968
* the queue and halt the decrementer.
969
*/
970
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
971
MFC_CNTL_DECREMENTER_HALTED);
972
eieio();
973
}
974
975
static inline void wait_suspend_mfc_complete(struct spu_state *csa,
976
struct spu *spu)
977
{
978
struct spu_priv2 __iomem *priv2 = spu->priv2;
979
980
/* Restore, Step 8:
981
* Restore, Step 47.
982
* Poll MFC_CNTL[Ss] until 11 is returned.
983
*/
984
POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
985
MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
986
MFC_CNTL_SUSPEND_COMPLETE);
987
}
988
989
static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
990
{
991
struct spu_problem __iomem *prob = spu->problem;
992
993
/* Restore, Step 9:
994
* If SPU_Status[R]=1, stop SPU execution
995
* and wait for stop to complete.
996
*
997
* Returns 1 if SPU_Status[R]=1 on entry.
998
* 0 otherwise
999
*/
1000
if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1001
if (in_be32(&prob->spu_status_R) &
1002
SPU_STATUS_ISOLATED_EXIT_STATUS) {
1003
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1004
SPU_STATUS_RUNNING);
1005
}
1006
if ((in_be32(&prob->spu_status_R) &
1007
SPU_STATUS_ISOLATED_LOAD_STATUS)
1008
|| (in_be32(&prob->spu_status_R) &
1009
SPU_STATUS_ISOLATED_STATE)) {
1010
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1011
eieio();
1012
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013
SPU_STATUS_RUNNING);
1014
out_be32(&prob->spu_runcntl_RW, 0x2);
1015
eieio();
1016
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017
SPU_STATUS_RUNNING);
1018
}
1019
if (in_be32(&prob->spu_status_R) &
1020
SPU_STATUS_WAITING_FOR_CHANNEL) {
1021
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1022
eieio();
1023
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1024
SPU_STATUS_RUNNING);
1025
}
1026
return 1;
1027
}
1028
return 0;
1029
}
1030
1031
static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1032
{
1033
struct spu_problem __iomem *prob = spu->problem;
1034
1035
/* Restore, Step 10:
1036
* If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1037
* release SPU from isolate state.
1038
*/
1039
if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1040
if (in_be32(&prob->spu_status_R) &
1041
SPU_STATUS_ISOLATED_EXIT_STATUS) {
1042
spu_mfc_sr1_set(spu,
1043
MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1044
eieio();
1045
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1046
eieio();
1047
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1048
SPU_STATUS_RUNNING);
1049
}
1050
if ((in_be32(&prob->spu_status_R) &
1051
SPU_STATUS_ISOLATED_LOAD_STATUS)
1052
|| (in_be32(&prob->spu_status_R) &
1053
SPU_STATUS_ISOLATED_STATE)) {
1054
spu_mfc_sr1_set(spu,
1055
MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1056
eieio();
1057
out_be32(&prob->spu_runcntl_RW, 0x2);
1058
eieio();
1059
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060
SPU_STATUS_RUNNING);
1061
}
1062
}
1063
}
1064
1065
static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1066
{
1067
struct spu_priv2 __iomem *priv2 = spu->priv2;
1068
u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1069
u64 idx;
1070
int i;
1071
1072
/* Restore, Step 20:
1073
*/
1074
1075
/* Reset CH 1 */
1076
out_be64(&priv2->spu_chnlcntptr_RW, 1);
1077
out_be64(&priv2->spu_chnldata_RW, 0UL);
1078
1079
/* Reset the following CH: [0,3,4,24,25,27] */
1080
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1081
idx = ch_indices[i];
1082
out_be64(&priv2->spu_chnlcntptr_RW, idx);
1083
eieio();
1084
out_be64(&priv2->spu_chnldata_RW, 0UL);
1085
out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1086
eieio();
1087
}
1088
}
1089
1090
static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1091
{
1092
struct spu_priv2 __iomem *priv2 = spu->priv2;
1093
u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1094
u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1095
u64 idx;
1096
int i;
1097
1098
/* Restore, Step 21:
1099
* Reset the following CH: [21, 23, 28, 29, 30]
1100
*/
1101
for (i = 0; i < 5; i++) {
1102
idx = ch_indices[i];
1103
out_be64(&priv2->spu_chnlcntptr_RW, idx);
1104
eieio();
1105
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1106
eieio();
1107
}
1108
}
1109
1110
static inline void setup_spu_status_part1(struct spu_state *csa,
1111
struct spu *spu)
1112
{
1113
u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1114
u32 status_I = SPU_STATUS_INVALID_INSTR;
1115
u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1116
u32 status_S = SPU_STATUS_SINGLE_STEP;
1117
u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1118
u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1119
u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1120
u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1121
u32 status_code;
1122
1123
/* Restore, Step 27:
1124
* If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1125
* instruction sequence to the end of the SPU based restore
1126
* code (after the "context restored" stop and signal) to
1127
* restore the correct SPU status.
1128
*
1129
* NOTE: Rather than modifying the SPU executable, we
1130
* instead add a new 'stopped_status' field to the
1131
* LSCSA. The SPU-side restore reads this field and
1132
* takes the appropriate action when exiting.
