Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/powernv/pci.h
26481 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef __POWERNV_PCI_H
3
#define __POWERNV_PCI_H
4
5
#include <linux/compiler.h> /* for __printf */
6
#include <linux/iommu.h>
7
#include <asm/iommu.h>
8
#include <asm/msi_bitmap.h>
9
10
struct pci_dn;
11
12
enum pnv_phb_type {
13
PNV_PHB_IODA2,
14
PNV_PHB_NPU_OCAPI,
15
};
16
17
/* Precise PHB model for error management */
18
enum pnv_phb_model {
19
PNV_PHB_MODEL_UNKNOWN,
20
PNV_PHB_MODEL_P7IOC,
21
PNV_PHB_MODEL_PHB3,
22
};
23
24
#define PNV_PCI_DIAG_BUF_SIZE 8192
25
#define PNV_IODA_PE_DEV (1 << 0) /* PE has single PCI device */
26
#define PNV_IODA_PE_BUS (1 << 1) /* PE has primary PCI bus */
27
#define PNV_IODA_PE_BUS_ALL (1 << 2) /* PE has subordinate buses */
28
#define PNV_IODA_PE_MASTER (1 << 3) /* Master PE in compound case */
29
#define PNV_IODA_PE_SLAVE (1 << 4) /* Slave PE in compound case */
30
#define PNV_IODA_PE_VF (1 << 5) /* PE for one VF */
31
32
/*
33
* A brief note on PNV_IODA_PE_BUS_ALL
34
*
35
* This is needed because of the behaviour of PCIe-to-PCI bridges. The PHB uses
36
* the Requester ID field of the PCIe request header to determine the device
37
* (and PE) that initiated a DMA. In legacy PCI individual memory read/write
38
* requests aren't tagged with the RID. To work around this the PCIe-to-PCI
39
* bridge will use (secondary_bus_no << 8) | 0x00 as the RID on the PCIe side.
40
*
41
* PCIe-to-X bridges have a similar issue even though PCI-X requests also have
42
* a RID in the transaction header. The PCIe-to-X bridge is permitted to "take
43
* ownership" of a transaction by a PCI-X device when forwarding it to the PCIe
44
* side of the bridge.
45
*
46
* To work around these problems we use the BUS_ALL flag since every subordinate
47
* bus of the bridge should go into the same PE.
48
*/
49
50
/* Indicates operations are frozen for a PE: MMIO in PESTA & DMA in PESTB. */
51
#define PNV_IODA_STOPPED_STATE 0x8000000000000000
52
53
/* Data associated with a PE, including IOMMU tracking etc.. */
54
struct pnv_phb;
55
struct pnv_ioda_pe {
56
unsigned long flags;
57
struct pnv_phb *phb;
58
int device_count;
59
60
/* A PE can be associated with a single device or an
61
* entire bus (& children). In the former case, pdev
62
* is populated, in the later case, pbus is.
63
*/
64
#ifdef CONFIG_PCI_IOV
65
struct pci_dev *parent_dev;
66
#endif
67
struct pci_dev *pdev;
68
struct pci_bus *pbus;
69
70
/* Effective RID (device RID for a device PE and base bus
71
* RID with devfn 0 for a bus PE)
72
*/
73
unsigned int rid;
74
75
/* PE number */
76
unsigned int pe_number;
77
78
/* "Base" iommu table, ie, 4K TCEs, 32-bit DMA */
79
struct iommu_table_group table_group;
80
81
/* 64-bit TCE bypass region */
82
bool tce_bypass_enabled;
83
uint64_t tce_bypass_base;
84
85
/*
86
* Used to track whether we've done DMA setup for this PE or not. We
87
* want to defer allocating TCE tables, etc until we've added a
88
* non-bridge device to the PE.
