Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/powernv/eeh-powernv.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PowerNV Platform dependent EEH operations
4
*
5
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
6
*/
7
8
#include <linux/atomic.h>
9
#include <linux/debugfs.h>
10
#include <linux/delay.h>
11
#include <linux/export.h>
12
#include <linux/init.h>
13
#include <linux/interrupt.h>
14
#include <linux/irqdomain.h>
15
#include <linux/list.h>
16
#include <linux/msi.h>
17
#include <linux/of.h>
18
#include <linux/pci.h>
19
#include <linux/proc_fs.h>
20
#include <linux/rbtree.h>
21
#include <linux/sched.h>
22
#include <linux/seq_file.h>
23
#include <linux/spinlock.h>
24
25
#include <asm/eeh.h>
26
#include <asm/eeh_event.h>
27
#include <asm/firmware.h>
28
#include <asm/io.h>
29
#include <asm/iommu.h>
30
#include <asm/machdep.h>
31
#include <asm/msi_bitmap.h>
32
#include <asm/opal.h>
33
#include <asm/ppc-pci.h>
34
#include <asm/pnv-pci.h>
35
36
#include "powernv.h"
37
#include "pci.h"
38
#include "../../../../drivers/pci/pci.h"
39
40
static int eeh_event_irq = -EINVAL;
41
42
static void pnv_pcibios_bus_add_device(struct pci_dev *pdev)
43
{
44
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
45
eeh_probe_device(pdev);
46
}
47
48
static irqreturn_t pnv_eeh_event(int irq, void *data)
49
{
50
/*
51
* We simply send a special EEH event if EEH has been
52
* enabled. We don't care about EEH events until we've
53
* finished processing the outstanding ones. Event processing
54
* gets unmasked in next_error() if EEH is enabled.
55
*/
56
disable_irq_nosync(irq);
57
58
if (eeh_enabled())
59
eeh_send_failure_event(NULL);
60
61
return IRQ_HANDLED;
62
}
63
64
#ifdef CONFIG_DEBUG_FS
65
static ssize_t pnv_eeh_ei_write(struct file *filp,
66
const char __user *user_buf,
67
size_t count, loff_t *ppos)
68
{
69
struct pci_controller *hose = filp->private_data;
70
struct eeh_pe *pe;
71
int pe_no, type, func;
72
unsigned long addr, mask;
73
char buf[50];
74
int ret;
75
76
if (!eeh_ops || !eeh_ops->err_inject)
77
return -ENXIO;
78
79
/* Copy over argument buffer */
80
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
81
if (!ret)
82
return -EFAULT;
83
84
/* Retrieve parameters */
85
ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
86
&pe_no, &type, &func, &addr, &mask);
87
if (ret != 5)
88
return -EINVAL;
89
90
/* Retrieve PE */
91
pe = eeh_pe_get(hose, pe_no);
92
if (!pe)
93
return -ENODEV;
94
95
/* Do error injection */
96
ret = eeh_ops->err_inject(pe, type, func, addr, mask);
97
return ret < 0 ? ret : count;
98
}
99
100
static const struct file_operations pnv_eeh_ei_fops = {
101
.open = simple_open,
102
.write = pnv_eeh_ei_write,
103
};
104
105
static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
106
{
107
struct pci_controller *hose = data;
108
struct pnv_phb *phb = hose->private_data;
109
110
out_be64(phb->regs + offset, val);
111
return 0;
112
}
113
114
static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
115
{
116
struct pci_controller *hose = data;
117
struct pnv_phb *phb = hose->private_data;
118
119
*val = in_be64(phb->regs + offset);
120
return 0;
121
}
122
123
#define PNV_EEH_DBGFS_ENTRY(name, reg) \
124
static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \
125
{ \
126
return pnv_eeh_dbgfs_set(data, reg, val); \
127
} \
128
\
129
static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \
130
{ \
131
return pnv_eeh_dbgfs_get(data, reg, val); \
132
} \
133
\
134
DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \
135
pnv_eeh_dbgfs_get_##name, \
136
pnv_eeh_dbgfs_set_##name, \
137
"0x%llx\n")
138
139
PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
140
PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
141
PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
142
143
#endif /* CONFIG_DEBUG_FS */
144
145
static void pnv_eeh_enable_phbs(void)
146
{
147
struct pci_controller *hose;
148
struct pnv_phb *phb;
149
150
list_for_each_entry(hose, &hose_list, list_node) {
151
phb = hose->private_data;
152
/*
153
* If EEH is enabled, we're going to rely on that.
154
* Otherwise, we restore to conventional mechanism
155
* to clear frozen PE during PCI config access.
156
*/
157
if (eeh_enabled())
158
phb->flags |= PNV_PHB_FLAG_EEH;
159
else
160
phb->flags &= ~PNV_PHB_FLAG_EEH;
161
}
162
}
163
164
/**
165
* pnv_eeh_post_init - EEH platform dependent post initialization
166
*
167
* EEH platform dependent post initialization on powernv. When
168
* the function is called, the EEH PEs and devices should have
169
* been built. If the I/O cache staff has been built, EEH is
170
* ready to supply service.
