Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/lparcfg.c
51589 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* PowerPC64 LPAR Configuration Information Driver
4
*
5
* Dave Engebretsen [email protected]
6
* Copyright (c) 2003 Dave Engebretsen
7
* Will Schmidt [email protected]
8
* SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
9
* seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
10
* Nathan Lynch [email protected]
11
* Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
12
*
13
* This driver creates a proc file at /proc/ppc64/lparcfg which contains
14
* keyword - value pairs that specify the configuration of the partition.
15
*/
16
17
#include <linux/module.h>
18
#include <linux/types.h>
19
#include <linux/errno.h>
20
#include <linux/proc_fs.h>
21
#include <linux/init.h>
22
#include <asm/papr-sysparm.h>
23
#include <linux/seq_file.h>
24
#include <linux/slab.h>
25
#include <linux/uaccess.h>
26
#include <linux/hugetlb.h>
27
#include <asm/lppaca.h>
28
#include <asm/hvcall.h>
29
#include <asm/firmware.h>
30
#include <asm/rtas.h>
31
#include <asm/time.h>
32
#include <asm/vio.h>
33
#include <asm/mmu.h>
34
#include <asm/machdep.h>
35
#include <asm/drmem.h>
36
37
#include "pseries.h"
38
#include "vas.h" /* pseries_vas_dlpar_cpu() */
39
40
/*
41
* This isn't a module but we expose that to userspace
42
* via /proc so leave the definitions here
43
*/
44
#define MODULE_VERS "1.9"
45
#define MODULE_NAME "lparcfg"
46
47
/* #define LPARCFG_DEBUG */
48
49
/*
50
* Track sum of all purrs across all processors. This is used to further
51
* calculate usage values by different applications
52
*/
53
static void cpu_get_purr(void *arg)
54
{
55
atomic64_t *sum = arg;
56
57
atomic64_add(mfspr(SPRN_PURR), sum);
58
}
59
60
static unsigned long get_purr(void)
61
{
62
atomic64_t purr = ATOMIC64_INIT(0);
63
64
on_each_cpu(cpu_get_purr, &purr, 1);
65
66
return atomic64_read(&purr);
67
}
68
69
/*
70
* Methods used to fetch LPAR data when running on a pSeries platform.
71
*/
72
73
struct hvcall_ppp_data {
74
u64 entitlement;
75
u64 unallocated_entitlement;
76
u16 group_num;
77
u16 pool_num;
78
u8 capped;
79
u8 weight;
80
u8 unallocated_weight;
81
u8 resource_group_index;
82
u16 active_procs_in_resource_group;
83
u16 active_procs_in_pool;
84
u16 active_system_procs;
85
u16 phys_platform_procs;
86
u32 max_proc_cap_avail;
87
u32 entitled_proc_cap_avail;
88
};
89
90
/*
91
* H_GET_PPP hcall returns info in 5 parms.
92
* entitled_capacity,unallocated_capacity,
93
* aggregation, resource_capability).
94
*
95
* R4 = Entitled Processor Capacity Percentage.
96
* R5 = Unallocated Processor Capacity Percentage.
97
* R6 (AABBCCDDEEFFGGHH).
98
* XXXX - reserved (0)
99
* XXXX - Active Cores in Resource Group
100
* XXXX - Group Number
101
* XXXX - Pool Number.
102
* R7 (IIJJKKLLMMNNOOPP).
103
* XX - Resource group Number
104
* XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
105
* XX - variable processor Capacity Weight
106
* XX - Unallocated Variable Processor Capacity Weight.
107
* XXXX - Active processors in Physical Processor Pool.
108
* XXXX - Processors active on platform.
109
* R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
110
* XXXX - Physical platform procs allocated to virtualization.
111
* XXXXXX - Max procs capacity % available to the partitions pool.
112
* XXXXXX - Entitled procs capacity % available to the
113
* partitions pool.
114
*/
115
static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
116
{
117
unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
118
long rc;
119
120
rc = plpar_hcall9(H_GET_PPP, retbuf);
121
122
ppp_data->entitlement = retbuf[0];
123
ppp_data->unallocated_entitlement = retbuf[1];
124
125
ppp_data->active_procs_in_resource_group = (retbuf[2] >> 4 * 8) & 0xffff;
126
ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
127
ppp_data->pool_num = retbuf[2] & 0xffff;
128
129
ppp_data->resource_group_index = (retbuf[3] >> 7 * 8) & 0xff;
130
ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
131
ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
132
ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
133
ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
134
ppp_data->active_system_procs = retbuf[3] & 0xffff;
135
136
ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
137
ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
138
ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
139
140
return rc;
141
}
142
143
static void show_gpci_data(struct seq_file *m)
144
{
145
struct hv_gpci_request_buffer *buf;
146
unsigned int affinity_score;
147
long ret;
148
149
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
150
if (buf == NULL)
151
return;
152
153
/*
154
* Show the local LPAR's affinity score.