89
*/
90
bool dma_setup_done;
91
92
/* MSIs. MVE index is identical for 32 and 64 bit MSI
93
* and -1 if not supported. (It's actually identical to the
94
* PE number)
95
*/
96
int mve_number;
97
98
/* PEs in compound case */
99
struct pnv_ioda_pe *master;
100
struct list_head slaves;
101
102
/* Link in list of PE#s */
103
struct list_head list;
104
};
105
106
#define PNV_PHB_FLAG_EEH (1 << 0)
107
108
struct pnv_phb {
109
struct pci_controller *hose;
110
enum pnv_phb_type type;
111
enum pnv_phb_model model;
112
u64 hub_id;
113
u64 opal_id;
114
int flags;
115
void __iomem *regs;
116
u64 regs_phys;
117
spinlock_t lock;
118
119
#ifdef CONFIG_DEBUG_FS
120
int has_dbgfs;
121
struct dentry *dbgfs;
122
#endif
123
124
unsigned int msi_base;
125
struct msi_bitmap msi_bmp;
126
int (*init_m64)(struct pnv_phb *phb);
127
int (*get_pe_state)(struct pnv_phb *phb, int pe_no);
128
void (*freeze_pe)(struct pnv_phb *phb, int pe_no);
129
int (*unfreeze_pe)(struct pnv_phb *phb, int pe_no, int opt);
130
131
struct {
132
/* Global bridge info */
133
unsigned int total_pe_num;
134
unsigned int reserved_pe_idx;
135
unsigned int root_pe_idx;
136
137
/* 32-bit MMIO window */
138
unsigned int m32_size;
139
unsigned int m32_segsize;
140
unsigned int m32_pci_base;
141
142
/* 64-bit MMIO window */
143
unsigned int m64_bar_idx;
144
unsigned long m64_size;
145
unsigned long m64_segsize;
146
unsigned long m64_base;
147
#define MAX_M64_BARS 64
148
unsigned long m64_bar_alloc;
149
150
/* IO ports */
151
unsigned int io_size;
152
unsigned int io_segsize;
153
unsigned int io_pci_base;
154
155
/* PE allocation */
156
struct mutex pe_alloc_mutex;
157
unsigned long *pe_alloc;
158
struct pnv_ioda_pe *pe_array;
159
160
/* M32 & IO segment maps */
161
unsigned int *m64_segmap;
162
unsigned int *m32_segmap;
163
unsigned int *io_segmap;
164
165
/* IRQ chip */
166
struct irq_chip irq_chip;
167
168
/* Sorted list of used PE's based
169
* on the sequence of creation
170
*/
171
struct list_head pe_list;
172
struct mutex pe_list_mutex;
173
174
/* Reverse map of PEs, indexed by {bus, devfn} */
175
unsigned int pe_rmap[0x10000];
176
} ioda;
177
178
/* PHB and hub diagnostics */
179
unsigned int diag_data_size;
180
u8 *diag_data;
181
};
182
183
184
/* IODA PE management */
185
186
static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
187
{
188
/*
189
* WARNING: We cannot rely on the resource flags. The Linux PCI
190
* allocation code sometimes decides to put a 64-bit prefetchable
191
* BAR in the 32-bit window, so we have to compare the addresses.
192
*
193
* For simplicity we only test resource start.
194
*/
195
return (r->start >= phb->ioda.m64_base &&
196
r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
197
}
198
199
static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
200
{
201
unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
202
203
return (resource_flags & flags) == flags;
204
}
205
206
int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
207
int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
208
209
void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe);
210
void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe);
211
212
struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count);
213
void pnv_ioda_free_pe(struct pnv_ioda_pe *pe);
214
215
#ifdef CONFIG_PCI_IOV
216
/*
217
* For SR-IOV we want to put each VF's MMIO resource in to a separate PE.
218
* This requires a bit of acrobatics with the MMIO -> PE configuration
219
* and this structure is used to keep track of it all.
220
*/
221
struct pnv_iov_data {
222
/* number of VFs enabled */
223
u16 num_vfs;
224
225
/* pointer to the array of VF PEs. num_vfs long*/
226
struct pnv_ioda_pe *vf_pe_arr;
227
228
/* Did we map the VF BAR with single-PE IODA BARs? */
229
bool m64_single_mode[PCI_SRIOV_NUM_BARS];
230
231
/*
232
* True if we're using any segmented windows. In that case we need
233
* shift the start of the IOV resource the segment corresponding to
234
* the allocated PE.