171
*/
172
int pnv_eeh_post_init(void)
173
{
174
struct pci_controller *hose;
175
struct pnv_phb *phb;
176
int ret = 0;
177
178
eeh_show_enabled();
179
180
/* Register OPAL event notifier */
181
eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
182
if (eeh_event_irq < 0) {
183
pr_err("%s: Can't register OPAL event interrupt (%d)\n",
184
__func__, eeh_event_irq);
185
return eeh_event_irq;
186
}
187
188
ret = request_irq(eeh_event_irq, pnv_eeh_event,
189
IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
190
if (ret < 0) {
191
irq_dispose_mapping(eeh_event_irq);
192
pr_err("%s: Can't request OPAL event interrupt (%d)\n",
193
__func__, eeh_event_irq);
194
return ret;
195
}
196
197
if (!eeh_enabled())
198
disable_irq(eeh_event_irq);
199
200
pnv_eeh_enable_phbs();
201
202
list_for_each_entry(hose, &hose_list, list_node) {
203
phb = hose->private_data;
204
205
/* Create debugfs entries */
206
#ifdef CONFIG_DEBUG_FS
207
if (phb->has_dbgfs || !phb->dbgfs)
208
continue;
209
210
phb->has_dbgfs = 1;
211
debugfs_create_file("err_injct", 0200,
212
phb->dbgfs, hose,
213
&pnv_eeh_ei_fops);
214
215
debugfs_create_file("err_injct_outbound", 0600,
216
phb->dbgfs, hose,
217
&pnv_eeh_dbgfs_ops_outb);
218
debugfs_create_file("err_injct_inboundA", 0600,
219
phb->dbgfs, hose,
220
&pnv_eeh_dbgfs_ops_inbA);
221
debugfs_create_file("err_injct_inboundB", 0600,
222
phb->dbgfs, hose,
223
&pnv_eeh_dbgfs_ops_inbB);
224
#endif /* CONFIG_DEBUG_FS */
225
}
226
227
return ret;
228
}
229
230
static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
231
{
232
int pos = PCI_CAPABILITY_LIST;
233
int cnt = 48; /* Maximal number of capabilities */
234
u32 status, id;
235
236
if (!pdn)
237
return 0;
238
239
/* Check if the device supports capabilities */
240
pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
241
if (!(status & PCI_STATUS_CAP_LIST))
242
return 0;
243
244
while (cnt--) {
245
pnv_pci_cfg_read(pdn, pos, 1, &pos);
246
if (pos < 0x40)
247
break;
248
249
pos &= ~3;
250
pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
251
if (id == 0xff)
252
break;
253
254
/* Found */
255
if (id == cap)
256
return pos;
257
258
/* Next one */
259
pos += PCI_CAP_LIST_NEXT;
260
}
261
262
return 0;
263
}
264
265
static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
266
{
267
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
268
u32 header;
269
int pos = 256, ttl = (4096 - 256) / 8;
270
271
if (!edev || !edev->pcie_cap)
272
return 0;
273
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
274
return 0;
275
else if (!header)
276
return 0;
277
278
while (ttl-- > 0) {
279
if (PCI_EXT_CAP_ID(header) == cap && pos)
280
return pos;
281
282
pos = PCI_EXT_CAP_NEXT(header);
283
if (pos < 256)
284
break;
285
286
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
287
break;
288
}
289
290
return 0;
291
}
292
293
static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev)
294
{
295
struct pci_controller *hose = pdev->bus->sysdata;
296
struct pnv_phb *phb = hose->private_data;
297
struct pci_dev *parent = pdev->bus->self;
298
299
#ifdef CONFIG_PCI_IOV
300
/* for VFs we use the PF's PE as the upstream PE */
301
if (pdev->is_virtfn)
302
parent = pdev->physfn;
303
#endif
304
305
/* otherwise use the PE of our parent bridge */
306
if (parent) {
307
struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent);
308
309
return eeh_pe_get(phb->hose, ioda_pe->pe_number);
310
}
311
312
return NULL;
313
}
314
315
/**
316
* pnv_eeh_probe - Do probe on PCI device
317
* @pdev: pci_dev to probe
318
*
319
* Create, or find the existing, eeh_dev for this pci_dev.
320
*/
321
static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev)
322
{
323
struct pci_dn *pdn = pci_get_pdn(pdev);
324
struct pci_controller *hose = pdn->phb;
325
struct pnv_phb *phb = hose->private_data;
326
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
327
struct eeh_pe *upstream_pe;
328
uint32_t pcie_flags;
329
int ret;
330
int config_addr = (pdn->busno << 8) | (pdn->devfn);
331
332
/*
333
* When probing the root bridge, which doesn't have any
334
* subordinate PCI devices. We don't have OF node for
335
* the root bridge. So it's not reasonable to continue
336
* the probing.
337
*/
338
if (!edev || edev->pe)
339
return NULL;
340
341
/* already configured? */
342
if (edev->pdev) {
343
pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n",
344
__func__, hose->global_number, config_addr >> 8,
345
PCI_SLOT(config_addr), PCI_FUNC(config_addr));
346
return edev;
347
}
348
349
/* Skip for PCI-ISA bridge */
350
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
351
return NULL;
352
353
eeh_edev_dbg(edev, "Probing device\n");
354
355
/* Initialize eeh device */
356
edev->mode &= 0xFFFFFF00;
357
edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
358
edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
359
edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
360
edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
361
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
362
edev->mode |= EEH_DEV_BRIDGE;
363
if (edev->pcie_cap) {
364
pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
365
2, &pcie_flags);
366
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
367
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
368
edev->mode |= EEH_DEV_ROOT_PORT;
369
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
370
edev->mode |= EEH_DEV_DS_PORT;
371
}
372
}
373
374
edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
375
376
upstream_pe = pnv_eeh_get_upstream_pe(pdev);
377
378
/* Create PE */
379
ret = eeh_pe_tree_insert(edev, upstream_pe);
380
if (ret) {
381
eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret);
382
return NULL;
383
}
384
385
/*
386
* If the PE contains any one of following adapters, the
387
* PCI config space can't be accessed when dumping EEH log.
388
* Otherwise, we will run into fenced PHB caused by shortage
389
* of outbound credits in the adapter. The PCI config access
390
* should be blocked until PE reset. MMIO access is dropped
391
* by hardware certainly. In order to drop PCI config requests,
392
* one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
393
* will be checked in the backend for PE state retrieval. If
394
* the PE becomes frozen for the first time and the flag has
395
* been set for the PE, we will set EEH_PE_CFG_BLOCKED for
396
* that PE to block its config space.
397
*
398
* Broadcom BCM5718 2-ports NICs (14e4:1656)
399
* Broadcom Austin 4-ports NICs (14e4:1657)
400
* Broadcom Shiner 4-ports 1G NICs (14e4:168a)
401
* Broadcom Shiner 2-ports 10G NICs (14e4:168e)
402
*/
403
if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
404
pdn->device_id == 0x1656) ||
405
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
406
pdn->device_id == 0x1657) ||
407
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
408
pdn->device_id == 0x168a) ||
409
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
410
pdn->device_id == 0x168e))
411
edev->pe->state |= EEH_PE_CFG_RESTRICTED;
412
413
/*
414
* Cache the PE primary bus, which can't be fetched when
415
* full hotplug is in progress. In that case, all child
416
* PCI devices of the PE are expected to be removed prior
417
* to PE reset.
418
*/
419
if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
420
edev->pe->bus = pci_find_bus(hose->global_number,
421
pdn->busno);
422
if (edev->pe->bus)
423
edev->pe->state |= EEH_PE_PRI_BUS;
424
}
425
426
/*
427
* Enable EEH explicitly so that we will do EEH check
428
* while accessing I/O stuff
429
*/
430
if (!eeh_has_flag(EEH_ENABLED)) {
431
enable_irq(eeh_event_irq);
432
pnv_eeh_enable_phbs();
433
eeh_add_flag(EEH_ENABLED);
434
}
435
436
/* Save memory bars */
437
eeh_save_bars(edev);
438
439
eeh_edev_dbg(edev, "EEH enabled on device\n");
440
441
return edev;
442
}
443
444
/**
445
* pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
446
* @pe: EEH PE
447
* @option: operation to be issued
448
*
449
* The function is used to control the EEH functionality globally.