155
*
156
* 0xB1 selects the Affinity_Domain_Info_By_Partition subcall.
157
* The score is at byte 0xB in the output buffer.
158
*/
159
memset(&buf->params, 0, sizeof(buf->params));
160
buf->params.counter_request = cpu_to_be32(0xB1);
161
buf->params.starting_index = cpu_to_be32(-1); /* local LPAR */
162
buf->params.counter_info_version_in = 0x5; /* v5+ for score */
163
ret = plpar_hcall_norets(H_GET_PERF_COUNTER_INFO, virt_to_phys(buf),
164
sizeof(*buf));
165
if (ret != H_SUCCESS) {
166
pr_debug("hcall failed: H_GET_PERF_COUNTER_INFO: %ld, %x\n",
167
ret, be32_to_cpu(buf->params.detail_rc));
168
goto out;
169
}
170
affinity_score = buf->bytes[0xB];
171
seq_printf(m, "partition_affinity_score=%u\n", affinity_score);
172
out:
173
kfree(buf);
174
}
175
176
static long h_pic(unsigned long *pool_idle_time,
177
unsigned long *num_procs)
178
{
179
long rc;
180
unsigned long retbuf[PLPAR_HCALL_BUFSIZE] = {0};
181
182
rc = plpar_hcall(H_PIC, retbuf);
183
184
if (pool_idle_time)
185
*pool_idle_time = retbuf[0];
186
if (num_procs)
187
*num_procs = retbuf[1];
188
189
return rc;
190
}
191
192
unsigned long boot_pool_idle_time;
193
194
/*
195
* parse_ppp_data
196
* Parse out the data returned from h_get_ppp and h_pic
197
*/
198
static void parse_ppp_data(struct seq_file *m)
199
{
200
struct hvcall_ppp_data ppp_data;
201
struct device_node *root;
202
const __be32 *perf_level;
203
long rc;
204
205
rc = h_get_ppp(&ppp_data);
206
if (rc)
207
return;
208
209
seq_printf(m, "partition_entitled_capacity=%lld\n",
210
ppp_data.entitlement);
211
seq_printf(m, "group=%d\n", ppp_data.group_num);
212
seq_printf(m, "system_active_processors=%d\n",
213
ppp_data.active_system_procs);
214
215
/* pool related entries are appropriate for shared configs */
216
if (lppaca_shared_proc()) {
217
unsigned long pool_idle_time, pool_procs;
218
219
seq_printf(m, "pool=%d\n", ppp_data.pool_num);
220
221
/* report pool_capacity in percentage */
222
seq_printf(m, "pool_capacity=%d\n",
223
ppp_data.active_procs_in_pool * 100);
224
225
/* In case h_pic call is not successful, this would result in
226
* APP values being wrong in tools like lparstat.
227
*/
228
229
if (h_pic(&pool_idle_time, &pool_procs) == H_SUCCESS) {
230
seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
231
seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
232
seq_printf(m, "boot_pool_idle_time=%ld\n", boot_pool_idle_time);
233
}
234
}
235
236
seq_printf(m, "unallocated_capacity_weight=%d\n",
237
ppp_data.unallocated_weight);
238
seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
239
seq_printf(m, "capped=%d\n", ppp_data.capped);
240
seq_printf(m, "unallocated_capacity=%lld\n",
241
ppp_data.unallocated_entitlement);
242
243
if (ppp_data.active_procs_in_resource_group) {
244
seq_printf(m, "resource_group_number=%d\n",
245
ppp_data.resource_group_index);
246
seq_printf(m, "resource_group_active_processors=%d\n",
247
ppp_data.active_procs_in_resource_group);
248
}
249
250
/* The last bits of information returned from h_get_ppp are only
251
* valid if the ibm,partition-performance-parameters-level
252
* property is >= 1.
