Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/eeh_pseries.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* The file intends to implement the platform dependent EEH operations on pseries.
4
* Actually, the pseries platform is built based on RTAS heavily. That means the
5
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
6
* are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
7
* been done.
8
*
9
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10
* Copyright IBM Corporation 2001, 2005, 2006
11
* Copyright Dave Engebretsen & Todd Inglett 2001
12
* Copyright Linas Vepstas 2005, 2006
13
*/
14
15
#include <linux/atomic.h>
16
#include <linux/delay.h>
17
#include <linux/export.h>
18
#include <linux/init.h>
19
#include <linux/list.h>
20
#include <linux/of.h>
21
#include <linux/pci.h>
22
#include <linux/proc_fs.h>
23
#include <linux/rbtree.h>
24
#include <linux/sched.h>
25
#include <linux/seq_file.h>
26
#include <linux/spinlock.h>
27
#include <linux/crash_dump.h>
28
29
#include <asm/eeh.h>
30
#include <asm/eeh_event.h>
31
#include <asm/io.h>
32
#include <asm/machdep.h>
33
#include <asm/ppc-pci.h>
34
#include <asm/rtas.h>
35
36
/* RTAS tokens */
37
static int ibm_set_eeh_option;
38
static int ibm_set_slot_reset;
39
static int ibm_read_slot_reset_state;
40
static int ibm_read_slot_reset_state2;
41
static int ibm_slot_error_detail;
42
static int ibm_get_config_addr_info;
43
static int ibm_get_config_addr_info2;
44
static int ibm_configure_pe;
45
46
static void pseries_eeh_init_edev(struct pci_dn *pdn);
47
48
static void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
49
{
50
struct pci_dn *pdn = pci_get_pdn(pdev);
51
52
if (eeh_has_flag(EEH_FORCE_DISABLED))
53
return;
54
55
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
56
#ifdef CONFIG_PCI_IOV
57
if (pdev->is_virtfn) {
58
pdn->device_id = pdev->device;
59
pdn->vendor_id = pdev->vendor;
60
pdn->class_code = pdev->class;
61
/*
62
* Last allow unfreeze return code used for retrieval
63
* by user space in eeh-sysfs to show the last command
64
* completion from platform.
65
*/
66
pdn->last_allow_rc = 0;
67
}
68
#endif
69
pseries_eeh_init_edev(pdn);
70
#ifdef CONFIG_PCI_IOV
71
if (pdev->is_virtfn) {
72
/*
73
* FIXME: This really should be handled by choosing the right
74
* parent PE in pseries_eeh_init_edev().
75
*/
76
struct eeh_pe *physfn_pe = pci_dev_to_eeh_dev(pdev->physfn)->pe;
77
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
78
79
edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
80
eeh_pe_tree_remove(edev); /* Remove as it is adding to bus pe */
81
eeh_pe_tree_insert(edev, physfn_pe); /* Add as VF PE type */
82
}
83
#endif
84
eeh_probe_device(pdev);
85
}
86
87
88
/**
89
* pseries_eeh_get_pe_config_addr - Find the pe_config_addr for a device
90
* @pdn: pci_dn of the input device
91
*
92
* The EEH RTAS calls use a tuple consisting of: (buid_hi, buid_lo,
93
* pe_config_addr) as a handle to a given PE. This function finds the
94
* pe_config_addr based on the device's config addr.
95
*
96
* Keep in mind that the pe_config_addr *might* be numerically identical to the
97
* device's config addr, but the two are conceptually distinct.
98
*
99
* Returns the pe_config_addr, or a negative error code.
100
*/
101
static int pseries_eeh_get_pe_config_addr(struct pci_dn *pdn)
102
{
103
int config_addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
104
struct pci_controller *phb = pdn->phb;
105
int ret, rets[3];
106
107
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
108
/*
109
* First of all, use function 1 to determine if this device is
110
* part of a PE or not. ret[0] being zero indicates it's not.