450
* Currently, following options are support according to PAPR:
451
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
452
*/
453
static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
454
{
455
struct pci_controller *hose = pe->phb;
456
struct pnv_phb *phb = hose->private_data;
457
bool freeze_pe = false;
458
int opt;
459
s64 rc;
460
461
switch (option) {
462
case EEH_OPT_DISABLE:
463
return -EPERM;
464
case EEH_OPT_ENABLE:
465
return 0;
466
case EEH_OPT_THAW_MMIO:
467
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
468
break;
469
case EEH_OPT_THAW_DMA:
470
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
471
break;
472
case EEH_OPT_FREEZE_PE:
473
freeze_pe = true;
474
opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
475
break;
476
default:
477
pr_warn("%s: Invalid option %d\n", __func__, option);
478
return -EINVAL;
479
}
480
481
/* Freeze master and slave PEs if PHB supports compound PEs */
482
if (freeze_pe) {
483
if (phb->freeze_pe) {
484
phb->freeze_pe(phb, pe->addr);
485
return 0;
486
}
487
488
rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
489
if (rc != OPAL_SUCCESS) {
490
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
491
__func__, rc, phb->hose->global_number,
492
pe->addr);
493
return -EIO;
494
}
495
496
return 0;
497
}
498
499
/* Unfreeze master and slave PEs if PHB supports */
500
if (phb->unfreeze_pe)
501
return phb->unfreeze_pe(phb, pe->addr, opt);
502
503
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
504
if (rc != OPAL_SUCCESS) {
505
pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
506
__func__, rc, option, phb->hose->global_number,
507
pe->addr);
508
return -EIO;
509
}
510
511
return 0;
512
}
513
514
static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
515
{
516
struct pnv_phb *phb = pe->phb->private_data;
517
s64 rc;
518
519
rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
520
phb->diag_data_size);
521
if (rc != OPAL_SUCCESS)
522
pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
523
__func__, rc, pe->phb->global_number);
524
}
525
526
static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
527
{
528
struct pnv_phb *phb = pe->phb->private_data;
529
u8 fstate = 0;
530
__be16 pcierr = 0;
531
s64 rc;
532
int result = 0;
533
534
rc = opal_pci_eeh_freeze_status(phb->opal_id,
535
pe->addr,
536
&fstate,
537
&pcierr,
538
NULL);
539
if (rc != OPAL_SUCCESS) {
540
pr_warn("%s: Failure %lld getting PHB#%x state\n",
541
__func__, rc, phb->hose->global_number);
542
return EEH_STATE_NOT_SUPPORT;
543
}
544
545
/*
546
* Check PHB state. If the PHB is frozen for the
547
* first time, to dump the PHB diag-data.
548
*/
549
if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
550
result = (EEH_STATE_MMIO_ACTIVE |
551
EEH_STATE_DMA_ACTIVE |
552
EEH_STATE_MMIO_ENABLED |
553
EEH_STATE_DMA_ENABLED);
554
} else if (!(pe->state & EEH_PE_ISOLATED)) {
555
eeh_pe_mark_isolated(pe);
556
pnv_eeh_get_phb_diag(pe);
557
558
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
559
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
560
}
561
562
return result;
563
}
564
565
static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
566
{
567
struct pnv_phb *phb = pe->phb->private_data;
568
u8 fstate = 0;
569
__be16 pcierr = 0;
570
s64 rc;
571
int result;
572
573
/*
574
* We don't clobber hardware frozen state until PE
575
* reset is completed. In order to keep EEH core
576
* moving forward, we have to return operational
577
* state during PE reset.
578
*/
579
if (pe->state & EEH_PE_RESET) {
580
result = (EEH_STATE_MMIO_ACTIVE |
581
EEH_STATE_DMA_ACTIVE |
582
EEH_STATE_MMIO_ENABLED |
583
EEH_STATE_DMA_ENABLED);
584
return result;
585
}
586
587
/*
588
* Fetch PE state from hardware. If the PHB
589
* supports compound PE, let it handle that.
590
*/
591
if (phb->get_pe_state) {
592
fstate = phb->get_pe_state(phb, pe->addr);
593
} else {
594
rc = opal_pci_eeh_freeze_status(phb->opal_id,
595
pe->addr,
596
&fstate,
597
&pcierr,
598
NULL);
599
if (rc != OPAL_SUCCESS) {
600
pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
601
__func__, rc, phb->hose->global_number,
602
pe->addr);
603
return EEH_STATE_NOT_SUPPORT;
604
}
605
}
606
607
/* Figure out state */
608
switch (fstate) {
609
case OPAL_EEH_STOPPED_NOT_FROZEN:
610
result = (EEH_STATE_MMIO_ACTIVE |
611
EEH_STATE_DMA_ACTIVE |
612
EEH_STATE_MMIO_ENABLED |
613
EEH_STATE_DMA_ENABLED);
614
break;
615
case OPAL_EEH_STOPPED_MMIO_FREEZE:
616
result = (EEH_STATE_DMA_ACTIVE |
617
EEH_STATE_DMA_ENABLED);
618
break;
619
case OPAL_EEH_STOPPED_DMA_FREEZE:
620
result = (EEH_STATE_MMIO_ACTIVE |
621
EEH_STATE_MMIO_ENABLED);
622
break;
623
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
624
result = 0;
625
break;
626
case OPAL_EEH_STOPPED_RESET:
627
result = EEH_STATE_RESET_ACTIVE;
628
break;
629
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
630
result = EEH_STATE_UNAVAILABLE;
631
break;
632
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
633
result = EEH_STATE_NOT_SUPPORT;
634
break;
635
default:
636
result = EEH_STATE_NOT_SUPPORT;
637
pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
638
__func__, phb->hose->global_number,
639
pe->addr, fstate);
640
}
641
642
/*
643
* If PHB supports compound PE, to freeze all
644
* slave PEs for consistency.
645
*
646
* If the PE is switching to frozen state for the
647
* first time, to dump the PHB diag-data.
648
*/
649
if (!(result & EEH_STATE_NOT_SUPPORT) &&
650
!(result & EEH_STATE_UNAVAILABLE) &&
651
!(result & EEH_STATE_MMIO_ACTIVE) &&
652
!(result & EEH_STATE_DMA_ACTIVE) &&
653
!(pe->state & EEH_PE_ISOLATED)) {
654
if (phb->freeze_pe)
655
phb->freeze_pe(phb, pe->addr);
656
657
eeh_pe_mark_isolated(pe);
658
pnv_eeh_get_phb_diag(pe);
659
660
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
661
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
662
}
663
664
return result;
665
}
666
667
/**
668
* pnv_eeh_get_state - Retrieve PE state
669
* @pe: EEH PE
670
* @delay: delay while PE state is temporarily unavailable
671
*
672
* Retrieve the state of the specified PE. For IODA-compitable
673
* platform, it should be retrieved from IODA table. Therefore,
674
* we prefer passing down to hardware implementation to handle
675
* it.