253
*/
254
root = of_find_node_by_path("/");
255
if (root) {
256
perf_level = of_get_property(root,
257
"ibm,partition-performance-parameters-level",
258
NULL);
259
if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
260
seq_printf(m,
261
"physical_procs_allocated_to_virtualization=%d\n",
262
ppp_data.phys_platform_procs);
263
seq_printf(m, "max_proc_capacity_available=%d\n",
264
ppp_data.max_proc_cap_avail);
265
seq_printf(m, "entitled_proc_capacity_available=%d\n",
266
ppp_data.entitled_proc_cap_avail);
267
}
268
269
of_node_put(root);
270
}
271
}
272
273
/**
274
* parse_mpp_data
275
* Parse out data returned from h_get_mpp
276
*/
277
static void parse_mpp_data(struct seq_file *m)
278
{
279
struct hvcall_mpp_data mpp_data;
280
int rc;
281
282
rc = h_get_mpp(&mpp_data);
283
if (rc)
284
return;
285
286
seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
287
288
if (mpp_data.mapped_mem != -1)
289
seq_printf(m, "mapped_entitled_memory=%ld\n",
290
mpp_data.mapped_mem);
291
292
seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
293
seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
294
295
seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
296
seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
297
mpp_data.unallocated_mem_weight);
298
seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
299
mpp_data.unallocated_entitlement);
300
301
if (mpp_data.pool_size != -1)
302
seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
303
mpp_data.pool_size);
304
305
seq_printf(m, "entitled_memory_loan_request=%ld\n",
306
mpp_data.loan_request);
307
308
seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
309
}
310
311
/**
312
* parse_mpp_x_data
313
* Parse out data returned from h_get_mpp_x
314
*/
315
static void parse_mpp_x_data(struct seq_file *m)
316
{
317
struct hvcall_mpp_x_data mpp_x_data;
318
319
if (!firmware_has_feature(FW_FEATURE_XCMO))
320
return;
321
if (h_get_mpp_x(&mpp_x_data))
322
return;
323
324
seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
325
326
if (mpp_x_data.pool_coalesced_bytes)
327
seq_printf(m, "pool_coalesced_bytes=%ld\n",
328
mpp_x_data.pool_coalesced_bytes);
329
if (mpp_x_data.pool_purr_cycles)
330
seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
331
if (mpp_x_data.pool_spurr_cycles)
332
seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
333
}
334
335
/*
336
* Read the lpar name using the RTAS ibm,get-system-parameter call.
337
*
338
* The name read through this call is updated if changes are made by the end
339
* user on the hypervisor side.
340
*
341
* Some hypervisor (like Qemu) may not provide this value. In that case, a non
342
* null value is returned.
343
*/
344
static int read_rtas_lpar_name(struct seq_file *m)
345
{
346
struct papr_sysparm_buf *buf;
347
int err;
348
349
buf = papr_sysparm_buf_alloc();
350
if (!buf)
351
return -ENOMEM;
352
353
err = papr_sysparm_get(PAPR_SYSPARM_LPAR_NAME, buf);
354
if (!err)
355
seq_printf(m, "partition_name=%s\n", buf->val);
356
357
papr_sysparm_buf_free(buf);
358
return err;
359
}
360
361
/*
362
* Read the LPAR name from the Device Tree.
363
*
364
* The value read in the DT is not updated if the end-user is touching the LPAR
365
* name on the hypervisor side.
366
*/
367
static int read_dt_lpar_name(struct seq_file *m)
368
{
369
struct device_node *root = of_find_node_by_path("/");
370
const char *name;
371
int ret;
372
373
ret = of_property_read_string(root, "ibm,partition-name", &name);
374
of_node_put(root);
375
if (ret)
376
return -ENOENT;
377
378
seq_printf(m, "partition_name=%s\n", name);
379
return 0;
380
}
381
382
static void read_lpar_name(struct seq_file *m)
383
{
384
if (read_rtas_lpar_name(m))
385
read_dt_lpar_name(m);
386
}
387
388
#define SPLPAR_MAXLENGTH 1026*(sizeof(char))
389
390
/*
391
* parse_system_parameter_string()
392
* Retrieve the potential_processors, max_entitled_capacity and friends
393
* through the get-system-parameter rtas call. Replace keyword strings as
394
* necessary.
