Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/msi.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2006 Jake Moilanen <[email protected]>, IBM Corp.
4
* Copyright 2006-2007 Michael Ellerman, IBM Corp.
5
*/
6
7
#include <linux/crash_dump.h>
8
#include <linux/device.h>
9
#include <linux/irq.h>
10
#include <linux/irqdomain.h>
11
#include <linux/msi.h>
12
#include <linux/seq_file.h>
13
14
#include <asm/rtas.h>
15
#include <asm/hw_irq.h>
16
#include <asm/ppc-pci.h>
17
#include <asm/machdep.h>
18
#include <asm/xive.h>
19
20
#include "pseries.h"
21
22
static int query_token, change_token;
23
24
#define RTAS_QUERY_FN 0
25
#define RTAS_CHANGE_FN 1
26
#define RTAS_RESET_FN 2
27
#define RTAS_CHANGE_MSI_FN 3
28
#define RTAS_CHANGE_MSIX_FN 4
29
#define RTAS_CHANGE_32MSI_FN 5
30
#define RTAS_CHANGE_32MSIX_FN 6
31
32
/* RTAS Helpers */
33
34
static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs)
35
{
36
u32 addr, seq_num, rtas_ret[3];
37
unsigned long buid;
38
int rc;
39
40
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
41
buid = pdn->phb->buid;
42
43
seq_num = 1;
44
do {
45
if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN ||
46
func == RTAS_CHANGE_32MSI_FN || func == RTAS_CHANGE_32MSIX_FN)
47
rc = rtas_call(change_token, 6, 4, rtas_ret, addr,
48
BUID_HI(buid), BUID_LO(buid),
49
func, num_irqs, seq_num);
50
else
51
rc = rtas_call(change_token, 6, 3, rtas_ret, addr,
52
BUID_HI(buid), BUID_LO(buid),
53
func, num_irqs, seq_num);
54
55
seq_num = rtas_ret[1];
56
} while (rtas_busy_delay(rc));
57
58
/*
59
* If the RTAS call succeeded, return the number of irqs allocated.
60
* If not, make sure we return a negative error code.
61
*/
62
if (rc == 0)
63
rc = rtas_ret[0];
64
else if (rc > 0)
65
rc = -rc;
66
67
pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n",
68
func, num_irqs, rtas_ret[0], rc);
69
70
return rc;
71
}
72
73
static void rtas_disable_msi(struct pci_dev *pdev)
74
{
75
struct pci_dn *pdn;
76
77
pdn = pci_get_pdn(pdev);
78
if (!pdn)
79
return;
80
81
/*
82
* disabling MSI with the explicit interface also disables MSI-X
83
*/
84
if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) {
85
/*
86
* may have failed because explicit interface is not
87
* present
88
*/
89
if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) {
90
pr_debug("rtas_msi: Setting MSIs to 0 failed!\n");
91
}
92
}
93
}
94
95
static int rtas_query_irq_number(struct pci_dn *pdn, int offset)
96
{
97
u32 addr, rtas_ret[2];
98
unsigned long buid;
99
int rc;
100
101
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
102
buid = pdn->phb->buid;
103
104
do {
105
rc = rtas_call(query_token, 4, 3, rtas_ret, addr,
106
BUID_HI(buid), BUID_LO(buid), offset);
107
} while (rtas_busy_delay(rc));
108
109
if (rc) {
110
pr_debug("rtas_msi: error (%d) querying source number\n", rc);
111
return rc;
112
}
113
114
return rtas_ret[0];
115
}
116
117
static int check_req(struct pci_dev *pdev, int nvec, char *prop_name)
118
{
119
struct device_node *dn;
120
const __be32 *p;
121
u32 req_msi;
122
123
dn = pci_device_to_OF_node(pdev);
124
125
p = of_get_property(dn, prop_name, NULL);
126
if (!p) {
127
pr_debug("rtas_msi: No %s on %pOF\n", prop_name, dn);
128
return -ENOENT;
129
}
130
131
req_msi = be32_to_cpup(p);
132
if (req_msi < nvec) {
133
pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec);
134
135
if (req_msi == 0) /* Be paranoid */
136
return -ENOSPC;
137
138
return req_msi;
139
}
140
141
return 0;
142
}
143
144
static int check_req_msi(struct pci_dev *pdev, int nvec)
145
{
146
return check_req(pdev, nvec, "ibm,req#msi");
