Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/lpar.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* pSeries_lpar.c
4
* Copyright (C) 2001 Todd Inglett, IBM Corporation
5
*
6
* pSeries LPAR support.
7
*/
8
9
/* Enables debugging of low-level hash table routines - careful! */
10
#undef DEBUG
11
#define pr_fmt(fmt) "lpar: " fmt
12
13
#include <linux/kernel.h>
14
#include <linux/dma-mapping.h>
15
#include <linux/console.h>
16
#include <linux/export.h>
17
#include <linux/jump_label.h>
18
#include <linux/delay.h>
19
#include <linux/seq_file.h>
20
#include <linux/stop_machine.h>
21
#include <linux/spinlock.h>
22
#include <linux/cpuhotplug.h>
23
#include <linux/workqueue.h>
24
#include <linux/proc_fs.h>
25
#include <linux/pgtable.h>
26
#include <linux/debugfs.h>
27
28
#include <asm/processor.h>
29
#include <asm/mmu.h>
30
#include <asm/page.h>
31
#include <asm/setup.h>
32
#include <asm/mmu_context.h>
33
#include <asm/iommu.h>
34
#include <asm/tlb.h>
35
#include <asm/cputable.h>
36
#include <asm/papr-sysparm.h>
37
#include <asm/udbg.h>
38
#include <asm/smp.h>
39
#include <asm/trace.h>
40
#include <asm/firmware.h>
41
#include <asm/plpar_wrappers.h>
42
#include <asm/kexec.h>
43
#include <asm/fadump.h>
44
#include <asm/dtl.h>
45
#include <asm/vphn.h>
46
47
#include "pseries.h"
48
49
/* Flag bits for H_BULK_REMOVE */
50
#define HBR_REQUEST 0x4000000000000000UL
51
#define HBR_RESPONSE 0x8000000000000000UL
52
#define HBR_END 0xc000000000000000UL
53
#define HBR_AVPN 0x0200000000000000UL
54
#define HBR_ANDCOND 0x0100000000000000UL
55
56
57
/* in hvCall.S */
58
EXPORT_SYMBOL(plpar_hcall);
59
EXPORT_SYMBOL(plpar_hcall9);
60
EXPORT_SYMBOL(plpar_hcall_norets);
61
62
#ifdef CONFIG_PPC_64S_HASH_MMU
63
/*
64
* H_BLOCK_REMOVE supported block size for this page size in segment who's base
65
* page size is that page size.
66
*
67
* The first index is the segment base page size, the second one is the actual
68
* page size.
69
*/
70
static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
71
#endif
72
73
/*
74
* Due to the involved complexity, and that the current hypervisor is only
75
* returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
76
* buffer size to 8 size block.
77
*/
78
#define HBLKRM_SUPPORTED_BLOCK_SIZE 8
79
80
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
81
static u8 dtl_mask = DTL_LOG_PREEMPT;
82
#else
83
static u8 dtl_mask;
84
#endif
85
86
void alloc_dtl_buffers(unsigned long *time_limit)
87
{
88
int cpu;
89
struct paca_struct *pp;
90
struct dtl_entry *dtl;
91
92
for_each_possible_cpu(cpu) {
93
pp = paca_ptrs[cpu];
94
if (pp->dispatch_log)
95
continue;
96
dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
97
if (!dtl) {
98
pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
99
cpu);
100
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
101
pr_warn("Stolen time statistics will be unreliable\n");
102
#endif
103
break;
104
}
105
106
pp->dtl_ridx = 0;
107
pp->dispatch_log = dtl;
108
pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
109
pp->dtl_curr = dtl;
110
111
if (time_limit && time_after(jiffies, *time_limit)) {
112
cond_resched();
113
*time_limit = jiffies + HZ;
114
}
115
}
116
}
117
118
void register_dtl_buffer(int cpu)
119
{
120
long ret;
121
struct paca_struct *pp;
122
struct dtl_entry *dtl;
123
int hwcpu = get_hard_smp_processor_id(cpu);
124
125
pp = paca_ptrs[cpu];
126
dtl = pp->dispatch_log;
127
if (dtl && dtl_mask) {
128
pp->dtl_ridx = 0;
129
pp->dtl_curr = dtl;
130
lppaca_of(cpu).dtl_idx = 0;
131
132
/* hypervisor reads buffer length from this field */
133
dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
134
ret = register_dtl(hwcpu, __pa(dtl));
135
if (ret)
136
pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
137
cpu, hwcpu, ret);
138
139
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
140
}
141
}
142
143
#ifdef CONFIG_PPC_SPLPAR
144
struct dtl_worker {
145
struct delayed_work work;
146
int cpu;
147
};
148
149
struct vcpu_dispatch_data {
150
int last_disp_cpu;
151
152
int total_disp;
153
154
int same_cpu_disp;
155
int same_chip_disp;
156
int diff_chip_disp;
157
int far_chip_disp;
158
159
int numa_home_disp;
160
int numa_remote_disp;
161
int numa_far_disp;
162
};
163
164
/*
165
* This represents the number of cpus in the hypervisor. Since there is no
166
* architected way to discover the number of processors in the host, we
167
* provision for dealing with NR_CPUS. This is currently 2048 by default, and
168
* is sufficient for our purposes. This will need to be tweaked if
169
* CONFIG_NR_CPUS is changed.