235
*/
236
bool need_shift;
237
238
/*
239
* Bit mask used to track which m64 windows are used to map the
240
* SR-IOV BARs for this device.
241
*/
242
DECLARE_BITMAP(used_m64_bar_mask, MAX_M64_BARS);
243
244
/*
245
* If we map the SR-IOV BARs with a segmented window then
246
* parts of that window will be "claimed" by other PEs.
247
*
248
* "holes" here is used to reserve the leading portion
249
* of the window that is used by other (non VF) PEs.
250
*/
251
struct resource holes[PCI_SRIOV_NUM_BARS];
252
};
253
254
static inline struct pnv_iov_data *pnv_iov_get(struct pci_dev *pdev)
255
{
256
return pdev->dev.archdata.iov_data;
257
}
258
259
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev);
260
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, int resno);
261
262
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs);
263
int pnv_pcibios_sriov_disable(struct pci_dev *pdev);
264
#endif /* CONFIG_PCI_IOV */
265
266
extern struct pci_ops pnv_pci_ops;
267
268
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
269
unsigned char *log_buff);
270
int pnv_pci_cfg_read(struct pci_dn *pdn,
271
int where, int size, u32 *val);
272
int pnv_pci_cfg_write(struct pci_dn *pdn,
273
int where, int size, u32 val);
274
extern struct iommu_table *pnv_pci_table_alloc(int nid);
275
276
extern void pnv_pci_init_ioda2_phb(struct device_node *np);
277
extern void pnv_pci_init_npu2_opencapi_phb(struct device_node *np);
278
extern void pnv_pci_reset_secondary_bus(struct pci_dev *dev);
279
extern int pnv_eeh_phb_reset(struct pci_controller *hose, int option);
280
281
extern struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn);
282
extern struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev);
283
extern unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
284
__u64 window_size, __u32 levels);
285
extern int pnv_eeh_post_init(void);
286
287
__printf(3, 4)
288
extern void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
289
const char *fmt, ...);
290
#define pe_err(pe, fmt, ...) \
291
pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
292
#define pe_warn(pe, fmt, ...) \
293
pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
294
#define pe_info(pe, fmt, ...) \
295
pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
296
297
/* pci-ioda-tce.c */
298
#define POWERNV_IOMMU_DEFAULT_LEVELS 2
299
#define POWERNV_IOMMU_MAX_LEVELS 5
300
301
extern int pnv_tce_build(struct iommu_table *tbl, long index, long npages,
302
unsigned long uaddr, enum dma_data_direction direction,
303
unsigned long attrs);
304
extern void pnv_tce_free(struct iommu_table *tbl, long index, long npages);
305
extern int pnv_tce_xchg(struct iommu_table *tbl, long index,
306
unsigned long *hpa, enum dma_data_direction *direction);
307
extern __be64 *pnv_tce_useraddrptr(struct iommu_table *tbl, long index,
308
bool alloc);
309
extern unsigned long pnv_tce_get(struct iommu_table *tbl, long index);
310
311
extern long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
312
__u32 page_shift, __u64 window_size, __u32 levels,
313
bool alloc_userspace_copy, struct iommu_table *tbl);
314
extern void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
315
316
extern long pnv_pci_link_table_and_group(int node, int num,
317
struct iommu_table *tbl,
318
struct iommu_table_group *table_group);
319
extern void pnv_pci_unlink_table_and_group(struct iommu_table *tbl,
320
struct iommu_table_group *table_group);
321
extern void pnv_pci_setup_iommu_table(struct iommu_table *tbl,
322
void *tce_mem, u64 tce_size,
323
u64 dma_offset, unsigned int page_shift);
324
325
extern unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
326
327
static inline struct pnv_phb *pci_bus_to_pnvhb(struct pci_bus *bus)
328
{
329
struct pci_controller *hose = bus->sysdata;
330
331
if (hose)
332
return hose->private_data;
333
334
return NULL;
335
}
336
337
#endif /* __POWERNV_PCI_H */
338
339