1133
*/
1134
1135
status_code =
1136
(csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1137
if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1138
1139
/* SPU_Status[P,I]=1 - Illegal Instruction followed
1140
* by Stop and Signal instruction, followed by 'br -4'.
1141
*
1142
*/
1143
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1144
csa->lscsa->stopped_status.slot[1] = status_code;
1145
1146
} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1147
1148
/* SPU_Status[P,H]=1 - Halt Conditional, followed
1149
* by Stop and Signal instruction, followed by
1150
* 'br -4'.
1151
*/
1152
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1153
csa->lscsa->stopped_status.slot[1] = status_code;
1154
1155
} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1156
1157
/* SPU_Status[S,P]=1 - Stop and Signal instruction
1158
* followed by 'br -4'.
1159
*/
1160
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1161
csa->lscsa->stopped_status.slot[1] = status_code;
1162
1163
} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1164
1165
/* SPU_Status[S,I]=1 - Illegal instruction followed
1166
* by 'br -4'.
1167
*/
1168
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1169
csa->lscsa->stopped_status.slot[1] = status_code;
1170
1171
} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1172
1173
/* SPU_Status[P]=1 - Stop and Signal instruction
1174
* followed by 'br -4'.
1175
*/
1176
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1177
csa->lscsa->stopped_status.slot[1] = status_code;
1178
1179
} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1180
1181
/* SPU_Status[H]=1 - Halt Conditional, followed
1182
* by 'br -4'.
1183
*/
1184
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1185
1186
} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1187
1188
/* SPU_Status[S]=1 - Two nop instructions.
1189
*/
1190
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1191
1192
} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1193
1194
/* SPU_Status[I]=1 - Illegal instruction followed
1195
* by 'br -4'.
1196
*/
1197
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1198
1199
}
1200
}
1201
1202
static inline void setup_spu_status_part2(struct spu_state *csa,
1203
struct spu *spu)
1204
{
1205
u32 mask;
1206
1207
/* Restore, Step 28:
1208
* If the CSA.SPU_Status[I,S,H,P,R]=0 then
1209
* add a 'br *' instruction to the end of
1210
* the SPU based restore code.
1211
*
1212
* NOTE: Rather than modifying the SPU executable, we
1213
* instead add a new 'stopped_status' field to the
1214
* LSCSA. The SPU-side restore reads this field and
1215
* takes the appropriate action when exiting.
1216
*/
1217
mask = SPU_STATUS_INVALID_INSTR |
1218
SPU_STATUS_SINGLE_STEP |
1219
SPU_STATUS_STOPPED_BY_HALT |
1220
SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1221
if (!(csa->prob.spu_status_R & mask)) {
1222
csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1223
}
1224
}
1225
1226
static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1227
{
1228
/* Restore, Step 29:
1229
* Restore RA_GROUP_ID register and the
1230
* RA_ENABLE reigster from the CSA.
1231
*/
1232
spu_resource_allocation_groupID_set(spu,
1233
csa->priv1.resource_allocation_groupID_RW);
1234
spu_resource_allocation_enable_set(spu,
1235
csa->priv1.resource_allocation_enable_RW);
1236
}
1237
1238
static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1239
{
1240
unsigned long addr = (unsigned long)&spu_restore_code[0];
1241
unsigned int ls_offset = 0x0;
1242
unsigned int size = sizeof(spu_restore_code);
1243
unsigned int tag = 0;
1244
unsigned int rclass = 0;
1245
unsigned int cmd = MFC_GETFS_CMD;
1246
1247
/* Restore, Step 37:
1248
* Issue MFC DMA command to copy context
1249
* restore code to local storage.
1250
*/
1251
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1252
}
1253
1254
static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1255
{
1256
/* Restore, Step 34:
1257
* If CSA.MFC_CNTL[Ds]=1 (decrementer was
1258
* running) then adjust decrementer, set
1259
* decrementer running status in LSCSA,
1260
* and set decrementer "wrapped" status
1261
* in LSCSA.
1262
*/
1263
if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1264
cycles_t resume_time = get_cycles();
1265
cycles_t delta_time = resume_time - csa->suspend_time;
1266
1267
csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1268
if (csa->lscsa->decr.slot[0] < delta_time) {
1269
csa->lscsa->decr_status.slot[0] |=
1270
SPU_DECR_STATUS_WRAPPED;
1271
}
1272
1273
csa->lscsa->decr.slot[0] -= delta_time;
1274
} else {
1275
csa->lscsa->decr_status.slot[0] = 0;
1276
}
1277
}
1278
1279
static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1280
{
1281
/* Restore, Step 35:
1282
* Copy the CSA.PU_MB data into the LSCSA.
1283
*/
1284
csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1285
}
1286
1287
static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1288
{
1289
/* Restore, Step 36:
1290
* Copy the CSA.PUINT_MB data into the LSCSA.
1291
*/
1292
csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1293
}
1294
1295
static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1296
{
1297
struct spu_problem __iomem *prob = spu->problem;
1298
u32 complete;
1299
1300
/* Restore, Step 40:
1301
* If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1302
* context restore succeeded, otherwise context restore
1303
* failed.