170
*/
171
#define NR_CPUS_H NR_CPUS
172
173
DECLARE_RWSEM(dtl_access_lock);
174
static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
175
static DEFINE_PER_CPU(u64, dtl_entry_ridx);
176
static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
177
static enum cpuhp_state dtl_worker_state;
178
static DEFINE_MUTEX(dtl_enable_mutex);
179
static int vcpudispatch_stats_on __read_mostly;
180
static int vcpudispatch_stats_freq = 50;
181
static __be32 *vcpu_associativity, *pcpu_associativity;
182
183
184
static void free_dtl_buffers(unsigned long *time_limit)
185
{
186
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
187
int cpu;
188
struct paca_struct *pp;
189
190
for_each_possible_cpu(cpu) {
191
pp = paca_ptrs[cpu];
192
if (!pp->dispatch_log)
193
continue;
194
kmem_cache_free(dtl_cache, pp->dispatch_log);
195
pp->dtl_ridx = 0;
196
pp->dispatch_log = NULL;
197
pp->dispatch_log_end = NULL;
198
pp->dtl_curr = NULL;
199
200
if (time_limit && time_after(jiffies, *time_limit)) {
201
cond_resched();
202
*time_limit = jiffies + HZ;
203
}
204
}
205
#endif
206
}
207
208
static int init_cpu_associativity(void)
209
{
210
vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
211
VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
212
pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
213
VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
214
215
if (!vcpu_associativity || !pcpu_associativity) {
216
pr_err("error allocating memory for associativity information\n");
217
return -ENOMEM;
218
}
219
220
return 0;
221
}
222
223
static void destroy_cpu_associativity(void)
224
{
225
kfree(vcpu_associativity);
226
kfree(pcpu_associativity);
227
vcpu_associativity = pcpu_associativity = NULL;
228
}
229
230
static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
231
{
232
__be32 *assoc;
233
int rc = 0;
234
235
assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
236
if (!assoc[0]) {
237
rc = hcall_vphn(cpu, flag, &assoc[0]);
238
if (rc)
239
return NULL;
240
}
241
242
return assoc;
243
}
244
245
static __be32 *get_pcpu_associativity(int cpu)
246
{
247
return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
248
}
249
250
static __be32 *get_vcpu_associativity(int cpu)
251
{
252
return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
253
}
254
255
static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
256
{
257
__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
258
259
if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
260
return -EINVAL;
261
262
last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
263
cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
264
265
if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
266
return -EIO;
267
268
return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
269
}
270
271
static int cpu_home_node_dispatch_distance(int disp_cpu)
272
{
273
__be32 *disp_cpu_assoc, *vcpu_assoc;
274
int vcpu_id = smp_processor_id();
275
276
if (disp_cpu >= NR_CPUS_H) {
277
pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
278
disp_cpu, NR_CPUS_H);
279
return -EINVAL;
280
}
281
282
disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
283
vcpu_assoc = get_vcpu_associativity(vcpu_id);
284
285
if (!disp_cpu_assoc || !vcpu_assoc)
286
return -EIO;
287
288
return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
289
}
290
291
static void update_vcpu_disp_stat(int disp_cpu)
292
{
293
struct vcpu_dispatch_data *disp;
294
int distance;
295
296
disp = this_cpu_ptr(&vcpu_disp_data);
297
if (disp->last_disp_cpu == -1) {
298
disp->last_disp_cpu = disp_cpu;
299
return;
300
}
301
302
disp->total_disp++;
303
304
if (disp->last_disp_cpu == disp_cpu ||
305
(cpu_first_thread_sibling(disp->last_disp_cpu) ==
306
cpu_first_thread_sibling(disp_cpu)))
307
disp->same_cpu_disp++;
308
else {
309
distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
310
disp_cpu);
311
if (distance < 0)
312
pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
313
smp_processor_id());
314
else {
315
switch (distance) {
316
case 0:
317
disp->same_chip_disp++;
318
break;
319
case 1:
320
disp->diff_chip_disp++;
321
break;
322
case 2:
323
disp->far_chip_disp++;
324
break;
325
default:
326
pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
327
smp_processor_id(),
328
disp->last_disp_cpu,
329
disp_cpu,
330
distance);
331
}
332
}
333
}
334
335
distance = cpu_home_node_dispatch_distance(disp_cpu);
336
if (distance < 0)
337
pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
338
smp_processor_id());
339
else {
340
switch (distance) {
341
case 0:
342
disp->numa_home_disp++;
343
break;
344
case 1:
345
disp->numa_remote_disp++;
346
break;
347
case 2:
348
disp->numa_far_disp++;
349
break;
350
default:
351
pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
352
smp_processor_id(),
353
disp_cpu,
354
distance);
355
}
356
}
357
358
disp->last_disp_cpu = disp_cpu;
359
}
360
361
static void process_dtl_buffer(struct work_struct *work)
362
{
363
struct dtl_entry dtle;
364
u64 i = __this_cpu_read(dtl_entry_ridx);
365
struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
366
struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
367
struct lppaca *vpa = local_paca->lppaca_ptr;
368
struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
369
370
if (!local_paca->dispatch_log)
371
return;
372
373
/* if we have been migrated away, we cancel ourself */
374
if (d->cpu != smp_processor_id()) {
375
pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
376
smp_processor_id());
377
return;
378
}
379
380
if (i == be64_to_cpu(vpa->dtl_idx))
381
goto out;
382
383
while (i < be64_to_cpu(vpa->dtl_idx)) {
384
dtle = *dtl;
385
barrier();
386
if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
387
/* buffer has overflowed */
388
pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
389
d->cpu,
390
be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
391
i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
392
dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
393
continue;
394
}
395
update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
396
++i;
397
++dtl;
398
if (dtl == dtl_end)
399
dtl = local_paca->dispatch_log;
400
}
401
402
__this_cpu_write(dtl_entry_ridx, i);
403
404
out:
405
schedule_delayed_work_on(d->cpu, to_delayed_work(work),
406
HZ / vcpudispatch_stats_freq);
407
}
408
409
static int dtl_worker_online(unsigned int cpu)
410
{
411
struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
412
413
memset(d, 0, sizeof(*d));
414
INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
415
d->cpu = cpu;
416
417
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
418
per_cpu(dtl_entry_ridx, cpu) = 0;
419
register_dtl_buffer(cpu);
420
#else
421
per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
422
#endif
423
424
schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
425
return 0;
426
}
427
428
static int dtl_worker_offline(unsigned int cpu)
429
{
430
struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
431
432
cancel_delayed_work_sync(&d->work);
433
434
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
435
unregister_dtl(get_hard_smp_processor_id(cpu));
436
#endif
437
438
return 0;
439
}
440
441
static void set_global_dtl_mask(u8 mask)
442
{
443
int cpu;
444
445
dtl_mask = mask;
446
for_each_present_cpu(cpu)
447
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
448
}
449
450
static void reset_global_dtl_mask(void)
451
{
452
int cpu;
453
454
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
455
dtl_mask = DTL_LOG_PREEMPT;
456
#else
457
dtl_mask = 0;
458
#endif
459
for_each_present_cpu(cpu)
460
lppaca_of(cpu).dtl_enable_mask = dtl_mask;
461
}
462
463
static int dtl_worker_enable(unsigned long *time_limit)
464
{
465
int rc = 0, state;
466
467
if (!down_write_trylock(&dtl_access_lock)) {
468
rc = -EBUSY;
469
goto out;
470
}
471
472
set_global_dtl_mask(DTL_LOG_ALL);
473
474
/* Setup dtl buffers and register those */
475
alloc_dtl_buffers(time_limit);
476
477
state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
478
dtl_worker_online, dtl_worker_offline);
479
if (state < 0) {
480
pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
481
free_dtl_buffers(time_limit);
482
reset_global_dtl_mask();
483
up_write(&dtl_access_lock);
484
rc = -EINVAL;
485
goto out;
486
}
487
dtl_worker_state = state;
488
489
out:
490
return rc;
491
}
492
493