395
*/
396
static void parse_system_parameter_string(struct seq_file *m)
397
{
398
struct papr_sysparm_buf *buf;
399
400
buf = papr_sysparm_buf_alloc();
401
if (!buf)
402
return;
403
404
if (papr_sysparm_get(PAPR_SYSPARM_SHARED_PROC_LPAR_ATTRS, buf)) {
405
goto out_free;
406
} else {
407
const char *local_buffer;
408
int splpar_strlen;
409
int idx, w_idx;
410
char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
411
412
if (!workbuffer)
413
goto out_free;
414
415
splpar_strlen = be16_to_cpu(buf->len);
416
local_buffer = buf->val;
417
418
w_idx = 0;
419
idx = 0;
420
while ((*local_buffer) && (idx < splpar_strlen)) {
421
workbuffer[w_idx++] = local_buffer[idx++];
422
if ((local_buffer[idx] == ',')
423
|| (local_buffer[idx] == '\0')) {
424
workbuffer[w_idx] = '\0';
425
if (w_idx) {
426
/* avoid the empty string */
427
seq_printf(m, "%s\n", workbuffer);
428
}
429
memset(workbuffer, 0, SPLPAR_MAXLENGTH);
430
idx++; /* skip the comma */
431
w_idx = 0;
432
} else if (local_buffer[idx] == '=') {
433
/* code here to replace workbuffer contents
434
with different keyword strings */
435
if (0 == strcmp(workbuffer, "MaxEntCap")) {
436
strcpy(workbuffer,
437
"partition_max_entitled_capacity");
438
w_idx = strlen(workbuffer);
439
}
440
if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
441
strcpy(workbuffer,
442
"system_potential_processors");
443
w_idx = strlen(workbuffer);
444
}
445
}
446
}
447
kfree(workbuffer);
448
local_buffer -= 2; /* back up over strlen value */
449
}
450
out_free:
451
papr_sysparm_buf_free(buf);
452
}
453
454
/* Return the number of processors in the system.
455
* This function reads through the device tree and counts
456
* the virtual processors, this does not include threads.
457
*/
458
static int lparcfg_count_active_processors(void)
459
{
460
struct device_node *cpus_dn;
461
int count = 0;
462
463
for_each_node_by_type(cpus_dn, "cpu") {
464
#ifdef LPARCFG_DEBUG
465
printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
466
#endif
467
count++;
468
}
469
return count;
470
}
471
472
static void pseries_cmo_data(struct seq_file *m)
473
{
474
int cpu;
475
unsigned long cmo_faults = 0;
476
unsigned long cmo_fault_time = 0;
477
478
seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
479
480
if (!firmware_has_feature(FW_FEATURE_CMO))
481
return;
482
483
for_each_possible_cpu(cpu) {
484
cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
485
cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
486
}
487
488
seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
489
seq_printf(m, "cmo_fault_time_usec=%lu\n",
490
cmo_fault_time / tb_ticks_per_usec);
491
seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
492
seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
493
seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
494
}
495
496
static void splpar_dispatch_data(struct seq_file *m)
497
{
498
int cpu;
499
unsigned long dispatches = 0;
500
unsigned long dispatch_dispersions = 0;
501
502
for_each_possible_cpu(cpu) {
503
dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
504
dispatch_dispersions +=
505
be32_to_cpu(lppaca_of(cpu).dispersion_count);
506
}
507
508
seq_printf(m, "dispatches=%lu\n", dispatches);
509
seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
510
}
511
512
static void parse_em_data(struct seq_file *m)
513
{
514
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
515
516
if (firmware_has_feature(FW_FEATURE_LPAR) &&
517
plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
518
seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
519
}
520
521
static void maxmem_data(struct seq_file *m)
522
{
523
unsigned long maxmem = 0;
524
525
maxmem += (unsigned long)drmem_info->n_lmbs * drmem_info->lmb_size;
526
maxmem += hugetlb_total_pages() * PAGE_SIZE;
527
528
seq_printf(m, "MaxMem=%lu\n", maxmem);
529
}
530
531
static int pseries_lparcfg_data(struct seq_file *m, void *v)
532
{
533
int partition_potential_processors;
534
int partition_active_processors;
535
struct device_node *rtas_node;
536
const __be32 *lrdrp = NULL;
537
538
rtas_node = of_find_node_by_path("/rtas");
539
if (rtas_node)
540
lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
541
542
if (lrdrp == NULL) {
543
partition_potential_processors = num_possible_cpus();
544
} else {
545
partition_potential_processors = be32_to_cpup(lrdrp + 4);
546
}
547
of_node_put(rtas_node);
548
549
partition_active_processors = lparcfg_count_active_processors();
550
551
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
552
/* this call handles the ibm,get-system-parameter contents */
553
read_lpar_name(m);
554
parse_system_parameter_string(m);
555
parse_ppp_data(m);
556
parse_mpp_data(m);
557
parse_mpp_x_data(m);
558
pseries_cmo_data(m);
559
splpar_dispatch_data(m);
560
561
seq_printf(m, "purr=%ld\n", get_purr());
562
seq_printf(m, "tbr=%ld\n", mftb());
563
} else { /* non SPLPAR case */
564
565
seq_printf(m, "system_active_processors=%d\n",
566
partition_active_processors);
567
568
seq_printf(m, "system_potential_processors=%d\n",
569
partition_potential_processors);
570
571
seq_printf(m, "partition_max_entitled_capacity=%d\n",
572
partition_potential_processors * 100);
573
574
seq_printf(m, "partition_entitled_capacity=%d\n",
575
partition_active_processors * 100);
576
}
577
578
show_gpci_data(m);
579
580
seq_printf(m, "partition_active_processors=%d\n",
581
partition_active_processors);
582
583
seq_printf(m, "partition_potential_processors=%d\n",
584
partition_potential_processors);
585
586
seq_printf(m, "shared_processor_mode=%d\n",
587
lppaca_shared_proc());
588
589
#ifdef CONFIG_PPC_64S_HASH_MMU
590
if (!radix_enabled())
591
seq_printf(m, "slb_size=%d\n", mmu_slb_size);
592
#endif
593
parse_em_data(m);
594
maxmem_data(m);
595
596
seq_printf(m, "security_flavor=%u\n", pseries_security_flavor);
597
598
return 0;
599
}
600
601
static ssize_t update_ppp(u64 *entitlement, u8 *weight)
602
{
603
struct hvcall_ppp_data ppp_data;
604
u8 new_weight;
605
u64 new_entitled;
606
ssize_t retval;
607
608
/* Get our current parameters */
609
retval = h_get_ppp(&ppp_data);
610
if (retval)
611
return retval;
612
613
if (entitlement) {
614
new_weight = ppp_data.weight;
615
new_entitled = *entitlement;
616
} else if (weight) {
617
new_weight = *weight;
618
new_entitled = ppp_data.entitlement;
619
} else
620
return -EINVAL;
621
622
pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
623
__func__, ppp_data.entitlement, ppp_data.weight);
624
625
pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
626
__func__, new_entitled, new_weight);
627
628
retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
629
return retval;
630
}
631
632
/**
633
* update_mpp
634
*
635
* Update the memory entitlement and weight for the partition. Caller must
636
* specify either a new entitlement or weight, not both, to be updated
637
* since the h_set_mpp call takes both entitlement and weight as parameters.
638
*/
639
static ssize_t update_mpp(u64 *entitlement, u8 *weight)
640
{
641
struct hvcall_mpp_data mpp_data;
642
u64 new_entitled;
643
u8 new_weight;
644
ssize_t rc;
645
646
if (entitlement) {
647
/* Check with vio to ensure the new memory entitlement
648
* can be handled.
649
*/
650
rc = vio_cmo_entitlement_update(*entitlement);
651
if (rc)
652
return rc;
653
}
654
655
rc = h_get_mpp(&mpp_data);
656
if (rc)
657
return rc;
658
659
if (entitlement) {
660
new_weight = mpp_data.mem_weight;
661
new_entitled = *entitlement;
662
} else if (weight) {
663
new_weight = *weight;
664
new_entitled = mpp_data.entitled_mem;
665
} else
666
return -EINVAL;
667
668
pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
669
__func__, mpp_data.entitled_mem, mpp_data.mem_weight);
670
671
pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
672
__func__, new_entitled, new_weight);
673
674
rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
675
return rc;
676
}
677
678
/*
679
* Interface for changing system parameters (variable capacity weight
680
* and entitled capacity). Format of input is "param_name=value";
681
* anything after value is ignored. Valid parameters at this time are
682
* "partition_entitled_capacity" and "capacity_weight". We use
683
* H_SET_PPP to alter parameters.
684
*
685
* This function should be invoked only on systems with
686
* FW_FEATURE_SPLPAR.