676
*/
677
static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
678
{
679
int ret;
680
681
if (pe->type & EEH_PE_PHB)
682
ret = pnv_eeh_get_phb_state(pe);
683
else
684
ret = pnv_eeh_get_pe_state(pe);
685
686
if (!delay)
687
return ret;
688
689
/*
690
* If the PE state is temporarily unavailable,
691
* to inform the EEH core delay for default
692
* period (1 second)
693
*/
694
*delay = 0;
695
if (ret & EEH_STATE_UNAVAILABLE)
696
*delay = 1000;
697
698
return ret;
699
}
700
701
static s64 pnv_eeh_poll(unsigned long id)
702
{
703
s64 rc = OPAL_HARDWARE;
704
705
while (1) {
706
rc = opal_pci_poll(id);
707
if (rc <= 0)
708
break;
709
710
if (system_state < SYSTEM_RUNNING)
711
udelay(1000 * rc);
712
else
713
msleep(rc);
714
}
715
716
return rc;
717
}
718
719
int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
720
{
721
struct pnv_phb *phb = hose->private_data;
722
s64 rc = OPAL_HARDWARE;
723
724
pr_debug("%s: Reset PHB#%x, option=%d\n",
725
__func__, hose->global_number, option);
726
727
/* Issue PHB complete reset request */
728
if (option == EEH_RESET_FUNDAMENTAL ||
729
option == EEH_RESET_HOT)
730
rc = opal_pci_reset(phb->opal_id,
731
OPAL_RESET_PHB_COMPLETE,
732
OPAL_ASSERT_RESET);
733
else if (option == EEH_RESET_DEACTIVATE)
734
rc = opal_pci_reset(phb->opal_id,
735
OPAL_RESET_PHB_COMPLETE,
736
OPAL_DEASSERT_RESET);
737
if (rc < 0)
738
goto out;
739
740
/*
741
* Poll state of the PHB until the request is done
742
* successfully. The PHB reset is usually PHB complete
743
* reset followed by hot reset on root bus. So we also
744
* need the PCI bus settlement delay.
745
*/
746
if (rc > 0)
747
rc = pnv_eeh_poll(phb->opal_id);
748
if (option == EEH_RESET_DEACTIVATE) {
749
if (system_state < SYSTEM_RUNNING)
750
udelay(1000 * EEH_PE_RST_SETTLE_TIME);
751
else
752
msleep(EEH_PE_RST_SETTLE_TIME);
753
}
754
out:
755
if (rc != OPAL_SUCCESS)
756
return -EIO;
757
758
return 0;
759
}
760
761
static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
762
{
763
struct pnv_phb *phb = hose->private_data;
764
s64 rc = OPAL_HARDWARE;
765
766
pr_debug("%s: Reset PHB#%x, option=%d\n",
767
__func__, hose->global_number, option);
768
769
/*
770
* During the reset deassert time, we needn't care
771
* the reset scope because the firmware does nothing
772
* for fundamental or hot reset during deassert phase.
773
*/
774
if (option == EEH_RESET_FUNDAMENTAL)
775
rc = opal_pci_reset(phb->opal_id,
776
OPAL_RESET_PCI_FUNDAMENTAL,
777
OPAL_ASSERT_RESET);
778
else if (option == EEH_RESET_HOT)
779
rc = opal_pci_reset(phb->opal_id,
780
OPAL_RESET_PCI_HOT,
781
OPAL_ASSERT_RESET);
782
else if (option == EEH_RESET_DEACTIVATE)
783
rc = opal_pci_reset(phb->opal_id,
784
OPAL_RESET_PCI_HOT,
785
OPAL_DEASSERT_RESET);
786
if (rc < 0)
787
goto out;
788
789
/* Poll state of the PHB until the request is done */
790
if (rc > 0)
791
rc = pnv_eeh_poll(phb->opal_id);
792
if (option == EEH_RESET_DEACTIVATE)
793
msleep(EEH_PE_RST_SETTLE_TIME);
794
out:
795
if (rc != OPAL_SUCCESS)
796
return -EIO;
797
798
return 0;
799
}
800
801
static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
802
{
803
struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
804
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
805
int aer = edev ? edev->aer_cap : 0;
806
u32 ctrl;
807
808
pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n",
809
__func__, pci_domain_nr(dev->bus),
810
dev->bus->number, option);
811
812
switch (option) {
813
case EEH_RESET_FUNDAMENTAL:
814
case EEH_RESET_HOT:
815
/* Don't report linkDown event */
816
if (aer) {
817
eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
818
4, &ctrl);
819
ctrl |= PCI_ERR_UNC_SURPDN;
820
eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
821
4, ctrl);
822
}
823
824
eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
825
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
826
eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
827
828
msleep(EEH_PE_RST_HOLD_TIME);
829
break;
830
case EEH_RESET_DEACTIVATE:
831
eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
832
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
833
eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
834
835
msleep(EEH_PE_RST_SETTLE_TIME);
836
837
/* Continue reporting linkDown event */
838
if (aer) {
839
eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
840
4, &ctrl);
841
ctrl &= ~PCI_ERR_UNC_SURPDN;
842
eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
843
4, ctrl);
844
}
845
846
break;
847
}
848
849
return 0;
850
}
851
852
static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
853
{
854
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
855
struct pnv_phb *phb = hose->private_data;
856
struct device_node *dn = pci_device_to_OF_node(pdev);
857
uint64_t id = PCI_SLOT_ID(phb->opal_id, pci_dev_id(pdev));
858
uint8_t scope;
859
int64_t rc;
860
861
/* Hot reset to the bus if firmware cannot handle */
862
if (!dn || !of_property_present(dn, "ibm,reset-by-firmware"))
863
return __pnv_eeh_bridge_reset(pdev, option);
864
865
pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n",
866
__func__, pci_domain_nr(pdev->bus),
867
pdev->bus->number, option);
868
869
switch (option) {
870
case EEH_RESET_FUNDAMENTAL:
871
scope = OPAL_RESET_PCI_FUNDAMENTAL;
872
break;
873
case EEH_RESET_HOT:
874
scope = OPAL_RESET_PCI_HOT;
875
break;
876
case EEH_RESET_DEACTIVATE:
877
return 0;
878
default:
879
dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
880
__func__, option);
881
return -EINVAL;
882
}
883
884
rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
885
if (rc <= OPAL_SUCCESS)
886
goto out;
887
888
rc = pnv_eeh_poll(id);
889
out:
890
return (rc == OPAL_SUCCESS) ? 0 : -EIO;
891
}
892
893
void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
894
{
895
struct pci_controller *hose;
896
897
if (pci_is_root_bus(dev->bus)) {
898
hose = pci_bus_to_host(dev->bus);
899
pnv_eeh_root_reset(hose, EEH_RESET_HOT);
900
pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
901
} else {
902
pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
903
pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
904
}
905
}
906
907
static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
908
int pos, u16 mask)
909
{
910
struct eeh_dev *edev = pdn->edev;
911
int i, status = 0;
912
913
/* Wait for Transaction Pending bit to be cleared */
914
for (i = 0; i < 4; i++) {
915
eeh_ops->read_config(edev, pos, 2, &status);
916
if (!(status & mask))
917
return;
918
919
msleep((1 << i) * 100);
920
}
921
922
pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
923
__func__, type,
924
pdn->phb->global_number, pdn->busno,
925
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
926
}
927
928
static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
929
{
930
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
931
u32 reg = 0;
932
933
if (WARN_ON(!edev->pcie_cap))
934
return -ENOTTY;
935
936
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
937
if (!(reg & PCI_EXP_DEVCAP_FLR))
938
return -ENOTTY;
939
940
switch (option) {
941
case EEH_RESET_HOT:
942
case EEH_RESET_FUNDAMENTAL:
943
pnv_eeh_wait_for_pending(pdn, "",
944
edev->pcie_cap + PCI_EXP_DEVSTA,
945
PCI_EXP_DEVSTA_TRPND);
946
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
947
4, &reg);
948
reg |= PCI_EXP_DEVCTL_BCR_FLR;
949
eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
950
4, reg);
951
msleep(EEH_PE_RST_HOLD_TIME);
952
break;
953
case EEH_RESET_DEACTIVATE:
954
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
955
4, &reg);
956
reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
957
eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
958
4, reg);
959
msleep(EEH_PE_RST_SETTLE_TIME);
960
break;
961
}
962
963
return 0;
964
}
965
966
static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
967
{
968
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
969
u32 cap = 0;
970
971
if (WARN_ON(!edev->af_cap))
972
return -ENOTTY;
973
974
eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap);
975
if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
976
return -ENOTTY;
977
978
switch (option) {
979
case EEH_RESET_HOT:
980
case EEH_RESET_FUNDAMENTAL:
981
/*
982
* Wait for Transaction Pending bit to clear. A word-aligned
983
* test is used, so we use the control offset rather than status
984
* and shift the test bit to match.