111
*/
112
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
113
config_addr, BUID_HI(phb->buid),
114
BUID_LO(phb->buid), 1);
115
if (ret || (rets[0] == 0))
116
return -ENOENT;
117
118
/* Retrieve the associated PE config address with function 0 */
119
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
120
config_addr, BUID_HI(phb->buid),
121
BUID_LO(phb->buid), 0);
122
if (ret) {
123
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
124
__func__, phb->global_number, config_addr);
125
return -ENXIO;
126
}
127
128
return rets[0];
129
}
130
131
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
132
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
133
config_addr, BUID_HI(phb->buid),
134
BUID_LO(phb->buid), 0);
135
if (ret) {
136
pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
137
__func__, phb->global_number, config_addr);
138
return -ENXIO;
139
}
140
141
return rets[0];
142
}
143
144
/*
145
* PAPR does describe a process for finding the pe_config_addr that was
146
* used before the ibm,get-config-addr-info calls were added. However,
147
* I haven't found *any* systems that don't have that RTAS call
148
* implemented. If you happen to find one that needs the old DT based
149
* process, patches are welcome!
150
*/
151
return -ENOENT;
152
}
153
154
/**
155
* pseries_eeh_phb_reset - Reset the specified PHB
156
* @phb: PCI controller
157
* @config_addr: the associated config address
158
* @option: reset option
159
*
160
* Reset the specified PHB/PE
161
*/
162
static int pseries_eeh_phb_reset(struct pci_controller *phb, int config_addr, int option)
163
{
164
int ret;
165
166
/* Reset PE through RTAS call */
167
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
168
config_addr, BUID_HI(phb->buid),
169
BUID_LO(phb->buid), option);
170
171
/* If fundamental-reset not supported, try hot-reset */
172
if (option == EEH_RESET_FUNDAMENTAL && ret == -8) {
173
option = EEH_RESET_HOT;
174
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
175
config_addr, BUID_HI(phb->buid),
176
BUID_LO(phb->buid), option);
177
}
178
179
/* We need reset hold or settlement delay */
180
if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT)
181
msleep(EEH_PE_RST_HOLD_TIME);
182
else
183
msleep(EEH_PE_RST_SETTLE_TIME);
184
185
return ret;
186
}
187
188
/**
189
* pseries_eeh_phb_configure_bridge - Configure PCI bridges in the indicated PE
190
* @phb: PCI controller
191
* @config_addr: the associated config address
192
*
193
* The function will be called to reconfigure the bridges included
194
* in the specified PE so that the mulfunctional PE would be recovered
195
* again.
196
*/
197
static int pseries_eeh_phb_configure_bridge(struct pci_controller *phb, int config_addr)
198
{
199
int ret;
200
/* Waiting 0.2s maximum before skipping configuration */
201
int max_wait = 200;
202
203
while (max_wait > 0) {
204
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
205
config_addr, BUID_HI(phb->buid),
206
BUID_LO(phb->buid));
207
208
if (!ret)
209
return ret;
210
if (ret < 0)
211
break;
212
213
/*
214
* If RTAS returns a delay value that's above 100ms, cut it
215
* down to 100ms in case firmware made a mistake. For more
216
* on how these delay values work see rtas_busy_delay_time
217
*/
218
if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
219
ret <= RTAS_EXTENDED_DELAY_MAX)
220
ret = RTAS_EXTENDED_DELAY_MIN+2;
221
222
max_wait -= rtas_busy_delay_time(ret);
223
224
if (max_wait < 0)
225
break;
226
227
rtas_busy_delay(ret);
228
}
229
230
pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
231
__func__, phb->global_number, config_addr, ret);
232
/* PAPR defines -3 as "Parameter Error" for this function: */
233
if (ret == -3)
234
return -EINVAL;
235
else
236
return -EIO;
237
}
238
239
/*
240
* Buffer for reporting slot-error-detail rtas calls. Its here
241
* in BSS, and not dynamically alloced, so that it ends up in
242
* RMO where RTAS can access it.