687
*/
688
static ssize_t lparcfg_write(struct file *file, const char __user * buf,
689
size_t count, loff_t * off)
690
{
691
char kbuf[64];
692
char *tmp;
693
u64 new_entitled, *new_entitled_ptr = &new_entitled;
694
u8 new_weight, *new_weight_ptr = &new_weight;
695
ssize_t retval;
696
697
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
698
return -EINVAL;
699
700
if (count > sizeof(kbuf))
701
return -EINVAL;
702
703
if (copy_from_user(kbuf, buf, count))
704
return -EFAULT;
705
706
kbuf[count - 1] = '\0';
707
tmp = strchr(kbuf, '=');
708
if (!tmp)
709
return -EINVAL;
710
711
*tmp++ = '\0';
712
713
if (!strcmp(kbuf, "partition_entitled_capacity")) {
714
char *endp;
715
*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
716
if (endp == tmp)
717
return -EINVAL;
718
719
retval = update_ppp(new_entitled_ptr, NULL);
720
721
if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
722
/*
723
* The hypervisor assigns VAS resources based
724
* on entitled capacity for shared mode.
725
* Reconfig VAS windows based on DLPAR CPU events.
726
*/
727
if (pseries_vas_dlpar_cpu() != 0)
728
retval = H_HARDWARE;
729
}
730
} else if (!strcmp(kbuf, "capacity_weight")) {
731
char *endp;
732
*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
733
if (endp == tmp)
734
return -EINVAL;
735
736
retval = update_ppp(NULL, new_weight_ptr);
737
} else if (!strcmp(kbuf, "entitled_memory")) {
738
char *endp;
739
*new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
740
if (endp == tmp)
741
return -EINVAL;
742
743
retval = update_mpp(new_entitled_ptr, NULL);
744
} else if (!strcmp(kbuf, "entitled_memory_weight")) {
745
char *endp;
746
*new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
747
if (endp == tmp)
748
return -EINVAL;
749
750
retval = update_mpp(NULL, new_weight_ptr);
751
} else
752
return -EINVAL;
753
754
if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
755
retval = count;
756
} else if (retval == H_BUSY) {
757
retval = -EBUSY;
758
} else if (retval == H_HARDWARE) {
759
retval = -EIO;
760
} else if (retval == H_PARAMETER) {
761
retval = -EINVAL;
762
}
763
764
return retval;
765
}
766
767
static int lparcfg_data(struct seq_file *m, void *v)
768
{
769
struct device_node *rootdn;
770
const char *model = "";
771
const char *system_id = "";
772
const char *tmp;
773
const __be32 *lp_index_ptr;
774
unsigned int lp_index = 0;
775
776
seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
777
778
rootdn = of_find_node_by_path("/");
779
if (rootdn) {
780
tmp = of_get_property(rootdn, "model", NULL);
781
if (tmp)
782
model = tmp;
783
tmp = of_get_property(rootdn, "system-id", NULL);
784
if (tmp)
785
system_id = tmp;
786
lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
787
NULL);
788
if (lp_index_ptr)
789
lp_index = be32_to_cpup(lp_index_ptr);
790
of_node_put(rootdn);
791
}
792
seq_printf(m, "serial_number=%s\n", system_id);
793
seq_printf(m, "system_type=%s\n", model);
794
seq_printf(m, "partition_id=%d\n", (int)lp_index);
795
796
return pseries_lparcfg_data(m, v);
797
}
798
799
static int lparcfg_open(struct inode *inode, struct file *file)
800
{
801
return single_open(file, lparcfg_data, NULL);
802
}
803
804
static const struct proc_ops lparcfg_proc_ops = {
805
.proc_read = seq_read,
806
.proc_write = lparcfg_write,
807
.proc_open = lparcfg_open,
808
.proc_release = single_release,
809
.proc_lseek = seq_lseek,
810
};
811
812
static int __init lparcfg_init(void)
813
{
814
umode_t mode = 0444;
815
long retval;
816
817
/* Allow writing if we have FW_FEATURE_SPLPAR */
818
if (firmware_has_feature(FW_FEATURE_SPLPAR))
819
mode |= 0200;
820
821
if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_proc_ops)) {
822
printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
823
return -EIO;
824
}
825
826
/* If this call fails, it would result in APP values
827
* being wrong for since boot reports of lparstat
828
*/
829
retval = h_pic(&boot_pool_idle_time, NULL);
830
831
if (retval != H_SUCCESS)
832
pr_debug("H_PIC failed during lparcfg init retval: %ld\n",
833
retval);
834
835
return 0;
836
}
837
machine_device_initcall(pseries, lparcfg_init);
838
839