static void dtl_worker_disable(unsigned long *time_limit)
494
{
495
cpuhp_remove_state(dtl_worker_state);
496
free_dtl_buffers(time_limit);
497
reset_global_dtl_mask();
498
up_write(&dtl_access_lock);
499
}
500
501
static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
502
size_t count, loff_t *ppos)
503
{
504
unsigned long time_limit = jiffies + HZ;
505
struct vcpu_dispatch_data *disp;
506
int rc, cmd, cpu;
507
char buf[16];
508
509
if (count > 15)
510
return -EINVAL;
511
512
if (copy_from_user(buf, p, count))
513
return -EFAULT;
514
515
buf[count] = 0;
516
rc = kstrtoint(buf, 0, &cmd);
517
if (rc || cmd < 0 || cmd > 1) {
518
pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
519
return rc ? rc : -EINVAL;
520
}
521
522
mutex_lock(&dtl_enable_mutex);
523
524
if ((cmd == 0 && !vcpudispatch_stats_on) ||
525
(cmd == 1 && vcpudispatch_stats_on))
526
goto out;
527
528
if (cmd) {
529
rc = init_cpu_associativity();
530
if (rc) {
531
destroy_cpu_associativity();
532
goto out;
533
}
534
535
for_each_possible_cpu(cpu) {
536
disp = per_cpu_ptr(&vcpu_disp_data, cpu);
537
memset(disp, 0, sizeof(*disp));
538
disp->last_disp_cpu = -1;
539
}
540
541
rc = dtl_worker_enable(&time_limit);
542
if (rc) {
543
destroy_cpu_associativity();
544
goto out;
545
}
546
} else {
547
dtl_worker_disable(&time_limit);
548
destroy_cpu_associativity();
549
}
550
551
vcpudispatch_stats_on = cmd;
552
553
out:
554
mutex_unlock(&dtl_enable_mutex);
555
if (rc)
556
return rc;
557
return count;
558
}
559
560
static int vcpudispatch_stats_display(struct seq_file *p, void *v)
561
{
562
int cpu;
563
struct vcpu_dispatch_data *disp;
564
565
if (!vcpudispatch_stats_on) {
566
seq_puts(p, "off\n");
567
return 0;
568
}
569
570
for_each_online_cpu(cpu) {
571
disp = per_cpu_ptr(&vcpu_disp_data, cpu);
572
seq_printf(p, "cpu%d", cpu);
573
seq_put_decimal_ull(p, " ", disp->total_disp);
574
seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
575
seq_put_decimal_ull(p, " ", disp->same_chip_disp);
576
seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
577
seq_put_decimal_ull(p, " ", disp->far_chip_disp);
578
seq_put_decimal_ull(p, " ", disp->numa_home_disp);
579
seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
580
seq_put_decimal_ull(p, " ", disp->numa_far_disp);
581
seq_puts(p, "\n");
582
}
583
584
return 0;
585
}
586
587
static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
588
{
589
return single_open(file, vcpudispatch_stats_display, NULL);
590
}
591
592
static const struct proc_ops vcpudispatch_stats_proc_ops = {
593
.proc_open = vcpudispatch_stats_open,
594
.proc_read = seq_read,
595
.proc_write = vcpudispatch_stats_write,
596
.proc_lseek = seq_lseek,
597
.proc_release = single_release,
598
};
599
600
static ssize_t vcpudispatch_stats_freq_write(struct file *file,
601
const char __user *p, size_t count, loff_t *ppos)
602
{
603
int rc, freq;
604
char buf[16];
605
606
if (count > 15)
607
return -EINVAL;
608
609
if (copy_from_user(buf, p, count))
610
return -EFAULT;
611
612
buf[count] = 0;
613
rc = kstrtoint(buf, 0, &freq);
614
if (rc || freq < 1 || freq > HZ) {
615
pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
616
HZ);
617
return rc ? rc : -EINVAL;
618
}
619
620
vcpudispatch_stats_freq = freq;
621
622
return count;
623
}
624
625
static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
626
{
627
seq_printf(p, "%d\n", vcpudispatch_stats_freq);
628
return 0;
629
}
630
631
static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
632
{
633
return single_open(file, vcpudispatch_stats_freq_display, NULL);
634
}
635
636
static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
637
.proc_open = vcpudispatch_stats_freq_open,
638
.proc_read = seq_read,
639
.proc_write = vcpudispatch_stats_freq_write,
640
.proc_lseek = seq_lseek,
641
.proc_release = single_release,
642
};
643
644
static int __init vcpudispatch_stats_procfs_init(void)
645
{
646
if (!lppaca_shared_proc())
647
return 0;
648
649
if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
650
&vcpudispatch_stats_proc_ops))
651
pr_err("vcpudispatch_stats: error creating procfs file\n");
652
else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
653
&vcpudispatch_stats_freq_proc_ops))
654
pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
655
656
return 0;
657
}
658
659
machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
660
661
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
662
u64 pseries_paravirt_steal_clock(int cpu)
663
{
664
struct lppaca *lppaca = &lppaca_of(cpu);
665
666
/*
667
* VPA steal time counters are reported at TB frequency. Hence do a
668
* conversion to ns before returning
669
*/
670
return tb_to_ns(be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
671
be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb)));
672
}
673
#endif
674
675
#endif /* CONFIG_PPC_SPLPAR */
676
677
void vpa_init(int cpu)
678
{
679
int hwcpu = get_hard_smp_processor_id(cpu);
680
unsigned long addr;
681
long ret;
682
683
/*
684
* The spec says it "may be problematic" if CPU x registers the VPA of
685
* CPU y. We should never do that, but wail if we ever do.
686
*/
687
WARN_ON(cpu != smp_processor_id());
688
689
if (cpu_has_feature(CPU_FTR_ALTIVEC))
690
lppaca_of(cpu).vmxregs_in_use = 1;
691
692
if (cpu_has_feature(CPU_FTR_ARCH_207S))
693
lppaca_of(cpu).ebb_regs_in_use = 1;
694
695
addr = __pa(&lppaca_of(cpu));
696
ret = register_vpa(hwcpu, addr);
697
698
if (ret) {
699
pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
700
"%lx failed with %ld\n", cpu, hwcpu, addr, ret);
701
return;
702
}
703
704
#ifdef CONFIG_PPC_64S_HASH_MMU
705
/*
706
* PAPR says this feature is SLB-Buffer but firmware never
707
* reports that. All SPLPAR support SLB shadow buffer.
708
*/
709
if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
710
addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
711
ret = register_slb_shadow(hwcpu, addr);
712
if (ret)
713
pr_err("WARNING: SLB shadow buffer registration for "
714
"cpu %d (hw %d) of area %lx failed with %ld\n",
715
cpu, hwcpu, addr, ret);
716
}
717
#endif /* CONFIG_PPC_64S_HASH_MMU */
718
719
/*
720
* Register dispatch trace log, if one has been allocated.
721
*/
722
register_dtl_buffer(cpu);
723
}
724
725
#ifdef CONFIG_PPC_BOOK3S_64
726
727
static int __init pseries_lpar_register_process_table(unsigned long base,
728
unsigned long page_size, unsigned long table_size)
729
{
730
long rc;
731
unsigned long flags = 0;
732
733
if (table_size)
734
flags |= PROC_TABLE_NEW;
735
if (radix_enabled()) {
736
flags |= PROC_TABLE_RADIX;
737
if (mmu_has_feature(MMU_FTR_GTSE))
738
flags |= PROC_TABLE_GTSE;
739
} else
740
flags |= PROC_TABLE_HPT_SLB;
741
for (;;) {
742
rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
743
page_size, table_size);
744
if (!H_IS_LONG_BUSY(rc))
745
break;
746
mdelay(get_longbusy_msecs(rc));
747
}
748
if (rc != H_SUCCESS) {
749
pr_err("Failed to register process table (rc=%ld)\n", rc);
750
BUG();
751
}
752
return rc;
753
}
754
755
#ifdef CONFIG_PPC_64S_HASH_MMU
756
757
static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
758
unsigned long vpn, unsigned long pa,
759
unsigned long rflags, unsigned long vflags,
760
int psize, int apsize, int ssize)
761
{
762
unsigned long lpar_rc;
763
unsigned long flags;
764
unsigned long slot;
765
unsigned long hpte_v, hpte_r;
766
767
if (!(vflags & HPTE_V_BOLTED))
768
pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
769
"pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
770
hpte_group, vpn, pa, rflags, vflags, psize);
771
772
hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
773
hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
774
775
if (!(vflags & HPTE_V_BOLTED))
776
pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
777
778
/* Now fill in the actual HPTE */
779
/* Set CEC cookie to 0 */
780
/* Zero page = 0 */
781
/* I-cache Invalidate = 0 */
782
/* I-cache synchronize = 0 */
783
/* Exact = 0 */
784
flags = 0;
785
786
if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
787
flags |= H_COALESCE_CAND;
788
789
lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
790
if (unlikely(lpar_rc == H_PTEG_FULL)) {
791
pr_devel("Hash table group is full\n");
792
return -1;
793
}
794
795
/*
796
* Since we try and ioremap PHBs we don't own, the pte insert
797
* will fail. However we must catch the failure in hash_page
798
* or we will loop forever, so return -2 in this case.