243
*/
244
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
245
static DEFINE_SPINLOCK(slot_errbuf_lock);
246
static int eeh_error_buf_size;
247
248
static int pseries_eeh_cap_start(struct pci_dn *pdn)
249
{
250
u32 status;
251
252
if (!pdn)
253
return 0;
254
255
rtas_pci_dn_read_config(pdn, PCI_STATUS, 2, &status);
256
if (!(status & PCI_STATUS_CAP_LIST))
257
return 0;
258
259
return PCI_CAPABILITY_LIST;
260
}
261
262
263
static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
264
{
265
int pos = pseries_eeh_cap_start(pdn);
266
int cnt = 48; /* Maximal number of capabilities */
267
u32 id;
268
269
if (!pos)
270
return 0;
271
272
while (cnt--) {
273
rtas_pci_dn_read_config(pdn, pos, 1, &pos);
274
if (pos < 0x40)
275
break;
276
pos &= ~3;
277
rtas_pci_dn_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
278
if (id == 0xff)
279
break;
280
if (id == cap)
281
return pos;
282
pos += PCI_CAP_LIST_NEXT;
283
}
284
285
return 0;
286
}
287
288
static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
289
{
290
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
291
u32 header;
292
int pos = 256;
293
int ttl = (4096 - 256) / 8;
294
295
if (!edev || !edev->pcie_cap)
296
return 0;
297
if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
298
return 0;
299
else if (!header)
300
return 0;
301
302
while (ttl-- > 0) {
303
if (PCI_EXT_CAP_ID(header) == cap && pos)
304
return pos;
305
306
pos = PCI_EXT_CAP_NEXT(header);
307
if (pos < 256)
308
break;
309
310
if (rtas_pci_dn_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
311
break;
312
}
313
314
return 0;
315
}
316
317
/**
318
* pseries_eeh_pe_get_parent - Retrieve the parent PE
319
* @edev: EEH device
320
*
321
* The whole PEs existing in the system are organized as hierarchy
322
* tree. The function is used to retrieve the parent PE according
323
* to the parent EEH device.
324
*/
325
static struct eeh_pe *pseries_eeh_pe_get_parent(struct eeh_dev *edev)
326
{
327
struct eeh_dev *parent;
328
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
329
330
/*
331
* It might have the case for the indirect parent
332
* EEH device already having associated PE, but
333
* the direct parent EEH device doesn't have yet.
334
*/
335
if (edev->physfn)
336
pdn = pci_get_pdn(edev->physfn);
337
else
338
pdn = pdn ? pdn->parent : NULL;
339
while (pdn) {
340
/* We're poking out of PCI territory */
341
parent = pdn_to_eeh_dev(pdn);
342
if (!parent)
343
return NULL;
344
345
if (parent->pe)
346
return parent->pe;
347
348
pdn = pdn->parent;
349
}
350
351
return NULL;
352
}
353
354
/**
355
* pseries_eeh_init_edev - initialise the eeh_dev and eeh_pe for a pci_dn
356
*
357
* @pdn: PCI device node
358
*
359
* When we discover a new PCI device via the device-tree we create a
360
* corresponding pci_dn and we allocate, but don't initialise, an eeh_dev.
361
* This function takes care of the initialisation and inserts the eeh_dev
362
* into the correct eeh_pe. If no eeh_pe exists we'll allocate one.
363
*/
364
static void pseries_eeh_init_edev(struct pci_dn *pdn)
365
{
366
struct eeh_pe pe, *parent;
367
struct eeh_dev *edev;
368
u32 pcie_flags;
369
int ret;
370
371
if (WARN_ON_ONCE(!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)))
372
return;
373
374
/*
375
* Find the eeh_dev for this pdn. The storage for the eeh_dev was
376
* allocated at the same time as the pci_dn.
377
*
378
* XXX: We should probably re-visit that.
379
*/
380
edev = pdn_to_eeh_dev(pdn);
381
if (!edev)
382
return;
383
384
/*
385
* If ->pe is set then we've already probed this device. We hit
386
* this path when a pci_dev is removed and rescanned while recovering
387
* a PE (i.e. for devices where the driver doesn't support error
388
* recovery).
389
*/
390
if (edev->pe)
391
return;
392
393
/* Check class/vendor/device IDs */
394
if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
395
return;
396
397
/* Skip for PCI-ISA bridge */
398
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
399
return;
400
401
eeh_edev_dbg(edev, "Probing device\n");
402
403
/*
404
* Update class code and mode of eeh device. We need
405
* correctly reflects that current device is root port
406
* or PCIe switch downstream port.