1304
*/
1305
complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1306
SPU_STATUS_STOPPED_BY_STOP);
1307
return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1308
}
1309
1310
static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1311
{
1312
struct spu_priv2 __iomem *priv2 = spu->priv2;
1313
1314
/* Restore, Step 41:
1315
* Restore SPU_PrivCntl from the CSA.
1316
*/
1317
out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1318
eieio();
1319
}
1320
1321
static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1322
{
1323
struct spu_problem __iomem *prob = spu->problem;
1324
u32 mask;
1325
1326
/* Restore, Step 42:
1327
* If any CSA.SPU_Status[I,S,H,P]=1, then
1328
* restore the error or single step state.
1329
*/
1330
mask = SPU_STATUS_INVALID_INSTR |
1331
SPU_STATUS_SINGLE_STEP |
1332
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1333
if (csa->prob.spu_status_R & mask) {
1334
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1335
eieio();
1336
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1337
SPU_STATUS_RUNNING);
1338
}
1339
}
1340
1341
static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1342
{
1343
struct spu_problem __iomem *prob = spu->problem;
1344
u32 mask;
1345
1346
/* Restore, Step 43:
1347
* If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1348
* SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1349
* then write '00' to SPU_RunCntl[R0R1] and wait
1350
* for SPU_Status[R]=0.
1351
*/
1352
mask = SPU_STATUS_INVALID_INSTR |
1353
SPU_STATUS_SINGLE_STEP |
1354
SPU_STATUS_STOPPED_BY_HALT |
1355
SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1356
if (!(csa->prob.spu_status_R & mask)) {
1357
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1358
eieio();
1359
POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1360
SPU_STATUS_RUNNING);
1361
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1362
eieio();
1363
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1364
SPU_STATUS_RUNNING);
1365
}
1366
}
1367
1368
static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1369
{
1370
unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1371
unsigned int ls_offset = 0x0;
1372
unsigned int size = 16384;
1373
unsigned int tag = 0;
1374
unsigned int rclass = 0;
1375
unsigned int cmd = MFC_GET_CMD;
1376
1377
/* Restore, Step 44:
1378
* Issue a DMA command to restore the first
1379
* 16kb of local storage from CSA.
1380
*/
1381
send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1382
}
1383
1384
static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1385
{
1386
struct spu_priv2 __iomem *priv2 = spu->priv2;
1387
1388
/* Restore, Step 47.
1389
* Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1390
* the queue.
1391
*/
1392
out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1393
eieio();
1394
}
1395
1396
static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1397
{
1398
/* Restore, Step 49:
1399
* Write INT_MASK_class0 with value of 0.
1400
* Write INT_MASK_class1 with value of 0.
1401
* Write INT_MASK_class2 with value of 0.
1402
* Write INT_STAT_class0 with value of -1.
1403
* Write INT_STAT_class1 with value of -1.
1404
* Write INT_STAT_class2 with value of -1.
1405
*/
1406
spin_lock_irq(&spu->register_lock);
1407
spu_int_mask_set(spu, 0, 0ul);
1408
spu_int_mask_set(spu, 1, 0ul);
1409
spu_int_mask_set(spu, 2, 0ul);
1410
spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1411
spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1412
spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1413
spin_unlock_irq(&spu->register_lock);
1414
}
1415
1416
static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1417
{
1418
struct spu_priv2 __iomem *priv2 = spu->priv2;
1419
int i;
1420
1421
/* Restore, Step 50:
1422
* If MFC_Cntl[Se]!=0 then restore
1423
* MFC command queues.
1424
*/
1425
if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1426
for (i = 0; i < 8; i++) {
1427
out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1428
csa->priv2.puq[i].mfc_cq_data0_RW);
1429
out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1430
csa->priv2.puq[i].mfc_cq_data1_RW);
1431
out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1432
csa->priv2.puq[i].mfc_cq_data2_RW);
1433
out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1434
csa->priv2.puq[i].mfc_cq_data3_RW);
1435
}
1436
for (i = 0; i < 16; i++) {
1437
out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1438
csa->priv2.spuq[i].mfc_cq_data0_RW);
1439
out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1440
csa->priv2.spuq[i].mfc_cq_data1_RW);
1441
out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1442
csa->priv2.spuq[i].mfc_cq_data2_RW);
1443
out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1444
csa->priv2.spuq[i].mfc_cq_data3_RW);
1445
}
1446
}
1447
eieio();
1448
}
1449
1450
static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1451
{
1452
struct spu_problem __iomem *prob = spu->problem;
1453
1454
/* Restore, Step 51:
1455
* Restore the PPU_QueryMask register from CSA.
1456
*/
1457
out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1458
eieio();
1459
}
1460
1461
static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1462
{
1463
struct spu_problem __iomem *prob = spu->problem;
1464
1465
/* Restore, Step 52:
1466
* Restore the PPU_QueryType register from CSA.
1467
*/
1468
out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1469
eieio();
1470
}
1471
1472
static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1473
{
1474
struct spu_priv2 __iomem *priv2 = spu->priv2;
1475
1476
/* Restore, Step 53:
1477
* Restore the MFC_CSR_TSQ register from CSA.