799
*/
800
if (unlikely(lpar_rc != H_SUCCESS)) {
801
pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
802
return -2;
803
}
804
if (!(vflags & HPTE_V_BOLTED))
805
pr_devel(" -> slot: %lu\n", slot & 7);
806
807
/* Because of iSeries, we have to pass down the secondary
808
* bucket bit here as well
809
*/
810
return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
811
}
812
813
static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
814
815
static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
816
{
817
unsigned long slot_offset;
818
unsigned long lpar_rc;
819
int i;
820
unsigned long dummy1, dummy2;
821
822
/* pick a random slot to start at */
823
slot_offset = mftb() & 0x7;
824
825
for (i = 0; i < HPTES_PER_GROUP; i++) {
826
827
/* don't remove a bolted entry */
828
lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
829
HPTE_V_BOLTED, &dummy1, &dummy2);
830
if (lpar_rc == H_SUCCESS)
831
return i;
832
833
/*
834
* The test for adjunct partition is performed before the
835
* ANDCOND test. H_RESOURCE may be returned, so we need to
836
* check for that as well.
837
*/
838
BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
839
840
slot_offset++;
841
slot_offset &= 0x7;
842
}
843
844
return -1;
845
}
846
847
/* Called during kexec sequence with MMU off */
848
static notrace void manual_hpte_clear_all(void)
849
{
850
unsigned long size_bytes = 1UL << ppc64_pft_size;
851
unsigned long hpte_count = size_bytes >> 4;
852
struct {
853
unsigned long pteh;
854
unsigned long ptel;
855
} ptes[4];
856
long lpar_rc;
857
unsigned long i, j;
858
859
/* Read in batches of 4,
860
* invalidate only valid entries not in the VRMA
861
* hpte_count will be a multiple of 4
862
*/
863
for (i = 0; i < hpte_count; i += 4) {
864
lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
865
if (lpar_rc != H_SUCCESS) {
866
pr_info("Failed to read hash page table at %ld err %ld\n",
867
i, lpar_rc);
868
continue;
869
}
870
for (j = 0; j < 4; j++){
871
if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
872
HPTE_V_VRMA_MASK)
873
continue;
874
if (ptes[j].pteh & HPTE_V_VALID)
875
plpar_pte_remove_raw(0, i + j, 0,
876
&(ptes[j].pteh), &(ptes[j].ptel));
877
}
878
}
879
}
880
881
/* Called during kexec sequence with MMU off */
882
static notrace int hcall_hpte_clear_all(void)
883
{
884
int rc;
885
886
do {
887
rc = plpar_hcall_norets(H_CLEAR_HPT);
888
} while (rc == H_CONTINUE);
889
890
return rc;
891
}
892
893
/* Called during kexec sequence with MMU off */
894
static notrace void pseries_hpte_clear_all(void)
895
{
896
int rc;
897
898
rc = hcall_hpte_clear_all();
899
if (rc != H_SUCCESS)
900
manual_hpte_clear_all();
901
902
#ifdef __LITTLE_ENDIAN__
903
/*
904
* Reset exceptions to big endian.
905
*
906
* FIXME this is a hack for kexec, we need to reset the exception
907
* endian before starting the new kernel and this is a convenient place
908
* to do it.
909
*
910
* This is also called on boot when a fadump happens. In that case we
911
* must not change the exception endian mode.
912
*/
913
if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
914
pseries_big_endian_exceptions();
915
#endif
916
}
917
918
/*
919
* NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
920
* the low 3 bits of flags happen to line up. So no transform is needed.
921
* We can probably optimize here and assume the high bits of newpp are
922
* already zero. For now I am paranoid.
923
*/
924
static long pSeries_lpar_hpte_updatepp(unsigned long slot,
925
unsigned long newpp,
926
unsigned long vpn,
927
int psize, int apsize,
928
int ssize, unsigned long inv_flags)
929
{
930
unsigned long lpar_rc;
931
unsigned long flags;
932
unsigned long want_v;
933
934
want_v = hpte_encode_avpn(vpn, psize, ssize);
935
936
flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
937
flags |= (newpp & HPTE_R_KEY_HI) >> 48;
938
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
939
/* Move pp0 into bit 8 (IBM 55) */
940
flags |= (newpp & HPTE_R_PP0) >> 55;
941
942
pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
943
want_v, slot, flags, psize);
944
945
lpar_rc = plpar_pte_protect(flags, slot, want_v);
946
947
if (lpar_rc == H_NOT_FOUND) {
948
pr_devel("not found !\n");
949
return -1;
950
}
951
952
pr_devel("ok\n");
953
954
BUG_ON(lpar_rc != H_SUCCESS);
955
956
return 0;
957
}
958
959
static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
960
{
961
long lpar_rc;
962
unsigned long i, j;
963
struct {
964
unsigned long pteh;
965
unsigned long ptel;
966
} ptes[4];
967
968
for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
969
970
lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
971
if (lpar_rc != H_SUCCESS) {
972
pr_info("Failed to read hash page table at %ld err %ld\n",
973
hpte_group, lpar_rc);
974
continue;
975
}
976
977
for (j = 0; j < 4; j++) {
978
if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
979
(ptes[j].pteh & HPTE_V_VALID))
980
return i + j;
981
}
982
}
983
984
return -1;
985
}
986
987
static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
988
{
989
long slot;
990
unsigned long hash;
991
unsigned long want_v;
992
unsigned long hpte_group;
993
994
hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
995
want_v = hpte_encode_avpn(vpn, psize, ssize);
996
997
/*
998
* We try to keep bolted entries always in primary hash
999
* But in some case we can find them in secondary too.
1000
*/
1001
hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1002
slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1003
if (slot < 0) {
1004
/* Try in secondary */
1005
hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1006
slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1007
if (slot < 0)
1008
return -1;
1009
}
1010
return hpte_group + slot;
1011
}
1012
1013
static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1014
unsigned long ea,
1015
int psize, int ssize)
1016
{
1017
unsigned long vpn;
1018
unsigned long lpar_rc, slot, vsid, flags;
1019
1020
vsid = get_kernel_vsid(ea, ssize);
1021
vpn = hpt_vpn(ea, vsid, ssize);
1022
1023
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1024
BUG_ON(slot == -1);
1025
1026
flags = newpp & (HPTE_R_PP | HPTE_R_N);
1027
if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1028
/* Move pp0 into bit 8 (IBM 55) */
1029
flags |= (newpp & HPTE_R_PP0) >> 55;
1030
1031
flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1032
1033
lpar_rc = plpar_pte_protect(flags, slot, 0);
1034
1035
BUG_ON(lpar_rc != H_SUCCESS);
1036
}
1037
1038
static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1039
int psize, int apsize,
1040
int ssize, int local)
1041
{
1042
unsigned long want_v;
1043
unsigned long lpar_rc;
1044
unsigned long dummy1, dummy2;
1045
1046
pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1047
slot, vpn, psize, local);
1048
1049
want_v = hpte_encode_avpn(vpn, psize, ssize);
1050
lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1051
if (lpar_rc == H_NOT_FOUND)
1052
return;
1053
1054
BUG_ON(lpar_rc != H_SUCCESS);
1055
}
1056
1057
1058
/*
1059
* As defined in the PAPR's section 14.5.4.1.8
1060
* The control mask doesn't include the returned reference and change bit from
1061
* the processed PTE.
