Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/powernv/opal-lpc.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PowerNV LPC bus handling.
4
*
5
* Copyright 2013 IBM Corp.
6
*/
7
8
#include <linux/kernel.h>
9
#include <linux/of.h>
10
#include <linux/bug.h>
11
#include <linux/io.h>
12
#include <linux/slab.h>
13
#include <linux/debugfs.h>
14
15
#include <asm/machdep.h>
16
#include <asm/firmware.h>
17
#include <asm/opal.h>
18
#include <asm/prom.h>
19
#include <linux/uaccess.h>
20
#include <asm/isa-bridge.h>
21
22
static int opal_lpc_chip_id = -1;
23
24
static u8 opal_lpc_inb(unsigned long port)
25
{
26
int64_t rc;
27
__be32 data;
28
29
if (opal_lpc_chip_id < 0 || port > 0xffff)
30
return 0xff;
31
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 1);
32
return rc ? 0xff : be32_to_cpu(data);
33
}
34
35
static __le16 __opal_lpc_inw(unsigned long port)
36
{
37
int64_t rc;
38
__be32 data;
39
40
if (opal_lpc_chip_id < 0 || port > 0xfffe)
41
return 0xffff;
42
if (port & 1)
43
return (__le16)opal_lpc_inb(port) << 8 | opal_lpc_inb(port + 1);
44
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 2);
45
return rc ? 0xffff : be32_to_cpu(data);
46
}
47
static u16 opal_lpc_inw(unsigned long port)
48
{
49
return le16_to_cpu(__opal_lpc_inw(port));
50
}
51
52
static __le32 __opal_lpc_inl(unsigned long port)
53
{
54
int64_t rc;
55
__be32 data;
56
57
if (opal_lpc_chip_id < 0 || port > 0xfffc)
58
return 0xffffffff;
59
if (port & 3)
60
return (__le32)opal_lpc_inb(port ) << 24 |
61
(__le32)opal_lpc_inb(port + 1) << 16 |
62
(__le32)opal_lpc_inb(port + 2) << 8 |
63
opal_lpc_inb(port + 3);
64
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 4);
65
return rc ? 0xffffffff : be32_to_cpu(data);
66
}
67
68
static u32 opal_lpc_inl(unsigned long port)
69
{
70
return le32_to_cpu(__opal_lpc_inl(port));
71
}
72
73
static void opal_lpc_outb(u8 val, unsigned long port)
74
{
75
if (opal_lpc_chip_id < 0 || port > 0xffff)
76
return;
77
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 1);
78
}
79
80
static void __opal_lpc_outw(__le16 val, unsigned long port)
81
{
82
if (opal_lpc_chip_id < 0 || port > 0xfffe)
83
return;
84
if (port & 1) {
85
opal_lpc_outb(val >> 8, port);
86
opal_lpc_outb(val , port + 1);
87
return;
88
}
89
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 2);
90
}
91
92
static void opal_lpc_outw(u16 val, unsigned long port)
93
{
94
__opal_lpc_outw(cpu_to_le16(val), port);
95
}
96
97
static void __opal_lpc_outl(__le32 val, unsigned long port)
98
{
99
if (opal_lpc_chip_id < 0 || port > 0xfffc)
100
return;
101
if (port & 3) {
102
opal_lpc_outb(val >> 24, port);
103
opal_lpc_outb(val >> 16, port + 1);
104
opal_lpc_outb(val >> 8, port + 2);
105
opal_lpc_outb(val , port + 3);
106
return;
107
}
108
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 4);
109
}
110
111
static void opal_lpc_outl(u32 val, unsigned long port)
112
{
113
__opal_lpc_outl(cpu_to_le32(val), port);
114
}
115
116
static void opal_lpc_insb(unsigned long p, void *b, unsigned long c)
117
{
118
u8 *ptr = b;
119
120
while(c--)
121
*(ptr++) = opal_lpc_inb(p);
122
}
123
124
static void opal_lpc_insw(unsigned long p, void *b, unsigned long c)
125
{
126
__le16 *ptr = b;
127
128
while(c--)
129
*(ptr++) = __opal_lpc_inw(p);
130
}
131
132
static void opal_lpc_insl(unsigned long p, void *b, unsigned long c)
133
{
134
__le32 *ptr = b;
135
136
while(c--)
137
*(ptr++) = __opal_lpc_inl(p);
138
}
139
140
static void opal_lpc_outsb(unsigned long p, const void *b, unsigned long c)
141
{
142
const u8 *ptr = b;
143
144
while(c--)
145
opal_lpc_outb(*(ptr++), p);
146
}
147
148
static void opal_lpc_outsw(unsigned long p, const void *b, unsigned long c)
149
{
150
const __le16 *ptr = b;
151
152
while(c--)
153
__opal_lpc_outw(*(ptr++), p);
154