407
*/
408
edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
409
edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
410
edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
411
edev->mode &= 0xFFFFFF00;
412
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
413
edev->mode |= EEH_DEV_BRIDGE;
414
if (edev->pcie_cap) {
415
rtas_pci_dn_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
416
2, &pcie_flags);
417
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
418
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
419
edev->mode |= EEH_DEV_ROOT_PORT;
420
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
421
edev->mode |= EEH_DEV_DS_PORT;
422
}
423
}
424
425
/* first up, find the pe_config_addr for the PE containing the device */
426
ret = pseries_eeh_get_pe_config_addr(pdn);
427
if (ret < 0) {
428
eeh_edev_dbg(edev, "Unable to find pe_config_addr\n");
429
goto err;
430
}
431
432
/* Try enable EEH on the fake PE */
433
memset(&pe, 0, sizeof(struct eeh_pe));
434
pe.phb = pdn->phb;
435
pe.addr = ret;
436
437
eeh_edev_dbg(edev, "Enabling EEH on device\n");
438
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
439
if (ret) {
440
eeh_edev_dbg(edev, "EEH failed to enable on device (code %d)\n", ret);
441
goto err;
442
}
443
444
edev->pe_config_addr = pe.addr;
445
446
eeh_add_flag(EEH_ENABLED);
447
448
parent = pseries_eeh_pe_get_parent(edev);
449
eeh_pe_tree_insert(edev, parent);
450
eeh_save_bars(edev);
451
eeh_edev_dbg(edev, "EEH enabled for device");
452
453
return;
454
455
err:
456
eeh_edev_dbg(edev, "EEH is unsupported on device (code = %d)\n", ret);
457
}
458
459
static struct eeh_dev *pseries_eeh_probe(struct pci_dev *pdev)
460
{
461
struct eeh_dev *edev;
462
struct pci_dn *pdn;
463
464
pdn = pci_get_pdn_by_devfn(pdev->bus, pdev->devfn);
465
if (!pdn)
466
return NULL;
467
468
/*
469
* If the system supports EEH on this device then the eeh_dev was
470
* configured and inserted into a PE in pseries_eeh_init_edev()
471
*/
472
edev = pdn_to_eeh_dev(pdn);
473
if (!edev || !edev->pe)
474
return NULL;
475
476
return edev;
477
}
478
479
/**
480
* pseries_eeh_init_edev_recursive - Enable EEH for the indicated device
481
* @pdn: PCI device node
482
*
483
* This routine must be used to perform EEH initialization for the
484
* indicated PCI device that was added after system boot (e.g.
485
* hotplug, dlpar).
486
*/
487
void pseries_eeh_init_edev_recursive(struct pci_dn *pdn)
488
{
489
struct pci_dn *n;
490
491
if (!pdn)
492
return;
493
494
list_for_each_entry(n, &pdn->child_list, list)
495
pseries_eeh_init_edev_recursive(n);
496
497
pseries_eeh_init_edev(pdn);
498
}
499
EXPORT_SYMBOL_GPL(pseries_eeh_init_edev_recursive);
500
501
/**
502
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
503
* @pe: EEH PE
504
* @option: operation to be issued
505
*
506
* The function is used to control the EEH functionality globally.
507
* Currently, following options are support according to PAPR:
508
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
509
*/
510
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
511
{
512
int ret = 0;
513
514
/*
515
* When we're enabling or disabling EEH functionality on
516
* the particular PE, the PE config address is possibly
517
* unavailable. Therefore, we have to figure it out from
518
* the FDT node.
519
*/
520
switch (option) {
521
case EEH_OPT_DISABLE:
522
case EEH_OPT_ENABLE:
523
case EEH_OPT_THAW_MMIO:
524
case EEH_OPT_THAW_DMA:
525
break;
526
case EEH_OPT_FREEZE_PE:
527
/* Not support */
528
return 0;
529
default:
530
pr_err("%s: Invalid option %d\n", __func__, option);
531
return -EINVAL;
532
}
533
534
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
535
pe->addr, BUID_HI(pe->phb->buid),
536
BUID_LO(pe->phb->buid), option);
537
538
return ret;
539
}
540
541
/**
542
* pseries_eeh_get_state - Retrieve PE state
543
* @pe: EEH PE
544
* @delay: suggested time to wait if state is unavailable
545
*
546
* Retrieve the state of the specified PE. On RTAS compliant
547
* pseries platform, there already has one dedicated RTAS function
548
* for the purpose. It's notable that the associated PE config address
549
* might be ready when calling the function. Therefore, endeavour to
550
* use the PE config address if possible. Further more, there're 2
551
* RTAS calls for the purpose, we need to try the new one and back
552
* to the old one if the new one couldn't work properly.