147
}
148
149
static int check_req_msix(struct pci_dev *pdev, int nvec)
150
{
151
return check_req(pdev, nvec, "ibm,req#msi-x");
152
}
153
154
/* Quota calculation */
155
156
static struct device_node *__find_pe_total_msi(struct device_node *node, int *total)
157
{
158
struct device_node *dn;
159
const __be32 *p;
160
161
dn = of_node_get(node);
162
while (dn) {
163
p = of_get_property(dn, "ibm,pe-total-#msi", NULL);
164
if (p) {
165
pr_debug("rtas_msi: found prop on dn %pOF\n",
166
dn);
167
*total = be32_to_cpup(p);
168
return dn;
169
}
170
171
dn = of_get_next_parent(dn);
172
}
173
174
return NULL;
175
}
176
177
static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total)
178
{
179
return __find_pe_total_msi(pci_device_to_OF_node(dev), total);
180
}
181
182
static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
183
{
184
struct device_node *dn;
185
struct eeh_dev *edev;
186
187
/* Found our PE and assume 8 at that point. */
188
189
dn = pci_device_to_OF_node(dev);
190
if (!dn)
191
return NULL;
192
193
/* Get the top level device in the PE */
194
edev = pdn_to_eeh_dev(PCI_DN(dn));
195
if (edev->pe)
196
edev = list_first_entry(&edev->pe->edevs, struct eeh_dev,
197
entry);
198
dn = pci_device_to_OF_node(edev->pdev);
199
if (!dn)
200
return NULL;
201
202
/* We actually want the parent */
203
dn = of_get_parent(dn);
204
if (!dn)
205
return NULL;
206
207
/* Hardcode of 8 for old firmwares */
208
*total = 8;
209
pr_debug("rtas_msi: using PE dn %pOF\n", dn);
210
211
return dn;
212
}
213
214
struct msi_counts {
215
struct device_node *requestor;
216
int num_devices;
217
int request;
218
int quota;
219
int spare;
220
int over_quota;
221
};
222
223
static void *count_non_bridge_devices(struct device_node *dn, void *data)
224
{
225
struct msi_counts *counts = data;
226
const __be32 *p;
227
u32 class;
228
229
pr_debug("rtas_msi: counting %pOF\n", dn);
230
231
p = of_get_property(dn, "class-code", NULL);
232
class = p ? be32_to_cpup(p) : 0;
233
234
if ((class >> 8) != PCI_CLASS_BRIDGE_PCI)
235
counts->num_devices++;
236
237
return NULL;
238
}
239
240
static void *count_spare_msis(struct device_node *dn, void *data)
241
{
242
struct msi_counts *counts = data;
243
const __be32 *p;
244
int req;
245
246
if (dn == counts->requestor)
247
req = counts->request;
248
else {
249
/* We don't know if a driver will try to use MSI or MSI-X,
250
* so we just have to punt and use the larger of the two. */
251
req = 0;
252
p = of_get_property(dn, "ibm,req#msi", NULL);
253
if (p)
254
req = be32_to_cpup(p);
255
256
p = of_get_property(dn, "ibm,req#msi-x", NULL);
257
if (p)
258
req = max(req, (int)be32_to_cpup(p));
259
}
260
261
if (req < counts->quota)
262
counts->spare += counts->quota - req;
263
else if (req > counts->quota)
264
counts->over_quota++;
265
266
return NULL;
267
}
268
269
static int msi_quota_for_device(struct pci_dev *dev, int request)
270
{
271
struct device_node *pe_dn;
272
struct msi_counts counts;
273
int total;
274
275
pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev),
276
request);
277
278
pe_dn = find_pe_total_msi(dev, &total);
279
if (!pe_dn)
280
pe_dn = find_pe_dn(dev, &total);
281
282
if (!pe_dn) {
283
pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev));
284
goto out;
285
}
286
287
pr_debug("rtas_msi: found PE %pOF\n", pe_dn);
288
289
memset(&counts, 0, sizeof(struct msi_counts));
290
291
/* Work out how many devices we have below this PE */
292
pci_traverse_device_nodes(pe_dn, count_non_bridge_devices, &counts);
293
294
if (counts.num_devices == 0) {
295