1062
*/
1063
#define HBLKR_AVPN 0x0100000000000000UL
1064
#define HBLKR_CTRL_MASK 0xf800000000000000UL
1065
#define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1066
#define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1067
#define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1068
1069
/*
1070
* Returned true if we are supporting this block size for the specified segment
1071
* base page size and actual page size.
1072
*
1073
* Currently, we only support 8 size block.
1074
*/
1075
static inline bool is_supported_hlbkrm(int bpsize, int psize)
1076
{
1077
return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1078
}
1079
1080
/**
1081
* H_BLOCK_REMOVE caller.
1082
* @idx should point to the latest @param entry set with a PTEX.
1083
* If PTE cannot be processed because another CPUs has already locked that
1084
* group, those entries are put back in @param starting at index 1.
1085
* If entries has to be retried and @retry_busy is set to true, these entries
1086
* are retried until success. If @retry_busy is set to false, the returned
1087
* is the number of entries yet to process.
1088
*/
1089
static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1090
bool retry_busy)
1091
{
1092
unsigned long i, rc, new_idx;
1093
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1094
1095
if (idx < 2) {
1096
pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1097
return 0;
1098
}
1099
again:
1100
new_idx = 0;
1101
if (idx > PLPAR_HCALL9_BUFSIZE) {
1102
pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1103
idx = PLPAR_HCALL9_BUFSIZE;
1104
} else if (idx < PLPAR_HCALL9_BUFSIZE)
1105
param[idx] = HBR_END;
1106
1107
rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1108
param[0], /* AVA */
1109
param[1], param[2], param[3], param[4], /* TS0-7 */
1110
param[5], param[6], param[7], param[8]);
1111
if (rc == H_SUCCESS)
1112
return 0;
1113
1114
BUG_ON(rc != H_PARTIAL);
1115
1116
/* Check that the unprocessed entries were 'not found' or 'busy' */
1117
for (i = 0; i < idx-1; i++) {
1118
unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1119
1120
if (ctrl == HBLKR_CTRL_ERRBUSY) {
1121
param[++new_idx] = param[i+1];
1122
continue;
1123
}
1124
1125
BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1126
&& ctrl != HBLKR_CTRL_ERRNOTFOUND);
1127
}
1128
1129
/*
1130
* If there were entries found busy, retry these entries if requested,
1131
* of if all the entries have to be retried.
1132
*/
1133
if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1134
idx = new_idx + 1;
1135
goto again;
1136
}
1137
1138
return new_idx;
1139
}
1140
1141
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1142
/*
1143
* Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1144
* to make sure that we avoid bouncing the hypervisor tlbie lock.
1145
*/
1146
#define PPC64_HUGE_HPTE_BATCH 12
1147
1148
static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1149
int count, int psize, int ssize)
1150
{
1151
unsigned long param[PLPAR_HCALL9_BUFSIZE];
1152
unsigned long shift, current_vpgb, vpgb;
1153
int i, pix = 0;
1154
1155
shift = mmu_psize_defs[psize].shift;
1156
1157
for (i = 0; i < count; i++) {
1158
/*
1159
* Shifting 3 bits more on the right to get a
1160
* 8 pages aligned virtual addresse.
1161
*/
1162
vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1163
if (!pix || vpgb != current_vpgb) {
1164
/*
1165
* Need to start a new 8 pages block, flush
1166
* the current one if needed.
1167
*/
1168
if (pix)
1169
(void)call_block_remove(pix, param, true);
1170
current_vpgb = vpgb;
1171
param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1172
pix = 1;
1173
}
1174
1175
param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1176
if (pix == PLPAR_HCALL9_BUFSIZE) {
1177
pix = call_block_remove(pix, param, false);
1178
/*
1179
* pix = 0 means that all the entries were
1180
* removed, we can start a new block.
1181
* Otherwise, this means that there are entries
1182
* to retry, and pix points to latest one, so
1183
* we should increment it and try to continue
1184
* the same block.
1185
*/
1186
if (pix)
1187
pix++;
1188
}
1189
}
1190
if (pix)
1191
(void)call_block_remove(pix, param, true);
1192
}
1193
1194
static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1195
int count, int psize, int ssize)
1196
{
1197
unsigned long param[PLPAR_HCALL9_BUFSIZE];
1198
int i = 0, pix = 0, rc;
1199
1200
for (i = 0; i < count; i++) {
1201
1202
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1203
pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1204
ssize, 0);
1205
} else {
1206
param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1207
param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1208
pix += 2;
1209
if (pix == 8) {
1210
rc = plpar_hcall9(H_BULK_REMOVE, param,
1211
param[0], param[1], param[2],
1212
param[3], param[4], param[5],
1213
param[6], param[7]);
1214
BUG_ON(rc != H_SUCCESS);
1215
pix = 0;
1216
}
1217
}
1218
}
1219
if (pix) {
1220
param[pix] = HBR_END;
1221
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1222
param[2], param[3], param[4], param[5],
1223
param[6], param[7]);
1224
BUG_ON(rc != H_SUCCESS);
1225
}
1226
}
1227
1228
static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1229
unsigned long *vpn,
1230
int count, int psize,
1231
int ssize)
1232
{
1233
unsigned long flags = 0;
1234
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1235
1236
if (lock_tlbie)
1237
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1238
1239
/* Assuming THP size is 16M */
1240
if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1241
hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1242
else
1243
hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1244
1245
if (lock_tlbie)
1246
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1247
}
1248
1249
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1250
unsigned long addr,
1251
unsigned char *hpte_slot_array,
1252
int psize, int ssize, int local)
1253
{
1254
int i, index = 0;
1255
unsigned long s_addr = addr;
1256
unsigned int max_hpte_count, valid;
1257
unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1258
unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1259
unsigned long shift, hidx, vpn = 0, hash, slot;
1260
1261
shift = mmu_psize_defs[psize].shift;
1262
max_hpte_count = 1U << (PMD_SHIFT - shift);
1263
1264
for (i = 0; i < max_hpte_count; i++) {
1265
valid = hpte_valid(hpte_slot_array, i);
1266
if (!valid)
1267
continue;
1268
hidx = hpte_hash_index(hpte_slot_array, i);
1269
1270
/* get the vpn */
1271
addr = s_addr + (i * (1ul << shift));
1272
vpn = hpt_vpn(addr, vsid, ssize);
1273
hash = hpt_hash(vpn, shift, ssize);
1274
if (hidx & _PTEIDX_SECONDARY)
1275
hash = ~hash;
1276
1277
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1278
slot += hidx & _PTEIDX_GROUP_IX;
1279
1280
slot_array[index] = slot;
1281
vpn_array[index] = vpn;
1282
if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1283
/*
1284
* Now do a bluk invalidate
1285
*/
1286
__pSeries_lpar_hugepage_invalidate(slot_array,
1287
vpn_array,
1288
PPC64_HUGE_HPTE_BATCH,
1289
psize, ssize);
1290
index = 0;
1291
} else
1292
index++;
1293
}
1294
if (index)
1295
__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1296
index, psize, ssize);
1297
}
1298
#else
1299
static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1300
unsigned long addr,
1301
unsigned char *hpte_slot_array,
1302
int psize, int ssize, int local)
1303
{
1304
WARN(1, "%s called without THP support\n", __func__);
1305
}
1306
#endif
1307
1308
static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1309
int psize, int ssize)
1310
{
1311
unsigned long vpn;
1312
unsigned long slot, vsid;
1313
1314
vsid = get_kernel_vsid(ea, ssize);
1315
vpn = hpt_vpn(ea, vsid, ssize);
1316
1317
slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1318
if (slot == -1)
1319
return -ENOENT;
1320
1321
/*
1322
* lpar doesn't use the passed actual page size
1323
*/
1324
pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1325
return 0;
1326
}
1327
1328
1329
static inline unsigned long compute_slot(real_pte_t pte,
1330
unsigned long vpn,
1331
unsigned long index,
1332
unsigned long shift,
1333
int ssize)
1334
{
1335
unsigned long slot, hash, hidx;
1336
1337
hash = hpt_hash(vpn, shift, ssize);
1338
hidx = __rpte_to_hidx(pte, index);
1339
if (hidx & _PTEIDX_SECONDARY)
1340
hash = ~hash;
1341
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1342
slot += hidx & _PTEIDX_GROUP_IX;
1343
return slot;
1344
}
1345
1346
/**
1347
* The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1348
* "all within the same naturally aligned 8 page virtual address block".