985
*/
986
pnv_eeh_wait_for_pending(pdn, "AF",
987
edev->af_cap + PCI_AF_CTRL,
988
PCI_AF_STATUS_TP << 8);
989
eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL,
990
1, PCI_AF_CTRL_FLR);
991
msleep(EEH_PE_RST_HOLD_TIME);
992
break;
993
case EEH_RESET_DEACTIVATE:
994
eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0);
995
msleep(EEH_PE_RST_SETTLE_TIME);
996
break;
997
}
998
999
return 0;
1000
}
1001
1002
static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
1003
{
1004
struct eeh_dev *edev;
1005
struct pci_dn *pdn;
1006
int ret;
1007
1008
/* The VF PE should have only one child device */
1009
edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
1010
pdn = eeh_dev_to_pdn(edev);
1011
if (!pdn)
1012
return -ENXIO;
1013
1014
ret = pnv_eeh_do_flr(pdn, option);
1015
if (!ret)
1016
return ret;
1017
1018
return pnv_eeh_do_af_flr(pdn, option);
1019
}
1020
1021
/**
1022
* pnv_eeh_reset - Reset the specified PE
1023
* @pe: EEH PE
1024
* @option: reset option
1025
*
1026
* Do reset on the indicated PE. For PCI bus sensitive PE,
1027
* we need to reset the parent p2p bridge. The PHB has to
1028
* be reinitialized if the p2p bridge is root bridge. For
1029
* PCI device sensitive PE, we will try to reset the device
1030
* through FLR. For now, we don't have OPAL APIs to do HARD
1031
* reset yet, so all reset would be SOFT (HOT) reset.
1032
*/
1033
static int pnv_eeh_reset(struct eeh_pe *pe, int option)
1034
{
1035
struct pci_controller *hose = pe->phb;
1036
struct pnv_phb *phb;
1037
struct pci_bus *bus;
1038
int64_t rc;
1039
1040
/*
1041
* For PHB reset, we always have complete reset. For those PEs whose
1042
* primary bus derived from root complex (root bus) or root port
1043
* (usually bus#1), we apply hot or fundamental reset on the root port.
1044
* For other PEs, we always have hot reset on the PE primary bus.
1045
*
1046
* Here, we have different design to pHyp, which always clear the
1047
* frozen state during PE reset. However, the good idea here from
1048
* benh is to keep frozen state before we get PE reset done completely
1049
* (until BAR restore). With the frozen state, HW drops illegal IO
1050
* or MMIO access, which can incur recursive frozen PE during PE
1051
* reset. The side effect is that EEH core has to clear the frozen
1052
* state explicitly after BAR restore.
1053
*/
1054
if (pe->type & EEH_PE_PHB)
1055
return pnv_eeh_phb_reset(hose, option);
1056
1057
/*
1058
* The frozen PE might be caused by PAPR error injection
1059
* registers, which are expected to be cleared after hitting
1060
* frozen PE as stated in the hardware spec. Unfortunately,
1061
* that's not true on P7IOC. So we have to clear it manually
1062
* to avoid recursive EEH errors during recovery.
1063
*/
1064
phb = hose->private_data;
1065
if (phb->model == PNV_PHB_MODEL_P7IOC &&
1066
(option == EEH_RESET_HOT ||
1067
option == EEH_RESET_FUNDAMENTAL)) {
1068
rc = opal_pci_reset(phb->opal_id,
1069
OPAL_RESET_PHB_ERROR,
1070
OPAL_ASSERT_RESET);
1071
if (rc != OPAL_SUCCESS) {
1072
pr_warn("%s: Failure %lld clearing error injection registers\n",
1073
__func__, rc);
1074
return -EIO;
1075
}
1076
}
1077
1078
if (pe->type & EEH_PE_VF)
1079
return pnv_eeh_reset_vf_pe(pe, option);
1080
1081
bus = eeh_pe_bus_get(pe);
1082
if (!bus) {
1083
pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
1084
__func__, pe->phb->global_number, pe->addr);
1085
return -EIO;
1086
}
1087
1088
if (pci_is_root_bus(bus))
1089
return pnv_eeh_root_reset(hose, option);
1090
1091
/*
1092
* For hot resets try use the generic PCI error recovery reset
1093
* functions. These correctly handles the case where the secondary
1094
* bus is behind a hotplug slot and it will use the slot provided
1095
* reset methods to prevent spurious hotplug events during the reset.
1096
*
1097
* Fundamental resets need to be handled internally to EEH since the
1098
* PCI core doesn't really have a concept of a fundamental reset,
1099
* mainly because there's no standard way to generate one. Only a
1100
* few devices require an FRESET so it should be fine.
1101
*/
1102
if (option != EEH_RESET_FUNDAMENTAL) {
1103
/*
1104
* NB: Skiboot and pnv_eeh_bridge_reset() also no-op the
1105
* de-assert step. It's like the OPAL reset API was
1106
* poorly designed or something...