1478
*/
1479
out_be64(&priv2->spu_tag_status_query_RW,
1480
csa->priv2.spu_tag_status_query_RW);
1481
eieio();
1482
}
1483
1484
static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1485
{
1486
struct spu_priv2 __iomem *priv2 = spu->priv2;
1487
1488
/* Restore, Step 54:
1489
* Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1490
* registers from CSA.
1491
*/
1492
out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1493
out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1494
eieio();
1495
}
1496
1497
static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1498
{
1499
struct spu_priv2 __iomem *priv2 = spu->priv2;
1500
1501
/* Restore, Step 55:
1502
* Restore the MFC_CSR_ATO register from CSA.
1503
*/
1504
out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1505
}
1506
1507
static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1508
{
1509
/* Restore, Step 56:
1510
* Restore the MFC_TCLASS_ID register from CSA.
1511
*/
1512
spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1513
eieio();
1514
}
1515
1516
static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1517
{
1518
u64 ch0_cnt, ch0_data;
1519
u64 ch1_data;
1520
1521
/* Restore, Step 57:
1522
* Set the Lock Line Reservation Lost Event by:
1523
* 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1524
* 2. If CSA.SPU_Channel_0_Count=0 and
1525
* CSA.SPU_Wr_Event_Mask[Lr]=1 and
1526
* CSA.SPU_Event_Status[Lr]=0 then set
1527
* CSA.SPU_Event_Status_Count=1.
1528
*/
1529
ch0_cnt = csa->spu_chnlcnt_RW[0];
1530
ch0_data = csa->spu_chnldata_RW[0];
1531
ch1_data = csa->spu_chnldata_RW[1];
1532
csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1533
if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1534
(ch1_data & MFC_LLR_LOST_EVENT)) {
1535
csa->spu_chnlcnt_RW[0] = 1;
1536
}
1537
}
1538
1539
static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1540
{
1541
/* Restore, Step 58:
1542
* If the status of the CSA software decrementer
1543
* "wrapped" flag is set, OR in a '1' to
1544
* CSA.SPU_Event_Status[Tm].
1545
*/
1546
if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1547
return;
1548
1549
if ((csa->spu_chnlcnt_RW[0] == 0) &&
1550
(csa->spu_chnldata_RW[1] & 0x20) &&
1551
!(csa->spu_chnldata_RW[0] & 0x20))
1552
csa->spu_chnlcnt_RW[0] = 1;
1553
1554
csa->spu_chnldata_RW[0] |= 0x20;
1555
}
1556
1557
static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1558
{
1559
struct spu_priv2 __iomem *priv2 = spu->priv2;
1560
u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1561
int i;
1562
1563
/* Restore, Step 59:
1564
* Restore the following CH: [0,3,4,24,25,27]
1565
*/
1566
for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1567
idx = ch_indices[i];
1568
out_be64(&priv2->spu_chnlcntptr_RW, idx);
1569
eieio();
1570
out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1571
out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1572
eieio();
1573
}
1574
}
1575
1576
static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1577
{
1578
struct spu_priv2 __iomem *priv2 = spu->priv2;
1579
u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1580
u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1581
u64 idx;
1582
int i;
1583
1584
/* Restore, Step 60:
1585
* Restore the following CH: [9,21,23].
1586
*/
1587
ch_counts[0] = 1UL;
1588
ch_counts[1] = csa->spu_chnlcnt_RW[21];
1589
ch_counts[2] = 1UL;
1590
for (i = 0; i < 3; i++) {
1591
idx = ch_indices[i];
1592
out_be64(&priv2->spu_chnlcntptr_RW, idx);
1593
eieio();
1594
out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1595
eieio();
1596
}
1597
}
1598
1599
static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1600
{
1601
struct spu_priv2 __iomem *priv2 = spu->priv2;
1602
1603
/* Restore, Step 61:
1604
* Restore the SPU_LSLR register from CSA.
1605
*/
1606
out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1607
eieio();
1608
}
1609
1610
static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1611
{
1612
struct spu_priv2 __iomem *priv2 = spu->priv2;
1613
1614
/* Restore, Step 62:
1615
* Restore the SPU_Cfg register from CSA.
1616
*/
1617
out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1618
eieio();
1619
}
1620
1621
static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1622
{
1623
/* Restore, Step 63:
1624
* Restore PM_Trace_Tag_Wait_Mask from CSA.
1625
* Not performed by this implementation.
1626
*/
1627
}
1628
1629
static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1630
{
1631
struct spu_problem __iomem *prob = spu->problem;
1632
1633
/* Restore, Step 64:
1634
* Restore SPU_NPC from CSA.
1635
*/
1636
out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1637
eieio();
1638
}
1639
1640
static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1641
{
1642
struct spu_priv2 __iomem *priv2 = spu->priv2;
1643
int i;
1644
1645
/* Restore, Step 65:
1646
* Restore MFC_RdSPU_MB from CSA.
1647
*/
1648
out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1649
eieio();
1650
out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1651
for (i = 0; i < 4; i++) {
1652
out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1653
}
1654
eieio();
1655
}
1656
1657
static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1658
{
1659
struct spu_problem __iomem *prob = spu->problem;
1660
1661
/* Restore, Step 66:
1662
* If CSA.MB_Stat[P]=0 (mailbox empty) then
1663
* read from the PPU_MB register.