553
*/
554
static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
555
{
556
int ret;
557
int rets[4];
558
int result;
559
560
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
561
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
562
pe->addr, BUID_HI(pe->phb->buid),
563
BUID_LO(pe->phb->buid));
564
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
565
/* Fake PE unavailable info */
566
rets[2] = 0;
567
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
568
pe->addr, BUID_HI(pe->phb->buid),
569
BUID_LO(pe->phb->buid));
570
} else {
571
return EEH_STATE_NOT_SUPPORT;
572
}
573
574
if (ret)
575
return ret;
576
577
/* Parse the result out */
578
if (!rets[1])
579
return EEH_STATE_NOT_SUPPORT;
580
581
switch(rets[0]) {
582
case 0:
583
result = EEH_STATE_MMIO_ACTIVE |
584
EEH_STATE_DMA_ACTIVE |
585
EEH_STATE_MMIO_ENABLED |
586
EEH_STATE_DMA_ENABLED;
587
break;
588
case 1:
589
result = EEH_STATE_RESET_ACTIVE |
590
EEH_STATE_MMIO_ACTIVE |
591
EEH_STATE_DMA_ACTIVE;
592
break;
593
case 2:
594
result = 0;
595
break;
596
case 4:
597
result = EEH_STATE_MMIO_ENABLED;
598
break;
599
case 5:
600
if (rets[2]) {
601
if (delay)
602
*delay = rets[2];
603
result = EEH_STATE_UNAVAILABLE;
604
} else {
605
result = EEH_STATE_NOT_SUPPORT;
606
}
607
break;
608
default:
609
result = EEH_STATE_NOT_SUPPORT;
610
}
611
612
return result;
613
}
614
615
/**
616
* pseries_eeh_reset - Reset the specified PE
617
* @pe: EEH PE
618
* @option: reset option
619
*
620
* Reset the specified PE
621
*/
622
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
623
{
624
return pseries_eeh_phb_reset(pe->phb, pe->addr, option);
625
}
626
627
/**
628
* pseries_eeh_get_log - Retrieve error log
629
* @pe: EEH PE
630
* @severity: temporary or permanent error log
631
* @drv_log: driver log to be combined with retrieved error log
632
* @len: length of driver log
633
*
634
* Retrieve the temporary or permanent error from the PE.
635
* Actually, the error will be retrieved through the dedicated
636
* RTAS call.
637
*/
638
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
639
{
640
unsigned long flags;
641
int ret;
642
643
spin_lock_irqsave(&slot_errbuf_lock, flags);
644
memset(slot_errbuf, 0, eeh_error_buf_size);
645
646
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, pe->addr,
647
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
648
virt_to_phys(drv_log), len,
649
virt_to_phys(slot_errbuf), eeh_error_buf_size,
650
severity);
651
if (!ret)
652
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
653
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
654
655
return ret;
656
}
657
658
/**
659
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
660
* @pe: EEH PE
661
*
662
*/
663
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
664
{
665
return pseries_eeh_phb_configure_bridge(pe->phb, pe->addr);
666
}
667
668
/**
669
* pseries_eeh_read_config - Read PCI config space
670
* @edev: EEH device handle
671
* @where: PCI config space offset
672
* @size: size to read
673
* @val: return value
674
*
675
* Read config space from the speicifed device
676
*/
677
static int pseries_eeh_read_config(struct eeh_dev *edev, int where, int size, u32 *val)
678
{
679
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
680
681
return rtas_pci_dn_read_config(pdn, where, size, val);
682
}
683
684
/**
685
* pseries_eeh_write_config - Write PCI config space
686
* @edev: EEH device handle
687
* @where: PCI config space offset
688
* @size: size to write
689
* @val: value to be written
690
*
691
* Write config space to the specified device
692
*/
693
static int pseries_eeh_write_config(struct eeh_dev *edev, int where, int size, u32 val)
694
{
695
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
696
697
return rtas_pci_dn_write_config(pdn, where, size, val);
698
}
699
700
#ifdef CONFIG_PCI_IOV
701
static int pseries_send_allow_unfreeze(struct pci_dn *pdn, u16 *vf_pe_array, int cur_vfs)
702
{
703
int rc;
704
int ibm_allow_unfreeze = rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE);
705
unsigned long buid, addr;
706
707
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
708
buid = pdn->phb->buid;