1107
*/
1108
if (option == EEH_RESET_DEACTIVATE)
1109
return 0;
1110
1111
rc = pci_bus_error_reset(bus->self);
1112
if (!rc)
1113
return 0;
1114
}
1115
1116
/* otherwise, use the generic bridge reset. this might call into FW */
1117
if (pci_is_root_bus(bus->parent))
1118
return pnv_eeh_root_reset(hose, option);
1119
return pnv_eeh_bridge_reset(bus->self, option);
1120
}
1121
1122
/**
1123
* pnv_eeh_get_log - Retrieve error log
1124
* @pe: EEH PE
1125
* @severity: temporary or permanent error log
1126
* @drv_log: driver log to be combined with retrieved error log
1127
* @len: length of driver log
1128
*
1129
* Retrieve the temporary or permanent error from the PE.
1130
*/
1131
static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
1132
char *drv_log, unsigned long len)
1133
{
1134
if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
1135
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
1136
1137
return 0;
1138
}
1139
1140
/**
1141
* pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
1142
* @pe: EEH PE
1143
*
1144
* The function will be called to reconfigure the bridges included
1145
* in the specified PE so that the mulfunctional PE would be recovered
1146
* again.
1147
*/
1148
static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
1149
{
1150
return 0;
1151
}
1152
1153
/**
1154
* pnv_pe_err_inject - Inject specified error to the indicated PE
1155
* @pe: the indicated PE
1156
* @type: error type
1157
* @func: specific error type
1158
* @addr: address
1159
* @mask: address mask
1160
*
1161
* The routine is called to inject specified error, which is
1162
* determined by @type and @func, to the indicated PE for
1163
* testing purpose.
1164
*/
1165
static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
1166
unsigned long addr, unsigned long mask)
1167
{
1168
struct pci_controller *hose = pe->phb;
1169
struct pnv_phb *phb = hose->private_data;
1170
s64 rc;
1171
1172
if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
1173
type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
1174
pr_warn("%s: Invalid error type %d\n",
1175
__func__, type);
1176
return -ERANGE;
1177
}
1178
1179
if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
1180
func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
1181
pr_warn("%s: Invalid error function %d\n",
1182
__func__, func);
1183
return -ERANGE;
1184
}
1185
1186
/* Firmware supports error injection ? */
1187
if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
1188
pr_warn("%s: Firmware doesn't support error injection\n",
1189
__func__);
1190
return -ENXIO;
1191
}
1192
1193
/* Do error injection */
1194
rc = opal_pci_err_inject(phb->opal_id, pe->addr,
1195
type, func, addr, mask);
1196
if (rc != OPAL_SUCCESS) {
1197
pr_warn("%s: Failure %lld injecting error "
1198
"%d-%d to PHB#%x-PE#%x\n",
1199
__func__, rc, type, func,
1200
hose->global_number, pe->addr);
1201
return -EIO;
1202
}
1203
1204
return 0;
1205
}
1206
1207
static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
1208
{
1209
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1210
1211
if (!edev || !edev->pe)
1212
return false;
1213
1214
/*
1215
* We will issue FLR or AF FLR to all VFs, which are contained
1216
* in VF PE. It relies on the EEH PCI config accessors. So we
1217
* can't block them during the window.
1218
*/
1219
if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
1220
return false;
1221
1222
if (edev->pe->state & EEH_PE_CFG_BLOCKED)
1223
return true;
1224
1225
return false;
1226
}
1227
1228
static int pnv_eeh_read_config(struct eeh_dev *edev,
1229
int where, int size, u32 *val)
1230
{
1231
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
1232
1233
if (!pdn)
1234
return PCIBIOS_DEVICE_NOT_FOUND;
1235
1236
if (pnv_eeh_cfg_blocked(pdn)) {
1237
*val = 0xFFFFFFFF;
1238
return PCIBIOS_SET_FAILED;
1239
}
1240
1241
return pnv_pci_cfg_read(pdn, where, size, val);
1242
}
1243
1244
static int pnv_eeh_write_config(struct eeh_dev *edev,
1245
int where, int size, u32 val)
1246
{
1247
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
1248
1249
if (!pdn)
1250
return PCIBIOS_DEVICE_NOT_FOUND;
1251
1252
if (pnv_eeh_cfg_blocked(pdn))
1253
return PCIBIOS_SET_FAILED;
1254
1255
return pnv_pci_cfg_write(pdn, where, size, val);
1256
}
1257
1258
static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
1259
{
1260
/* GEM */
1261
if (data->gemXfir || data->gemRfir ||
1262
data->gemRirqfir || data->gemMask || data->gemRwof)
1263
pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
1264
be64_to_cpu(data->gemXfir),
1265
be64_to_cpu(data->gemRfir),
1266
be64_to_cpu(data->gemRirqfir),
1267
be64_to_cpu(data->gemMask),
1268
be64_to_cpu(data->gemRwof));
1269
1270
/* LEM */
1271
if (data->lemFir || data->lemErrMask ||
1272
data->lemAction0 || data->lemAction1 || data->lemWof)
1273
pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
1274
be64_to_cpu(data->lemFir),
1275
be64_to_cpu(data->lemErrMask),
1276
be64_to_cpu(data->lemAction0),
1277
be64_to_cpu(data->lemAction1),
1278
be64_to_cpu(data->lemWof));
1279
}
1280
1281
static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
1282
{
1283
struct pnv_phb *phb = hose->private_data;
1284
struct OpalIoP7IOCErrorData *data =
1285
(struct OpalIoP7IOCErrorData*)phb->diag_data;
1286
long rc;
1287
1288
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
1289
if (rc != OPAL_SUCCESS) {
1290
pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
1291
__func__, phb->hub_id, rc);
1292
return;
1293
}
1294
1295
switch (be16_to_cpu(data->type)) {
1296
case OPAL_P7IOC_DIAG_TYPE_RGC:
1297
pr_info("P7IOC diag-data for RGC\n\n");
1298
pnv_eeh_dump_hub_diag_common(data);
1299
if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
1300
pr_info(" RGC: %016llx %016llx\n",
1301
be64_to_cpu(data->rgc.rgcStatus),
1302
be64_to_cpu(data->rgc.rgcLdcp));
1303
break;
1304
case OPAL_P7IOC_DIAG_TYPE_BI:
1305
pr_info("P7IOC diag-data for BI %s\n\n",
1306
data->bi.biDownbound ? "Downbound" : "Upbound");
1307
pnv_eeh_dump_hub_diag_common(data);
1308
if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
1309
data->bi.biLdcp2 || data->bi.biFenceStatus)
1310
pr_info(" BI: %016llx %016llx %016llx %016llx\n",
1311
be64_to_cpu(data->bi.biLdcp0),
1312
be64_to_cpu(data->bi.biLdcp1),
1313
be64_to_cpu(data->bi.biLdcp2),
1314
be64_to_cpu(data->bi.biFenceStatus));
1315
break;
1316
case OPAL_P7IOC_DIAG_TYPE_CI:
1317
pr_info("P7IOC diag-data for CI Port %d\n\n",
1318
data->ci.ciPort);
1319
pnv_eeh_dump_hub_diag_common(data);
1320
if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
1321
pr_info(" CI: %016llx %016llx\n",
1322
be64_to_cpu(data->ci.ciPortStatus),
1323
be64_to_cpu(data->ci.ciPortLdcp));
1324
break;
1325
case OPAL_P7IOC_DIAG_TYPE_MISC:
1326
pr_info("P7IOC diag-data for MISC\n\n");
1327
pnv_eeh_dump_hub_diag_common(data);
1328
break;
1329
case OPAL_P7IOC_DIAG_TYPE_I2C:
1330
pr_info("P7IOC diag-data for I2C\n\n");
1331
pnv_eeh_dump_hub_diag_common(data);
1332
break;
1333
default:
1334
pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
1335
__func__, phb->hub_id, data->type);
1336
}
1337
}
1338
1339
static int pnv_eeh_get_pe(struct pci_controller *hose,
1340
u16 pe_no, struct eeh_pe **pe)
1341
{
1342
struct pnv_phb *phb = hose->private_data;
1343
struct pnv_ioda_pe *pnv_pe;
1344
struct eeh_pe *dev_pe;
1345
1346
/*
1347
* If PHB supports compound PE, to fetch
1348
* the master PE because slave PE is invisible
1349
* to EEH core.