1664
*/
1665
if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1666
in_be32(&prob->pu_mb_R);
1667
eieio();
1668
}
1669
}
1670
1671
static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1672
{
1673
struct spu_priv2 __iomem *priv2 = spu->priv2;
1674
1675
/* Restore, Step 66:
1676
* If CSA.MB_Stat[I]=0 (mailbox empty) then
1677
* read from the PPUINT_MB register.
1678
*/
1679
if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1680
in_be64(&priv2->puint_mb_R);
1681
eieio();
1682
spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1683
eieio();
1684
}
1685
}
1686
1687
static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1688
{
1689
/* Restore, Step 69:
1690
* Restore the MFC_SR1 register from CSA.
1691
*/
1692
spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1693
eieio();
1694
}
1695
1696
static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1697
{
1698
struct spu_context *ctx = spu->ctx;
1699
1700
spu_cpu_affinity_set(spu, ctx->last_ran);
1701
}
1702
1703
static inline void restore_other_spu_access(struct spu_state *csa,
1704
struct spu *spu)
1705
{
1706
/* Restore, Step 70:
1707
* Restore other SPU mappings to this SPU. TBD.
1708
*/
1709
}
1710
1711
static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1712
{
1713
struct spu_problem __iomem *prob = spu->problem;
1714
1715
/* Restore, Step 71:
1716
* If CSA.SPU_Status[R]=1 then write
1717
* SPU_RunCntl[R0R1]='01'.
1718
*/
1719
if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1720
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1721
eieio();
1722
}
1723
}
1724
1725
static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1726
{
1727
struct spu_priv2 __iomem *priv2 = spu->priv2;
1728
1729
/* Restore, Step 72:
1730
* Restore the MFC_CNTL register for the CSA.
1731
*/
1732
out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1733
eieio();
1734
1735
/*
1736
* The queue is put back into the same state that was evident prior to
1737
* the context switch. The suspend flag is added to the saved state in
1738
* the csa, if the operational state was suspending or suspended. In
1739
* this case, the code that suspended the mfc is responsible for
1740
* continuing it. Note that SPE faults do not change the operational
1741
* state of the spu.
1742
*/
1743
}
1744
1745
static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1746
{
1747
/* Restore, Step 73:
1748
* Enable user-space access (if provided) to this
1749
* SPU by mapping the virtual pages assigned to
1750
* the SPU memory-mapped I/O (MMIO) for problem
1751
* state. TBD.
1752
*/
1753
}
1754
1755
static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1756
{
1757
/* Restore, Step 74:
1758
* Reset the "context switch active" flag.
1759
* Not performed by this implementation.
1760
*/
1761
}
1762
1763
static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1764
{
1765
/* Restore, Step 75:
1766
* Re-enable SPU interrupts.
1767
*/
1768
spin_lock_irq(&spu->register_lock);
1769
spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1770
spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1771
spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1772
spin_unlock_irq(&spu->register_lock);
1773
}
1774
1775
static int quiece_spu(struct spu_state *prev, struct spu *spu)
1776
{
1777
/*
1778
* Combined steps 2-18 of SPU context save sequence, which
1779
* quiesce the SPU state (disable SPU execution, MFC command
1780
* queues, decrementer, SPU interrupts, etc.).
1781
*
1782
* Returns 0 on success.
1783
* 2 if failed step 2.
1784
* 6 if failed step 6.
1785
*/
1786
1787
if (check_spu_isolate(prev, spu)) { /* Step 2. */
1788
return 2;
1789
}
1790
disable_interrupts(prev, spu); /* Step 3. */
1791
set_watchdog_timer(prev, spu); /* Step 4. */
1792
inhibit_user_access(prev, spu); /* Step 5. */
1793
if (check_spu_isolate(prev, spu)) { /* Step 6. */
1794
return 6;
1795
}
1796
set_switch_pending(prev, spu); /* Step 7. */
1797
save_mfc_cntl(prev, spu); /* Step 8. */
1798
save_spu_runcntl(prev, spu); /* Step 9. */
1799
save_mfc_sr1(prev, spu); /* Step 10. */
1800
save_spu_status(prev, spu); /* Step 11. */
1801
save_mfc_stopped_status(prev, spu); /* Step 12. */
1802
halt_mfc_decr(prev, spu); /* Step 13. */
1803
save_timebase(prev, spu); /* Step 14. */
1804
remove_other_spu_access(prev, spu); /* Step 15. */
1805
do_mfc_mssync(prev, spu); /* Step 16. */
1806
issue_mfc_tlbie(prev, spu); /* Step 17. */
1807
handle_pending_interrupts(prev, spu); /* Step 18. */
1808
1809
return 0;
1810
}
1811
1812
static void save_csa(struct spu_state *prev, struct spu *spu)
1813
{
1814
/*
1815
* Combine steps 19-44 of SPU context save sequence, which
1816
* save regions of the privileged & problem state areas.