}
155
156
static void opal_lpc_outsl(unsigned long p, const void *b, unsigned long c)
157
{
158
const __le32 *ptr = b;
159
160
while(c--)
161
__opal_lpc_outl(*(ptr++), p);
162
}
163
164
static const struct ppc_pci_io opal_lpc_io = {
165
.inb = opal_lpc_inb,
166
.inw = opal_lpc_inw,
167
.inl = opal_lpc_inl,
168
.outb = opal_lpc_outb,
169
.outw = opal_lpc_outw,
170
.outl = opal_lpc_outl,
171
.insb = opal_lpc_insb,
172
.insw = opal_lpc_insw,
173
.insl = opal_lpc_insl,
174
.outsb = opal_lpc_outsb,
175
.outsw = opal_lpc_outsw,
176
.outsl = opal_lpc_outsl,
177
};
178
179
#ifdef CONFIG_DEBUG_FS
180
struct lpc_debugfs_entry {
181
enum OpalLPCAddressType lpc_type;
182
};
183
184
static ssize_t lpc_debug_read(struct file *filp, char __user *ubuf,
185
size_t count, loff_t *ppos)
186
{
187
struct lpc_debugfs_entry *lpc = filp->private_data;
188
u32 data, pos, len, todo;
189
int rc;
190
191
if (!access_ok(ubuf, count))
192
return -EFAULT;
193
194
todo = count;
195
while (todo) {
196
pos = *ppos;
197
198
/*
199
* Select access size based on count and alignment and
200
* access type. IO and MEM only support byte accesses,
201
* FW supports all 3.
202
*/
203
len = 1;
204
if (lpc->lpc_type == OPAL_LPC_FW) {
205
if (todo > 3 && (pos & 3) == 0)
206
len = 4;
207
else if (todo > 1 && (pos & 1) == 0)
208
len = 2;
209
}
210
rc = opal_lpc_read(opal_lpc_chip_id, lpc->lpc_type, pos,
211
&data, len);
212
if (rc)
213
return -ENXIO;
214
215
/*
216
* Now there is some trickery with the data returned by OPAL
217
* as it's the desired data right justified in a 32-bit BE
218
* word.
219
*
220
* This is a very bad interface and I'm to blame for it :-(
221
*
222
* So we can't just apply a 32-bit swap to what comes from OPAL,
223
* because user space expects the *bytes* to be in their proper
224
* respective positions (ie, LPC position).
225
*
226
* So what we really want to do here is to shift data right
227
* appropriately on a LE kernel.
228
*
229
* IE. If the LPC transaction has bytes B0, B1, B2 and B3 in that
230
* order, we have in memory written to by OPAL at the "data"
231
* pointer:
232
*
233
* Bytes: OPAL "data" LE "data"
234
* 32-bit: B0 B1 B2 B3 B0B1B2B3 B3B2B1B0
235
* 16-bit: B0 B1 0000B0B1 B1B00000
236
* 8-bit: B0 000000B0 B0000000
237
*
238
* So a BE kernel will have the leftmost of the above in the MSB
239
* and rightmost in the LSB and can just then "cast" the u32 "data"
240
* down to the appropriate quantity and write it.
241
*
242
* However, an LE kernel can't. It doesn't need to swap because a
243
* load from data followed by a store to user are going to preserve
244
* the byte ordering which is the wire byte order which is what the
245
* user wants, but in order to "crop" to the right size, we need to
246
* shift right first.
247
*/
248
switch(len) {
249
case 4:
250
rc = __put_user((u32)data, (u32 __user *)ubuf);
251
break;
252
case 2:
253
#ifdef __LITTLE_ENDIAN__
254
data >>= 16;
255
#endif
256
rc = __put_user((u16)data, (u16 __user *)ubuf);
257
break;
258
default:
259
#ifdef __LITTLE_ENDIAN__
260
data >>= 24;
261
#endif
262
rc = __put_user((u8)data, (u8 __user *)ubuf);
263
break;
264
}
265
if (rc)
266
return -EFAULT;
267
*ppos += len;
268
ubuf += len;
269
todo -= len;
270
}
271
272
return count;
273
}
274
275
static ssize_t lpc_debug_write(struct file *filp, const char __user *ubuf,
276
size_t count, loff_t *ppos)
277
{
278
struct lpc_debugfs_entry *lpc = filp->private_data;
279
u32 data, pos, len, todo;
280
int rc;
281
282
if (!access_ok(ubuf, count))
283
return -EFAULT;
284
285
todo = count;
286
while (todo) {
287
pos = *ppos;
288
289
/*
290
* Select access size based on count and alignment and
291
* access type. IO and MEM only support byte acceses,
292
* FW supports all 3.