709
spin_lock(&rtas_data_buf_lock);
710
memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
711
rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
712
addr,
713
BUID_HI(buid),
714
BUID_LO(buid),
715
rtas_data_buf, cur_vfs * sizeof(u16));
716
spin_unlock(&rtas_data_buf_lock);
717
if (rc)
718
pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
719
__func__,
720
pdn->phb->global_number, addr, rc);
721
return rc;
722
}
723
724
static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
725
{
726
int cur_vfs = 0, rc = 0, vf_index, bus, devfn, vf_pe_num;
727
struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
728
u16 *vf_pe_array;
729
730
vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
731
if (!vf_pe_array)
732
return -ENOMEM;
733
if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
734
if (edev->pdev->is_physfn) {
735
cur_vfs = pci_num_vf(edev->pdev);
736
pdn = eeh_dev_to_pdn(edev);
737
parent = pdn->parent;
738
for (vf_index = 0; vf_index < cur_vfs; vf_index++)
739
vf_pe_array[vf_index] =
740
cpu_to_be16(pdn->pe_num_map[vf_index]);
741
rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
742
cur_vfs);
743
pdn->last_allow_rc = rc;
744
for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
745
list_for_each_entry_safe(pdn, tmp,
746
&parent->child_list,
747
list) {
748
bus = pci_iov_virtfn_bus(edev->pdev,
749
vf_index);
750
devfn = pci_iov_virtfn_devfn(edev->pdev,
751
vf_index);
752
if (pdn->busno != bus ||
753
pdn->devfn != devfn)
754
continue;
755
pdn->last_allow_rc = rc;
756
}
757
}
758
} else {
759
pdn = pci_get_pdn(edev->pdev);
760
physfn_pdn = pci_get_pdn(edev->physfn);
761
762
vf_pe_num = physfn_pdn->pe_num_map[edev->vf_index];
763
vf_pe_array[0] = cpu_to_be16(vf_pe_num);
764
rc = pseries_send_allow_unfreeze(physfn_pdn,
765
vf_pe_array, 1);
766
pdn->last_allow_rc = rc;
767
}
768
}
769
770
kfree(vf_pe_array);
771
return rc;
772
}
773
774
static int pseries_notify_resume(struct eeh_dev *edev)
775
{
776
if (!edev)
777
return -EEXIST;
778
779
if (rtas_function_token(RTAS_FN_IBM_OPEN_SRIOV_ALLOW_UNFREEZE) == RTAS_UNKNOWN_SERVICE)
780
return -EINVAL;
781
782
if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
783
return pseries_call_allow_unfreeze(edev);
784
785
return 0;
786
}
787
#endif
788
789
/**
790
* pseries_eeh_err_inject - Inject specified error to the indicated PE
791
* @pe: the indicated PE
792
* @type: error type
793
* @func: specific error type
794
* @addr: address
795
* @mask: address mask
796
* The routine is called to inject specified error, which is
797
* determined by @type and @func, to the indicated PE
798
*/
799
static int pseries_eeh_err_inject(struct eeh_pe *pe, int type, int func,
800
unsigned long addr, unsigned long mask)
801
{
802
struct eeh_dev *pdev;
803
804
/* Check on PCI error type */
805
if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
806
return -EINVAL;
807
808
switch (func) {
809
case EEH_ERR_FUNC_LD_MEM_ADDR:
810
case EEH_ERR_FUNC_LD_MEM_DATA:
811
case EEH_ERR_FUNC_ST_MEM_ADDR:
812
case EEH_ERR_FUNC_ST_MEM_DATA:
813
/* injects a MMIO error for all pdev's belonging to PE */
814
pci_lock_rescan_remove();
815
list_for_each_entry(pdev, &pe->edevs, entry)
816
eeh_pe_inject_mmio_error(pdev->pdev);
817
pci_unlock_rescan_remove();
818
break;
819
default:
820
return -ERANGE;
821
}
822
823
return 0;
824
}
825
826
static struct eeh_ops pseries_eeh_ops = {
827
.name = "pseries",
828
.probe = pseries_eeh_probe,
829
.set_option = pseries_eeh_set_option,
830
.get_state = pseries_eeh_get_state,
831
.reset = pseries_eeh_reset,
832
.get_log = pseries_eeh_get_log,
833
.configure_bridge = pseries_eeh_configure_bridge,
834
.err_inject = pseries_eeh_err_inject,
835
.read_config = pseries_eeh_read_config,
836
.write_config = pseries_eeh_write_config,
837
.next_error = NULL,
838
.restore_config = NULL, /* NB: configure_bridge() does this */
839
#ifdef CONFIG_PCI_IOV
840
.notify_resume = pseries_notify_resume
841
#endif
842
};
843
844
/**
845
* eeh_pseries_init - Register platform dependent EEH operations
846
*
847
* EEH initialization on pseries platform. This function should be
848
* called before any EEH related functions.