1817
*/
1818
1819
save_mfc_queues(prev, spu); /* Step 19. */
1820
save_ppu_querymask(prev, spu); /* Step 20. */
1821
save_ppu_querytype(prev, spu); /* Step 21. */
1822
save_ppu_tagstatus(prev, spu); /* NEW. */
1823
save_mfc_csr_tsq(prev, spu); /* Step 22. */
1824
save_mfc_csr_cmd(prev, spu); /* Step 23. */
1825
save_mfc_csr_ato(prev, spu); /* Step 24. */
1826
save_mfc_tclass_id(prev, spu); /* Step 25. */
1827
set_mfc_tclass_id(prev, spu); /* Step 26. */
1828
save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
1829
purge_mfc_queue(prev, spu); /* Step 27. */
1830
wait_purge_complete(prev, spu); /* Step 28. */
1831
setup_mfc_sr1(prev, spu); /* Step 30. */
1832
save_spu_npc(prev, spu); /* Step 31. */
1833
save_spu_privcntl(prev, spu); /* Step 32. */
1834
reset_spu_privcntl(prev, spu); /* Step 33. */
1835
save_spu_lslr(prev, spu); /* Step 34. */
1836
reset_spu_lslr(prev, spu); /* Step 35. */
1837
save_spu_cfg(prev, spu); /* Step 36. */
1838
save_pm_trace(prev, spu); /* Step 37. */
1839
save_mfc_rag(prev, spu); /* Step 38. */
1840
save_ppu_mb_stat(prev, spu); /* Step 39. */
1841
save_ppu_mb(prev, spu); /* Step 40. */
1842
save_ppuint_mb(prev, spu); /* Step 41. */
1843
save_ch_part1(prev, spu); /* Step 42. */
1844
save_spu_mb(prev, spu); /* Step 43. */
1845
reset_ch(prev, spu); /* Step 45. */
1846
}
1847
1848
static void save_lscsa(struct spu_state *prev, struct spu *spu)
1849
{
1850
/*
1851
* Perform steps 46-57 of SPU context save sequence,
1852
* which save regions of the local store and register
1853
* file.
1854
*/
1855
1856
resume_mfc_queue(prev, spu); /* Step 46. */
1857
/* Step 47. */
1858
setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1859
set_switch_active(prev, spu); /* Step 48. */
1860
enable_interrupts(prev, spu); /* Step 49. */
1861
save_ls_16kb(prev, spu); /* Step 50. */
1862
set_spu_npc(prev, spu); /* Step 51. */
1863
set_signot1(prev, spu); /* Step 52. */
1864
set_signot2(prev, spu); /* Step 53. */
1865
send_save_code(prev, spu); /* Step 54. */
1866
set_ppu_querymask(prev, spu); /* Step 55. */
1867
wait_tag_complete(prev, spu); /* Step 56. */
1868
wait_spu_stopped(prev, spu); /* Step 57. */
1869
}
1870
1871
static void force_spu_isolate_exit(struct spu *spu)
1872
{
1873
struct spu_problem __iomem *prob = spu->problem;
1874
struct spu_priv2 __iomem *priv2 = spu->priv2;
1875
1876
/* Stop SPE execution and wait for completion. */
1877
out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1878
iobarrier_rw();
1879
POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1880
1881
/* Restart SPE master runcntl. */
1882
spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1883
iobarrier_w();
1884
1885
/* Initiate isolate exit request and wait for completion. */
1886
out_be64(&priv2->spu_privcntl_RW, 4LL);
1887
iobarrier_w();
1888
out_be32(&prob->spu_runcntl_RW, 2);
1889
iobarrier_rw();
1890
POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1891
& SPU_STATUS_STOPPED_BY_STOP));
1892
1893
/* Reset load request to normal. */
1894
out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1895
iobarrier_w();
1896
}
1897
1898
/**
1899
* stop_spu_isolate
1900
* Check SPU run-control state and force isolated
1901
* exit function as necessary.
1902
*/
1903
static void stop_spu_isolate(struct spu *spu)
1904
{
1905
struct spu_problem __iomem *prob = spu->problem;
1906
1907
if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1908
/* The SPU is in isolated state; the only way
1909
* to get it out is to perform an isolated
1910
* exit (clean) operation.
1911
*/
1912
force_spu_isolate_exit(spu);
1913
}
1914
}
1915
1916
static void harvest(struct spu_state *prev, struct spu *spu)
1917
{
1918
/*
1919
* Perform steps 2-25 of SPU context restore sequence,
1920
* which resets an SPU either after a failed save, or
1921
* when using SPU for first time.
1922
*/
1923
1924
disable_interrupts(prev, spu); /* Step 2. */
1925
inhibit_user_access(prev, spu); /* Step 3. */
1926
terminate_spu_app(prev, spu); /* Step 4. */
1927
set_switch_pending(prev, spu); /* Step 5. */
1928
stop_spu_isolate(spu); /* NEW. */
1929
remove_other_spu_access(prev, spu); /* Step 6. */
1930
suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
1931
wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1932
if (!suspend_spe(prev, spu)) /* Step 9. */
1933
clear_spu_status(prev, spu); /* Step 10. */
1934
do_mfc_mssync(prev, spu); /* Step 11. */
1935
issue_mfc_tlbie(prev, spu); /* Step 12. */
1936
handle_pending_interrupts(prev, spu); /* Step 13. */
1937
purge_mfc_queue(prev, spu); /* Step 14. */
1938
wait_purge_complete(prev, spu); /* Step 15. */
1939
reset_spu_privcntl(prev, spu); /* Step 16. */
1940
reset_spu_lslr(prev, spu); /* Step 17. */
1941
setup_mfc_sr1(prev, spu); /* Step 18. */
1942
spu_invalidate_slbs(spu); /* Step 19. */
1943
reset_ch_part1(prev, spu); /* Step 20. */
1944
reset_ch_part2(prev, spu); /* Step 21. */
1945
enable_interrupts(prev, spu); /* Step 22. */
1946
set_switch_active(prev, spu); /* Step 23. */
1947
set_mfc_tclass_id(prev, spu); /* Step 24. */
1948
resume_mfc_queue(prev, spu); /* Step 25. */
1949
}
1950
1951
static void restore_lscsa(struct spu_state *next, struct spu *spu)
1952
{
1953
/*
1954
* Perform steps 26-40 of SPU context restore sequence,
1955
* which restores regions of the local store and register
1956
* file.