1349
*/
1350
static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1351
unsigned long *param)
1352
{
1353
unsigned long vpn;
1354
unsigned long i, pix = 0;
1355
unsigned long index, shift, slot, current_vpgb, vpgb;
1356
real_pte_t pte;
1357
int psize, ssize;
1358
1359
psize = batch->psize;
1360
ssize = batch->ssize;
1361
1362
for (i = 0; i < number; i++) {
1363
vpn = batch->vpn[i];
1364
pte = batch->pte[i];
1365
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1366
/*
1367
* Shifting 3 bits more on the right to get a
1368
* 8 pages aligned virtual addresse.
1369
*/
1370
vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1371
if (!pix || vpgb != current_vpgb) {
1372
/*
1373
* Need to start a new 8 pages block, flush
1374
* the current one if needed.
1375
*/
1376
if (pix)
1377
(void)call_block_remove(pix, param,
1378
true);
1379
current_vpgb = vpgb;
1380
param[0] = hpte_encode_avpn(vpn, psize,
1381
ssize);
1382
pix = 1;
1383
}
1384
1385
slot = compute_slot(pte, vpn, index, shift, ssize);
1386
param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1387
1388
if (pix == PLPAR_HCALL9_BUFSIZE) {
1389
pix = call_block_remove(pix, param, false);
1390
/*
1391
* pix = 0 means that all the entries were
1392
* removed, we can start a new block.
1393
* Otherwise, this means that there are entries
1394
* to retry, and pix points to latest one, so
1395
* we should increment it and try to continue
1396
* the same block.
1397
*/
1398
if (pix)
1399
pix++;
1400
}
1401
} pte_iterate_hashed_end();
1402
}
1403
1404
if (pix)
1405
(void)call_block_remove(pix, param, true);
1406
}
1407
1408
/*
1409
* TLB Block Invalidate Characteristics
1410
*
1411
* These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1412
* is able to process for each couple segment base page size, actual page size.
1413
*
1414
* The ibm,get-system-parameter properties is returning a buffer with the
1415
* following layout:
1416
*
1417
* [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1418
* -----------------
1419
* TLB Block Invalidate Specifiers:
1420
* [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1421
* [ 1 byte Number of page sizes (N) that are supported for the specified
1422
* TLB invalidate block size ]
1423
* [ 1 byte Encoded segment base page size and actual page size
1424
* MSB=0 means 4k segment base page size and actual page size
1425
* MSB=1 the penc value in mmu_psize_def ]
1426
* ...
1427
* -----------------
1428
* Next TLB Block Invalidate Specifiers...
1429
* -----------------
1430
* [ 0 ]
1431
*/
1432
static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1433
unsigned int block_size)
1434
{
1435
if (block_size > hblkrm_size[bpsize][psize])
1436
hblkrm_size[bpsize][psize] = block_size;
1437
}
1438
1439
/*
1440
* Decode the Encoded segment base page size and actual page size.
1441
* PAPR specifies:
1442
* - bit 7 is the L bit
1443
* - bits 0-5 are the penc value
1444
* If the L bit is 0, this means 4K segment base page size and actual page size
1445
* otherwise the penc value should be read.
1446
*/
1447
#define HBLKRM_L_MASK 0x80
1448
#define HBLKRM_PENC_MASK 0x3f
1449
static inline void __init check_lp_set_hblkrm(unsigned int lp,
1450
unsigned int block_size)
1451
{
1452
unsigned int bpsize, psize;
1453
1454
/* First, check the L bit, if not set, this means 4K */
1455
if ((lp & HBLKRM_L_MASK) == 0) {
1456
set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1457
return;
1458
}
1459
1460
lp &= HBLKRM_PENC_MASK;
1461
for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1462
struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1463
1464
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1465
if (def->penc[psize] == lp) {
1466
set_hblkrm_bloc_size(bpsize, psize, block_size);
1467
return;
1468
}
1469
}
1470
}
1471
}
1472
1473
/*
1474
* The size of the TLB Block Invalidate Characteristics is variable. But at the
1475
* maximum it will be the number of possible page sizes *2 + 10 bytes.
1476
* Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1477
* (128 bytes) for the buffer to get plenty of space.
1478
*/
1479
#define SPLPAR_TLB_BIC_MAXLENGTH 128
1480
1481
void __init pseries_lpar_read_hblkrm_characteristics(void)
1482
{
1483
static struct papr_sysparm_buf buf __initdata;
1484
int len, idx, bpsize;
1485
1486
if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1487
return;
1488
1489
if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
1490
return;
1491
1492
len = be16_to_cpu(buf.len);
1493
if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1494
pr_warn("%s too large returned buffer %d", __func__, len);
1495
return;
1496
}
1497
1498
idx = 0;
1499
while (idx < len) {
1500
u8 block_shift = buf.val[idx++];
1501
u32 block_size;
1502
unsigned int npsize;
1503
1504
if (!block_shift)
1505
break;
1506
1507
block_size = 1 << block_shift;
1508
1509
for (npsize = buf.val[idx++];
1510
npsize > 0 && idx < len; npsize--)
1511
check_lp_set_hblkrm((unsigned int)buf.val[idx++],
1512
block_size);
1513
}
1514
1515
for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1516
for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1517
if (hblkrm_size[bpsize][idx])
1518
pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1519
bpsize, idx, hblkrm_size[bpsize][idx]);
1520
}
1521
1522
/*
1523
* Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1524
* lock.