849
*/
850
static int __init eeh_pseries_init(void)
851
{
852
struct pci_controller *phb;
853
struct pci_dn *pdn;
854
int ret, config_addr;
855
856
/* figure out EEH RTAS function call tokens */
857
ibm_set_eeh_option = rtas_function_token(RTAS_FN_IBM_SET_EEH_OPTION);
858
ibm_set_slot_reset = rtas_function_token(RTAS_FN_IBM_SET_SLOT_RESET);
859
ibm_read_slot_reset_state2 = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE2);
860
ibm_read_slot_reset_state = rtas_function_token(RTAS_FN_IBM_READ_SLOT_RESET_STATE);
861
ibm_slot_error_detail = rtas_function_token(RTAS_FN_IBM_SLOT_ERROR_DETAIL);
862
ibm_get_config_addr_info2 = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO2);
863
ibm_get_config_addr_info = rtas_function_token(RTAS_FN_IBM_GET_CONFIG_ADDR_INFO);
864
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_PE);
865
866
/*
867
* ibm,configure-pe and ibm,configure-bridge have the same semantics,
868
* however ibm,configure-pe can be faster. If we can't find
869
* ibm,configure-pe then fall back to using ibm,configure-bridge.
870
*/
871
if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
872
ibm_configure_pe = rtas_function_token(RTAS_FN_IBM_CONFIGURE_BRIDGE);
873
874
/*
875
* Necessary sanity check. We needn't check "get-config-addr-info"
876
* and its variant since the old firmware probably support address
877
* of domain/bus/slot/function for EEH RTAS operations.
878
*/
879
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
880
ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
881
(ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
882
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
883
ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
884
ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
885
pr_info("EEH functionality not supported\n");
886
return -EINVAL;
887
}
888
889
/* Initialize error log size */
890
eeh_error_buf_size = rtas_get_error_log_max();
891
892
/* Set EEH probe mode */
893
eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
894
895
/* Set EEH machine dependent code */
896
ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
897
898
if (is_kdump_kernel() || reset_devices) {
899
pr_info("Issue PHB reset ...\n");
900
list_for_each_entry(phb, &hose_list, list_node) {
901
// Skip if the slot is empty
902
if (list_empty(&PCI_DN(phb->dn)->child_list))
903
continue;
904
905
pdn = list_first_entry(&PCI_DN(phb->dn)->child_list, struct pci_dn, list);
906
config_addr = pseries_eeh_get_pe_config_addr(pdn);
907
908
/* invalid PE config addr */
909
if (config_addr < 0)
910
continue;
911
912
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_FUNDAMENTAL);
913
pseries_eeh_phb_reset(phb, config_addr, EEH_RESET_DEACTIVATE);
914
pseries_eeh_phb_configure_bridge(phb, config_addr);
915
}
916
}
917
918
ret = eeh_init(&pseries_eeh_ops);
919
if (!ret)
920
pr_info("EEH: pSeries platform initialized\n");
921
else
922
pr_info("EEH: pSeries platform initialization failure (%d)\n",
923
ret);
924
return ret;
925
}
926
machine_arch_initcall(pseries, eeh_pseries_init);
927
928