1957
*/
1958
1959
set_watchdog_timer(next, spu); /* Step 26. */
1960
setup_spu_status_part1(next, spu); /* Step 27. */
1961
setup_spu_status_part2(next, spu); /* Step 28. */
1962
restore_mfc_rag(next, spu); /* Step 29. */
1963
/* Step 30. */
1964
setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1965
set_spu_npc(next, spu); /* Step 31. */
1966
set_signot1(next, spu); /* Step 32. */
1967
set_signot2(next, spu); /* Step 33. */
1968
setup_decr(next, spu); /* Step 34. */
1969
setup_ppu_mb(next, spu); /* Step 35. */
1970
setup_ppuint_mb(next, spu); /* Step 36. */
1971
send_restore_code(next, spu); /* Step 37. */
1972
set_ppu_querymask(next, spu); /* Step 38. */
1973
wait_tag_complete(next, spu); /* Step 39. */
1974
wait_spu_stopped(next, spu); /* Step 40. */
1975
}
1976
1977
static void restore_csa(struct spu_state *next, struct spu *spu)
1978
{
1979
/*
1980
* Combine steps 41-76 of SPU context restore sequence, which
1981
* restore regions of the privileged & problem state areas.
1982
*/
1983
1984
restore_spu_privcntl(next, spu); /* Step 41. */
1985
restore_status_part1(next, spu); /* Step 42. */
1986
restore_status_part2(next, spu); /* Step 43. */
1987
restore_ls_16kb(next, spu); /* Step 44. */
1988
wait_tag_complete(next, spu); /* Step 45. */
1989
suspend_mfc(next, spu); /* Step 46. */
1990
wait_suspend_mfc_complete(next, spu); /* Step 47. */
1991
issue_mfc_tlbie(next, spu); /* Step 48. */
1992
clear_interrupts(next, spu); /* Step 49. */
1993
restore_mfc_queues(next, spu); /* Step 50. */
1994
restore_ppu_querymask(next, spu); /* Step 51. */
1995
restore_ppu_querytype(next, spu); /* Step 52. */
1996
restore_mfc_csr_tsq(next, spu); /* Step 53. */
1997
restore_mfc_csr_cmd(next, spu); /* Step 54. */
1998
restore_mfc_csr_ato(next, spu); /* Step 55. */
1999
restore_mfc_tclass_id(next, spu); /* Step 56. */
2000
set_llr_event(next, spu); /* Step 57. */
2001
restore_decr_wrapped(next, spu); /* Step 58. */
2002
restore_ch_part1(next, spu); /* Step 59. */
2003
restore_ch_part2(next, spu); /* Step 60. */
2004
restore_spu_lslr(next, spu); /* Step 61. */
2005
restore_spu_cfg(next, spu); /* Step 62. */
2006
restore_pm_trace(next, spu); /* Step 63. */
2007
restore_spu_npc(next, spu); /* Step 64. */
2008
restore_spu_mb(next, spu); /* Step 65. */
2009
check_ppu_mb_stat(next, spu); /* Step 66. */
2010
check_ppuint_mb_stat(next, spu); /* Step 67. */
2011
spu_invalidate_slbs(spu); /* Modified Step 68. */
2012
restore_mfc_sr1(next, spu); /* Step 69. */
2013
set_int_route(next, spu); /* NEW */
2014
restore_other_spu_access(next, spu); /* Step 70. */
2015
restore_spu_runcntl(next, spu); /* Step 71. */
2016
restore_mfc_cntl(next, spu); /* Step 72. */
2017
enable_user_access(next, spu); /* Step 73. */
2018
reset_switch_active(next, spu); /* Step 74. */
2019
reenable_interrupts(next, spu); /* Step 75. */
2020
}
2021
2022
static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2023
{
2024
int rc;
2025
2026
/*
2027
* SPU context save can be broken into three phases:
2028
*
2029
* (a) quiesce [steps 2-16].
2030
* (b) save of CSA, performed by PPE [steps 17-42]
2031
* (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2032
*
2033
* Returns 0 on success.
2034
* 2,6 if failed to quiece SPU
2035
* 53 if SPU-side of save failed.