1525
*/
1526
static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1527
{
1528
unsigned long vpn;
1529
unsigned long i, pix, rc;
1530
unsigned long flags = 0;
1531
struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1532
int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1533
unsigned long param[PLPAR_HCALL9_BUFSIZE];
1534
unsigned long index, shift, slot;
1535
real_pte_t pte;
1536
int psize, ssize;
1537
1538
if (lock_tlbie)
1539
spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1540
1541
if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1542
do_block_remove(number, batch, param);
1543
goto out;
1544
}
1545
1546
psize = batch->psize;
1547
ssize = batch->ssize;
1548
pix = 0;
1549
for (i = 0; i < number; i++) {
1550
vpn = batch->vpn[i];
1551
pte = batch->pte[i];
1552
pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1553
slot = compute_slot(pte, vpn, index, shift, ssize);
1554
if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1555
/*
1556
* lpar doesn't use the passed actual page size
1557
*/
1558
pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1559
0, ssize, local);
1560
} else {
1561
param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1562
param[pix+1] = hpte_encode_avpn(vpn, psize,
1563
ssize);
1564
pix += 2;
1565
if (pix == 8) {
1566
rc = plpar_hcall9(H_BULK_REMOVE, param,
1567
param[0], param[1], param[2],
1568
param[3], param[4], param[5],
1569
param[6], param[7]);
1570
BUG_ON(rc != H_SUCCESS);
1571
pix = 0;
1572
}
1573
}
1574
} pte_iterate_hashed_end();
1575
}
1576
if (pix) {
1577
param[pix] = HBR_END;
1578
rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1579
param[2], param[3], param[4], param[5],
1580
param[6], param[7]);
1581
BUG_ON(rc != H_SUCCESS);
1582
}
1583
1584
out:
1585
if (lock_tlbie)
1586
spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1587
}
1588
1589
static int __init disable_bulk_remove(char *str)
1590
{
1591
if (strcmp(str, "off") == 0 &&
1592
firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1593
pr_info("Disabling BULK_REMOVE firmware feature");
1594
powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1595
}
1596
return 1;
1597
}
1598
1599
__setup("bulk_remove=", disable_bulk_remove);
1600
1601
#define HPT_RESIZE_TIMEOUT 10000 /* ms */
1602
1603
struct hpt_resize_state {
1604
unsigned long shift;
1605
int commit_rc;
1606
};
1607
1608
static int pseries_lpar_resize_hpt_commit(void *data)
1609
{
1610
struct hpt_resize_state *state = data;
1611
1612
state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1613
if (state->commit_rc != H_SUCCESS)
1614
return -EIO;
1615
1616
/* Hypervisor has transitioned the HTAB, update our globals */
1617
ppc64_pft_size = state->shift;
1618
htab_size_bytes = 1UL << ppc64_pft_size;
1619
htab_hash_mask = (htab_size_bytes >> 7) - 1;
1620
1621
return 0;
1622
}
1623
1624
/*
1625
* Must be called in process context. The caller must hold the
1626
* cpus_lock.
1627
*/
1628
static int pseries_lpar_resize_hpt(unsigned long shift)
1629
{
1630
struct hpt_resize_state state = {
1631
.shift = shift,
1632
.commit_rc = H_FUNCTION,
1633
};
1634
unsigned int delay, total_delay = 0;
1635
int rc;
1636
ktime_t t0, t1, t2;
1637
1638
might_sleep();
1639
1640
if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1641
return -ENODEV;
1642
1643
pr_info("Attempting to resize HPT to shift %lu\n", shift);
1644
1645
t0 = ktime_get();
1646
1647
rc = plpar_resize_hpt_prepare(0, shift);
1648
while (H_IS_LONG_BUSY(rc)) {
1649
delay = get_longbusy_msecs(rc);
1650
total_delay += delay;
1651
if (total_delay > HPT_RESIZE_TIMEOUT) {
1652
/* prepare with shift==0 cancels an in-progress resize */
1653
rc = plpar_resize_hpt_prepare(0, 0);
1654
if (rc != H_SUCCESS)
1655
pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1656
rc);
1657
return -ETIMEDOUT;
1658
}
1659
msleep(delay);
1660
rc = plpar_resize_hpt_prepare(0, shift);
1661
}
1662
1663
switch (rc) {
1664
case H_SUCCESS:
1665
/* Continue on */
1666
break;
1667
1668
case H_PARAMETER:
1669
pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1670
return -EINVAL;
1671
case H_RESOURCE:
1672
pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1673
return -EPERM;
1674
default:
1675
pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1676
return -EIO;
1677
}
1678
1679
t1 = ktime_get();
1680
1681
rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1682
&state, NULL);
1683
1684
t2 = ktime_get();
1685
1686
if (rc != 0) {
1687
switch (state.commit_rc) {
1688
case H_PTEG_FULL:
1689
return -ENOSPC;
1690
1691
default:
1692
pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1693
state.commit_rc);
1694
return -EIO;
1695
};
1696
}
1697
1698
pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1699
shift, (long long) ktime_ms_delta(t1, t0),
1700
(long long) ktime_ms_delta(t2, t1));
1701
1702
return 0;
1703
}
1704
1705
void __init hpte_init_pseries(void)
1706
{
1707
mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1708
mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1709
mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1710
mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1711
mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1712
mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1713
mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1714
mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1715
mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1716
1717
if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1718
mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1719
1720
/*
1721
* On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1722
* to inform the hypervisor that we wish to use the HPT.
1723
*/
1724
if (cpu_has_feature(CPU_FTR_ARCH_300))
1725
pseries_lpar_register_process_table(0, 0, 0);
1726
}
1727
#endif /* CONFIG_PPC_64S_HASH_MMU */
1728
1729
#ifdef CONFIG_PPC_RADIX_MMU
1730
void __init radix_init_pseries(void)
1731
{
1732
pr_info("Using radix MMU under hypervisor\n");
1733
1734
pseries_lpar_register_process_table(__pa(process_tb),
1735
0, PRTB_SIZE_SHIFT - 12);
1736
}
1737
#endif
1738
1739
#ifdef CONFIG_PPC_SMLPAR
1740
#define CMO_FREE_HINT_DEFAULT 1
1741
static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1742
1743
static int __init cmo_free_hint(char *str)
1744
{
1745
char *parm;
1746
parm = strstrip(str);
1747
1748
if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1749
pr_info("%s: CMO free page hinting is not active.\n", __func__);
1750
cmo_free_hint_flag = 0;
1751
return 1;
1752
}
1753
1754
cmo_free_hint_flag = 1;
1755
pr_info("%s: CMO free page hinting is active.\n", __func__);
1756
1757
if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1758
return 1;
1759
1760
return 0;
1761
}
1762
1763
__setup("cmo_free_hint=", cmo_free_hint);
1764
1765
static void pSeries_set_page_state(struct page *page, int order,
1766
unsigned long state)
1767
{
1768
int i, j;
1769
unsigned long cmo_page_sz, addr;
1770
1771
cmo_page_sz = cmo_get_page_size();
1772
addr = __pa((unsigned long)page_address(page));
1773
1774
for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1775
for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1776
plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1777
}
1778
}
1779
1780
void arch_free_page(struct page *page, int order)
1781
{
1782
if (radix_enabled())
1783
return;
1784
if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1785
return;
1786
1787
pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1788
}
1789
EXPORT_SYMBOL(arch_free_page);
1790
1791
#endif /* CONFIG_PPC_SMLPAR */
1792
#endif /* CONFIG_PPC_BOOK3S_64 */
1793
1794
#ifdef CONFIG_TRACEPOINTS
1795
#ifdef CONFIG_JUMP_LABEL
1796
struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1797
1798
int hcall_tracepoint_regfunc(void)
1799
{
1800
static_key_slow_inc(&hcall_tracepoint_key);
1801
return 0;
1802
}
1803
1804
void hcall_tracepoint_unregfunc(void)
1805
{
1806
static_key_slow_dec(&hcall_tracepoint_key);
1807
}
1808
#else
1809
/*
1810
* We optimise our hcall path by placing hcall_tracepoint_refcount
1811
* directly in the TOC so we can check if the hcall tracepoints are
1812
* enabled via a single load.