293
*/
294
len = 1;
295
if (lpc->lpc_type == OPAL_LPC_FW) {
296
if (todo > 3 && (pos & 3) == 0)
297
len = 4;
298
else if (todo > 1 && (pos & 1) == 0)
299
len = 2;
300
}
301
302
/*
303
* Similarly to the read case, we have some trickery here but
304
* it's different to handle. We need to pass the value to OPAL in
305
* a register whose layout depends on the access size. We want
306
* to reproduce the memory layout of the user, however we aren't
307
* doing a load from user and a store to another memory location
308
* which would achieve that. Here we pass the value to OPAL via
309
* a register which is expected to contain the "BE" interpretation
310
* of the byte sequence. IE: for a 32-bit access, byte 0 should be
311
* in the MSB. So here we *do* need to byteswap on LE.
312
*
313
* User bytes: LE "data" OPAL "data"
314
* 32-bit: B0 B1 B2 B3 B3B2B1B0 B0B1B2B3
315
* 16-bit: B0 B1 0000B1B0 0000B0B1
316
* 8-bit: B0 000000B0 000000B0
317
*/
318
switch(len) {
319
case 4:
320
rc = __get_user(data, (u32 __user *)ubuf);
321
data = cpu_to_be32(data);
322
break;
323
case 2:
324
rc = __get_user(data, (u16 __user *)ubuf);
325
data = cpu_to_be16(data);
326
break;
327
default:
328
rc = __get_user(data, (u8 __user *)ubuf);
329
break;
330
}
331
if (rc)
332
return -EFAULT;
333
334
rc = opal_lpc_write(opal_lpc_chip_id, lpc->lpc_type, pos,
335
data, len);
336
if (rc)
337
return -ENXIO;
338
*ppos += len;
339
ubuf += len;
340
todo -= len;
341
}
342
343
return count;
344
}
345
346
static const struct file_operations lpc_fops = {
347
.read = lpc_debug_read,
348
.write = lpc_debug_write,
349
.open = simple_open,
350
.llseek = default_llseek,
351
};
352
353
static int opal_lpc_debugfs_create_type(struct dentry *folder,
354
const char *fname,
355
enum OpalLPCAddressType type)
356
{
357
struct lpc_debugfs_entry *entry;
358
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
359
if (!entry)
360
return -ENOMEM;
361
entry->lpc_type = type;
362
debugfs_create_file(fname, 0600, folder, entry, &lpc_fops);
363
return 0;
364
}
365
366
static int opal_lpc_init_debugfs(void)
367
{
368
struct dentry *root;
369
int rc = 0;
370
371
if (opal_lpc_chip_id < 0)
372
return -ENODEV;
373
374
root = debugfs_create_dir("lpc", arch_debugfs_dir);
375
376
rc |= opal_lpc_debugfs_create_type(root, "io", OPAL_LPC_IO);
377
rc |= opal_lpc_debugfs_create_type(root, "mem", OPAL_LPC_MEM);
378
rc |= opal_lpc_debugfs_create_type(root, "fw", OPAL_LPC_FW);
379
return rc;
380
}
381
machine_device_initcall(powernv, opal_lpc_init_debugfs);
382
#endif /* CONFIG_DEBUG_FS */
383
384
void __init opal_lpc_init(void)
385
{
386
struct device_node *np;
387
388
/*
389
* Look for a Power8 LPC bus tagged as "primary",
390
* we currently support only one though the OPAL APIs
391
* support any number.
392
*/
393
for_each_compatible_node(np, NULL, "ibm,power8-lpc") {
394
if (!of_device_is_available(np))
395
continue;
396
if (!of_property_present(np, "primary"))
397
continue;
398
opal_lpc_chip_id = of_get_ibm_chip_id(np);
399
of_node_put(np);
400
break;
401
}
402
if (opal_lpc_chip_id < 0)
403
return;
404
405
/* Does it support direct mapping ? */
406
if (of_property_present(np, "ranges")) {
407
pr_info("OPAL: Found memory mapped LPC bus on chip %d\n",
408
opal_lpc_chip_id);
409
isa_bridge_init_non_pci(np);
410
} else {
411
pr_info("OPAL: Found non-mapped LPC bus on chip %d\n",
412
opal_lpc_chip_id);
413
414
/* Setup special IO ops */
415
ppc_pci_io = opal_lpc_io;
416
isa_io_special = true;
417
}
418
}
419
420