2036
*/
2037
2038
rc = quiece_spu(prev, spu); /* Steps 2-16. */
2039
switch (rc) {
2040
default:
2041
case 2:
2042
case 6:
2043
harvest(prev, spu);
2044
return rc;
2045
break;
2046
case 0:
2047
break;
2048
}
2049
save_csa(prev, spu); /* Steps 17-43. */
2050
save_lscsa(prev, spu); /* Steps 44-53. */
2051
return check_save_status(prev, spu); /* Step 54. */
2052
}
2053
2054
static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2055
{
2056
int rc;
2057
2058
/*
2059
* SPU context restore can be broken into three phases:
2060
*
2061
* (a) harvest (or reset) SPU [steps 2-24].
2062
* (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2063
* (c) restore CSA [steps 41-76], performed by PPE.
2064
*
2065
* The 'harvest' step is not performed here, but rather
2066
* as needed below.
2067
*/
2068
2069
restore_lscsa(next, spu); /* Steps 24-39. */
2070
rc = check_restore_status(next, spu); /* Step 40. */
2071
switch (rc) {
2072
default:
2073
/* Failed. Return now. */
2074
return rc;
2075
break;
2076
case 0:
2077
/* Fall through to next step. */
2078
break;
2079
}
2080
restore_csa(next, spu);
2081
2082
return 0;
2083
}
2084
2085
/**
2086
* spu_save - SPU context save, with locking.
2087
* @prev: pointer to SPU context save area, to be saved.
2088
* @spu: pointer to SPU iomem structure.
2089
*
2090
* Acquire locks, perform the save operation then return.
2091
*/
2092
int spu_save(struct spu_state *prev, struct spu *spu)
2093
{
2094
int rc;
2095
2096
acquire_spu_lock(spu); /* Step 1. */
2097
rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2098
release_spu_lock(spu);
2099
if (rc != 0 && rc != 2 && rc != 6) {
2100
panic("%s failed on SPU[%d], rc=%d.\n",
2101
__func__, spu->number, rc);
2102
}
2103
return 0;
2104
}
2105
EXPORT_SYMBOL_GPL(spu_save);
2106
2107
/**
2108
* spu_restore - SPU context restore, with harvest and locking.
2109
* @new: pointer to SPU context save area, to be restored.
2110
* @spu: pointer to SPU iomem structure.
2111
*
2112
* Perform harvest + restore, as we may not be coming
2113
* from a previous successful save operation, and the
2114
* hardware state is unknown.
2115
*/
2116
int spu_restore(struct spu_state *new, struct spu *spu)
2117
{
2118
int rc;
2119
2120
acquire_spu_lock(spu);
2121
harvest(NULL, spu);
2122
spu->slb_replace = 0;
2123
rc = __do_spu_restore(new, spu);
2124
release_spu_lock(spu);
2125
if (rc) {
2126
panic("%s failed on SPU[%d] rc=%d.\n",
2127
__func__, spu->number, rc);
2128
}
2129
return rc;
2130
}
2131
EXPORT_SYMBOL_GPL(spu_restore);
2132
2133
static void init_prob(struct spu_state *csa)
2134
{
2135
csa->spu_chnlcnt_RW[9] = 1;
2136
csa->spu_chnlcnt_RW[21] = 16;
2137
csa->spu_chnlcnt_RW[23] = 1;
2138
csa->spu_chnlcnt_RW[28] = 1;
2139
csa->spu_chnlcnt_RW[30] = 1;
2140
csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2141
csa->prob.mb_stat_R = 0x000400;
2142
}
2143
2144
static void init_priv1(struct spu_state *csa)
2145
{
2146
/* Enable decode, relocate, tlbie response, master runcntl. */
2147
csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2148
MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2149
MFC_STATE1_PROBLEM_STATE_MASK |
2150
MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2151
2152
/* Enable OS-specific set of interrupts. */
2153
csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2154
CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2155
CLASS0_ENABLE_SPU_ERROR_INTR;
2156
csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2157
CLASS1_ENABLE_STORAGE_FAULT_INTR;
2158
csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2159
CLASS2_ENABLE_SPU_HALT_INTR |
2160
CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2161
}
2162
2163
static void init_priv2(struct spu_state *csa)
2164
{
2165
csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2166
csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2167
MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2168
MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2169
}
2170
2171
/**
2172
* spu_alloc_csa - allocate and initialize an SPU context save area.
2173
*
2174
* Allocate and initialize the contents of an SPU context save area.
2175
* This includes enabling address translation, interrupt masks, etc.,
2176
* as appropriate for the given OS environment.
2177
*
2178
* Note that storage for the 'lscsa' is allocated separately,
2179
* as it is by far the largest of the context save regions,
2180
* and may need to be pinned or otherwise specially aligned.
2181
*/
2182
int spu_init_csa(struct spu_state *csa)
2183
{
2184
int rc;
2185
2186
if (!csa)
2187
return -EINVAL;
2188
memset(csa, 0, sizeof(struct spu_state));
2189
2190
rc = spu_alloc_lscsa(csa);
2191
if (rc)
2192
return rc;
2193
2194
spin_lock_init(&csa->register_lock);
2195
2196
init_prob(csa);
2197
init_priv1(csa);
2198
init_priv2(csa);
2199
2200
return 0;
2201
}
2202
2203
void spu_fini_csa(struct spu_state *csa)
2204
{
2205
spu_free_lscsa(csa);
2206
}
2207
2208