1350
*/
1351
pnv_pe = &phb->ioda.pe_array[pe_no];
1352
if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
1353
pnv_pe = pnv_pe->master;
1354
WARN_ON(!pnv_pe ||
1355
!(pnv_pe->flags & PNV_IODA_PE_MASTER));
1356
pe_no = pnv_pe->pe_number;
1357
}
1358
1359
/* Find the PE according to PE# */
1360
dev_pe = eeh_pe_get(hose, pe_no);
1361
if (!dev_pe)
1362
return -EEXIST;
1363
1364
/* Freeze the (compound) PE */
1365
*pe = dev_pe;
1366
if (!(dev_pe->state & EEH_PE_ISOLATED))
1367
phb->freeze_pe(phb, pe_no);
1368
1369
/*
1370
* At this point, we're sure the (compound) PE should
1371
* have been frozen. However, we still need poke until
1372
* hitting the frozen PE on top level.
1373
*/
1374
dev_pe = dev_pe->parent;
1375
while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
1376
int ret;
1377
ret = eeh_ops->get_state(dev_pe, NULL);
1378
if (ret <= 0 || eeh_state_active(ret)) {
1379
dev_pe = dev_pe->parent;
1380
continue;
1381
}
1382
1383
/* Frozen parent PE */
1384
*pe = dev_pe;
1385
if (!(dev_pe->state & EEH_PE_ISOLATED))
1386
phb->freeze_pe(phb, dev_pe->addr);
1387
1388
/* Next one */
1389
dev_pe = dev_pe->parent;
1390
}
1391
1392
return 0;
1393
}
1394
1395
/**
1396
* pnv_eeh_next_error - Retrieve next EEH error to handle
1397
* @pe: Affected PE
1398
*
1399
* The function is expected to be called by EEH core while it gets
1400
* special EEH event (without binding PE). The function calls to
1401
* OPAL APIs for next error to handle. The informational error is
1402
* handled internally by platform. However, the dead IOC, dead PHB,
1403
* fenced PHB and frozen PE should be handled by EEH core eventually.
1404
*/
1405
static int pnv_eeh_next_error(struct eeh_pe **pe)
1406
{
1407
struct pci_controller *hose;
1408
struct pnv_phb *phb;
1409
struct eeh_pe *phb_pe, *parent_pe;
1410
__be64 frozen_pe_no;
1411
__be16 err_type, severity;
1412
long rc;
1413
int state, ret = EEH_NEXT_ERR_NONE;
1414
1415
/*
1416
* While running here, it's safe to purge the event queue. The
1417
* event should still be masked.
1418
*/
1419
eeh_remove_event(NULL, false);
1420
1421
list_for_each_entry(hose, &hose_list, list_node) {
1422
/*
1423
* If the subordinate PCI buses of the PHB has been
1424
* removed or is exactly under error recovery, we
1425
* needn't take care of it any more.
1426
*/
1427
phb = hose->private_data;
1428
phb_pe = eeh_phb_pe_get(hose);
1429
if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
1430
continue;
1431
1432
rc = opal_pci_next_error(phb->opal_id,
1433
&frozen_pe_no, &err_type, &severity);
1434
if (rc != OPAL_SUCCESS) {
1435
pr_devel("%s: Invalid return value on "
1436
"PHB#%x (0x%lx) from opal_pci_next_error",
1437
__func__, hose->global_number, rc);
1438
continue;
1439
}
1440
1441
/* If the PHB doesn't have error, stop processing */
1442
if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
1443
be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
1444
pr_devel("%s: No error found on PHB#%x\n",
1445
__func__, hose->global_number);
1446
continue;
1447
}
1448
1449
/*
1450
* Processing the error. We're expecting the error with
1451
* highest priority reported upon multiple errors on the
1452
* specific PHB.
1453
*/
1454
pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
1455
__func__, be16_to_cpu(err_type),
1456
be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
1457
hose->global_number);
1458
switch (be16_to_cpu(err_type)) {
1459
case OPAL_EEH_IOC_ERROR:
1460
if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
1461
pr_err("EEH: dead IOC detected\n");
1462
ret = EEH_NEXT_ERR_DEAD_IOC;
1463
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1464
pr_info("EEH: IOC informative error "
1465
"detected\n");
1466
pnv_eeh_get_and_dump_hub_diag(hose);
1467
ret = EEH_NEXT_ERR_NONE;
1468
}
1469
1470
break;
1471
case OPAL_EEH_PHB_ERROR:
1472
if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
1473
*pe = phb_pe;
1474
pr_err("EEH: dead PHB#%x detected, "
1475
"location: %s\n",
1476
hose->global_number,
1477
eeh_pe_loc_get(phb_pe));
1478
ret = EEH_NEXT_ERR_DEAD_PHB;
1479
} else if (be16_to_cpu(severity) ==
1480
OPAL_EEH_SEV_PHB_FENCED) {
1481
*pe = phb_pe;
1482
pr_err("EEH: Fenced PHB#%x detected, "
1483
"location: %s\n",
1484
hose->global_number,
1485
eeh_pe_loc_get(phb_pe));
1486
ret = EEH_NEXT_ERR_FENCED_PHB;
1487
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
1488
pr_info("EEH: PHB#%x informative error "
1489
"detected, location: %s\n",
1490
hose->global_number,
1491
eeh_pe_loc_get(phb_pe));
1492
pnv_eeh_get_phb_diag(phb_pe);
1493
pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
1494
ret = EEH_NEXT_ERR_NONE;
1495
}
1496
1497
break;
1498
case OPAL_EEH_PE_ERROR:
1499
/*
1500
* If we can't find the corresponding PE, we
1501
* just try to unfreeze.