1813
*/
1814
1815
/* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1816
extern long hcall_tracepoint_refcount;
1817
1818
int hcall_tracepoint_regfunc(void)
1819
{
1820
hcall_tracepoint_refcount++;
1821
return 0;
1822
}
1823
1824
void hcall_tracepoint_unregfunc(void)
1825
{
1826
hcall_tracepoint_refcount--;
1827
}
1828
#endif
1829
1830
/*
1831
* Keep track of hcall tracing depth and prevent recursion. Warn if any is
1832
* detected because it may indicate a problem. This will not catch all
1833
* problems with tracing code making hcalls, because the tracing might have
1834
* been invoked from a non-hcall, so the first hcall could recurse into it
1835
* without warning here, but this better than nothing.
1836
*
1837
* Hcalls with specific problems being traced should use the _notrace
1838
* plpar_hcall variants.
1839
*/
1840
static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1841
1842
1843
notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1844
{
1845
unsigned long flags;
1846
unsigned int *depth;
1847
1848
local_irq_save(flags);
1849
1850
depth = this_cpu_ptr(&hcall_trace_depth);
1851
1852
if (WARN_ON_ONCE(*depth))
1853
goto out;
1854
1855
(*depth)++;
1856
preempt_disable();
1857
trace_hcall_entry(opcode, args);
1858
(*depth)--;
1859
1860
out:
1861
local_irq_restore(flags);
1862
}
1863
1864
notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1865
{
1866
unsigned long flags;
1867
unsigned int *depth;
1868
1869
local_irq_save(flags);
1870
1871
depth = this_cpu_ptr(&hcall_trace_depth);
1872
1873
if (*depth) /* Don't warn again on the way out */
1874
goto out;
1875
1876
(*depth)++;
1877
trace_hcall_exit(opcode, retval, retbuf);
1878
preempt_enable();
1879
(*depth)--;
1880
1881
out:
1882
local_irq_restore(flags);
1883
}
1884
#endif
1885
1886
/**
1887
* h_get_mpp
1888
* H_GET_MPP hcall returns info in 7 parms
1889
*/
1890
long h_get_mpp(struct hvcall_mpp_data *mpp_data)
1891
{
1892
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1893
long rc;
1894
1895
rc = plpar_hcall9(H_GET_MPP, retbuf);
1896
1897
mpp_data->entitled_mem = retbuf[0];
1898
mpp_data->mapped_mem = retbuf[1];
1899
1900
mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1901
mpp_data->pool_num = retbuf[2] & 0xffff;
1902
1903
mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1904
mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1905
mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1906
1907
mpp_data->pool_size = retbuf[4];
1908
mpp_data->loan_request = retbuf[5];
1909
mpp_data->backing_mem = retbuf[6];
1910
1911
return rc;
1912
}
1913
EXPORT_SYMBOL(h_get_mpp);
1914
1915
int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1916
{
1917
int rc;
1918
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1919
1920
rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1921
1922
mpp_x_data->coalesced_bytes = retbuf[0];
1923
mpp_x_data->pool_coalesced_bytes = retbuf[1];
1924
mpp_x_data->pool_purr_cycles = retbuf[2];
1925
mpp_x_data->pool_spurr_cycles = retbuf[3];
1926
1927
return rc;
1928
}
1929
1930
#ifdef CONFIG_PPC_64S_HASH_MMU
1931
static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1932
{
1933
unsigned long protovsid;
1934
unsigned long va_bits = VA_BITS;
1935
unsigned long modinv, vsid_modulus;
1936
unsigned long max_mod_inv, tmp_modinv;
1937
1938
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1939
va_bits = 65;
1940
1941
if (ssize == MMU_SEGSIZE_256M) {
1942
modinv = VSID_MULINV_256M;
1943
vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1944
} else {
1945
modinv = VSID_MULINV_1T;
1946
vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1947
}
1948
1949
/*
1950
* vsid outside our range.
1951
*/
1952
if (vsid >= vsid_modulus)
1953
return 0;
1954
1955
/*
1956
* If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1957
* and vsid = (protovsid * x) % vsid_modulus, then we say:
1958
* protovsid = (vsid * modinv) % vsid_modulus
1959
*/
1960
1961
/* Check if (vsid * modinv) overflow (63 bits) */
1962
max_mod_inv = 0x7fffffffffffffffull / vsid;
1963
if (modinv < max_mod_inv)
1964
return (vsid * modinv) % vsid_modulus;
1965
1966
tmp_modinv = modinv/max_mod_inv;
1967
modinv %= max_mod_inv;
1968
1969
protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1970
protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1971
1972
return protovsid;
1973
}
1974
1975
static int __init reserve_vrma_context_id(void)
1976
{
1977
unsigned long protovsid;
1978
1979
/*
1980
* Reserve context ids which map to reserved virtual addresses. For now
1981
* we only reserve the context id which maps to the VRMA VSID. We ignore
1982
* the addresses in "ibm,adjunct-virtual-addresses" because we don't
1983
* enable adjunct support via the "ibm,client-architecture-support"
1984
* interface.
1985
*/
1986
protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1987
hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1988
return 0;
1989
}
1990
machine_device_initcall(pseries, reserve_vrma_context_id);
1991
#endif
1992
1993
#ifdef CONFIG_DEBUG_FS
1994
/* debugfs file interface for vpa data */
1995
static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1996
loff_t *pos)
1997
{
1998
int cpu = (long)filp->private_data;
1999
struct lppaca *lppaca = &lppaca_of(cpu);
2000
2001
return simple_read_from_buffer(buf, len, pos, lppaca,
2002
sizeof(struct lppaca));
2003
}
2004
2005
static const struct file_operations vpa_fops = {
2006
.open = simple_open,
2007
.read = vpa_file_read,
2008
.llseek = default_llseek,
2009
};
2010
2011
static int __init vpa_debugfs_init(void)
2012
{
2013
char name[16];
2014
long i;
2015
struct dentry *vpa_dir;
2016
2017
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2018
return 0;
2019
2020
vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2021
2022
/* set up the per-cpu vpa file*/
2023
for_each_possible_cpu(i) {
2024
sprintf(name, "cpu-%ld", i);
2025
debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2026
}
2027
2028
return 0;
2029
}
2030
machine_arch_initcall(pseries, vpa_debugfs_init);
2031
#endif /* CONFIG_DEBUG_FS */
2032
2033