1502
*/
1503
if (pnv_eeh_get_pe(hose,
1504
be64_to_cpu(frozen_pe_no), pe)) {
1505
pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
1506
hose->global_number, be64_to_cpu(frozen_pe_no));
1507
pr_info("EEH: PHB location: %s\n",
1508
eeh_pe_loc_get(phb_pe));
1509
1510
/* Dump PHB diag-data */
1511
rc = opal_pci_get_phb_diag_data2(phb->opal_id,
1512
phb->diag_data, phb->diag_data_size);
1513
if (rc == OPAL_SUCCESS)
1514
pnv_pci_dump_phb_diag_data(hose,
1515
phb->diag_data);
1516
1517
/* Try best to clear it */
1518
opal_pci_eeh_freeze_clear(phb->opal_id,
1519
be64_to_cpu(frozen_pe_no),
1520
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
1521
ret = EEH_NEXT_ERR_NONE;
1522
} else if ((*pe)->state & EEH_PE_ISOLATED ||
1523
eeh_pe_passed(*pe)) {
1524
ret = EEH_NEXT_ERR_NONE;
1525
} else {
1526
pr_err("EEH: Frozen PE#%x "
1527
"on PHB#%x detected\n",
1528
(*pe)->addr,
1529
(*pe)->phb->global_number);
1530
pr_err("EEH: PE location: %s, "
1531
"PHB location: %s\n",
1532
eeh_pe_loc_get(*pe),
1533
eeh_pe_loc_get(phb_pe));
1534
ret = EEH_NEXT_ERR_FROZEN_PE;
1535
}
1536
1537
break;
1538
default:
1539
pr_warn("%s: Unexpected error type %d\n",
1540
__func__, be16_to_cpu(err_type));
1541
}
1542
1543
/*
1544
* EEH core will try recover from fenced PHB or
1545
* frozen PE. In the time for frozen PE, EEH core
1546
* enable IO path for that before collecting logs,
1547
* but it ruins the site. So we have to dump the
1548
* log in advance here.
1549
*/
1550
if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
1551
ret == EEH_NEXT_ERR_FENCED_PHB) &&
1552
!((*pe)->state & EEH_PE_ISOLATED)) {
1553
eeh_pe_mark_isolated(*pe);
1554
pnv_eeh_get_phb_diag(*pe);
1555
1556
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
1557
pnv_pci_dump_phb_diag_data((*pe)->phb,
1558
(*pe)->data);
1559
}
1560
1561
/*
1562
* We probably have the frozen parent PE out there and
1563
* we need have to handle frozen parent PE firstly.
1564
*/
1565
if (ret == EEH_NEXT_ERR_FROZEN_PE) {
1566
parent_pe = (*pe)->parent;
1567
while (parent_pe) {
1568
/* Hit the ceiling ? */
1569
if (parent_pe->type & EEH_PE_PHB)
1570
break;
1571
1572
/* Frozen parent PE ? */
1573
state = eeh_ops->get_state(parent_pe, NULL);
1574
if (state > 0 && !eeh_state_active(state))
1575
*pe = parent_pe;
1576
1577
/* Next parent level */
1578
parent_pe = parent_pe->parent;
1579
}
1580
1581
/* We possibly migrate to another PE */
1582
eeh_pe_mark_isolated(*pe);
1583
}
1584
1585
/*
1586
* If we have no errors on the specific PHB or only
1587
* informative error there, we continue poking it.
1588
* Otherwise, we need actions to be taken by upper
1589
* layer.
1590
*/
1591
if (ret > EEH_NEXT_ERR_INF)
1592
break;
1593
}
1594
1595
/* Unmask the event */
1596
if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
1597
enable_irq(eeh_event_irq);
1598
1599
return ret;
1600
}
1601
1602
static int pnv_eeh_restore_config(struct eeh_dev *edev)
1603
{
1604
struct pnv_phb *phb;
1605
s64 ret = 0;
1606
1607
if (!edev)
1608
return -EEXIST;
1609
1610
if (edev->physfn)
1611
return 0;
1612
1613
phb = edev->controller->private_data;
1614
ret = opal_pci_reinit(phb->opal_id,
1615
OPAL_REINIT_PCI_DEV, edev->bdfn);
1616
1617
if (ret) {
1618
pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
1619
__func__, edev->bdfn, ret);
1620
return -EIO;
1621
}
1622
1623
return ret;
1624
}
1625
1626
static struct eeh_ops pnv_eeh_ops = {
1627
.name = "powernv",
1628
.probe = pnv_eeh_probe,
1629
.set_option = pnv_eeh_set_option,
1630
.get_state = pnv_eeh_get_state,
1631
.reset = pnv_eeh_reset,
1632
.get_log = pnv_eeh_get_log,
1633
.configure_bridge = pnv_eeh_configure_bridge,
1634
.err_inject = pnv_eeh_err_inject,
1635
.read_config = pnv_eeh_read_config,
1636
.write_config = pnv_eeh_write_config,
1637
.next_error = pnv_eeh_next_error,
1638
.restore_config = pnv_eeh_restore_config,
1639
.notify_resume = NULL
1640
};
1641
1642
/**
1643
* eeh_powernv_init - Register platform dependent EEH operations
1644
*
1645
* EEH initialization on powernv platform. This function should be
1646
* called before any EEH related functions.
1647
*/
1648
static int __init eeh_powernv_init(void)
1649
{
1650
int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
1651
struct pci_controller *hose;
1652
struct pnv_phb *phb;
1653
int ret = -EINVAL;
1654
1655
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
1656
pr_warn("%s: OPAL is required !\n", __func__);
1657
return -EINVAL;
1658
}
1659
1660
/* Set probe mode */
1661
eeh_add_flag(EEH_PROBE_MODE_DEV);
1662
1663
/*
1664
* P7IOC blocks PCI config access to frozen PE, but PHB3
1665
* doesn't do that. So we have to selectively enable I/O
1666
* prior to collecting error log.
1667
*/
1668
list_for_each_entry(hose, &hose_list, list_node) {
1669
phb = hose->private_data;
1670
1671
if (phb->model == PNV_PHB_MODEL_P7IOC)
1672
eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
1673
1674
if (phb->diag_data_size > max_diag_size)
1675
max_diag_size = phb->diag_data_size;
1676
1677
break;
1678
}
1679
1680
/*
1681
* eeh_init() allocates the eeh_pe and its aux data buf so the
1682
* size needs to be set before calling eeh_init().
1683
*/
1684
eeh_set_pe_aux_size(max_diag_size);
1685
ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device;
1686
1687
ret = eeh_init(&pnv_eeh_ops);
1688
if (!ret)
1689
pr_info("EEH: PowerNV platform initialized\n");
1690
else
1691
pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
1692
1693
return ret;
1694
}
1695
machine_arch_initcall(powernv, eeh_powernv_init);
1696
1697