pr_err("rtas_msi: found 0 devices under PE for %s\n",
296
pci_name(dev));
297
goto out;
298
}
299
300
counts.quota = total / counts.num_devices;
301
if (request <= counts.quota)
302
goto out;
303
304
/* else, we have some more calculating to do */
305
counts.requestor = pci_device_to_OF_node(dev);
306
counts.request = request;
307
pci_traverse_device_nodes(pe_dn, count_spare_msis, &counts);
308
309
/* If the quota isn't an integer multiple of the total, we can
310
* use the remainder as spare MSIs for anyone that wants them. */
311
counts.spare += total % counts.num_devices;
312
313
/* Divide any spare by the number of over-quota requestors */
314
if (counts.over_quota)
315
counts.quota += counts.spare / counts.over_quota;
316
317
/* And finally clamp the request to the possibly adjusted quota */
318
request = min(counts.quota, request);
319
320
pr_debug("rtas_msi: request clamped to quota %d\n", request);
321
out:
322
of_node_put(pe_dn);
323
324
return request;
325
}
326
327
static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev)
328
{
329
u32 addr_hi, addr_lo;
330
331
/*
332
* We should only get in here for IODA1 configs. This is based on the
333
* fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS
334
* support, and we are in a PCIe Gen2 slot.
335
*/
336
dev_info(&pdev->dev,
337
"rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n");
338
pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi);
339
addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4);
340
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo);
341
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0);
342
}
343
344
static int rtas_prepare_msi_irqs(struct pci_dev *pdev, int nvec_in, int type,
345
msi_alloc_info_t *arg)
346
{
347
struct pci_dn *pdn;
348
int quota, rc;
349
int nvec = nvec_in;
350
int use_32bit_msi_hack = 0;
351
352
if (type == PCI_CAP_ID_MSIX)
353
rc = check_req_msix(pdev, nvec);
354
else
355
rc = check_req_msi(pdev, nvec);
356
357
if (rc)
358
return rc;
359
360
quota = msi_quota_for_device(pdev, nvec);
361
362
if (quota && quota < nvec)
363
return quota;
364
365
/*
366
* Firmware currently refuse any non power of two allocation
367
* so we round up if the quota will allow it.
368
*/
369
if (type == PCI_CAP_ID_MSIX) {
370
int m = roundup_pow_of_two(nvec);
371
quota = msi_quota_for_device(pdev, m);
372
373
if (quota >= m)
374
nvec = m;
375
}
376
377
pdn = pci_get_pdn(pdev);
378
379
/*
380
* Try the new more explicit firmware interface, if that fails fall
381
* back to the old interface. The old interface is known to never
382
* return MSI-Xs.
383
*/
384
again:
385
if (type == PCI_CAP_ID_MSI) {
386
if (pdev->no_64bit_msi) {
387
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec);
388
if (rc < 0) {
389
/*
390
* We only want to run the 32 bit MSI hack below if
391
* the max bus speed is Gen2 speed
392
*/
393
if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT)
394
return rc;
395
396
use_32bit_msi_hack = 1;
397
}
398
} else
399
rc = -1;
400
401
if (rc < 0)
402
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec);
403
404
if (rc < 0) {
405
pr_debug("rtas_msi: trying the old firmware call.\n");
406
rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec);
407
}
408
409
if (use_32bit_msi_hack && rc > 0)
410
rtas_hack_32bit_msi_gen2(pdev);
411
} else {
412
if (pdev->no_64bit_msi)
413
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSIX_FN, nvec);
414
else
415
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec);
416
}
417
418
if (rc != nvec) {
419
if (nvec != nvec_in) {
420
nvec = nvec_in;
421
goto again;
422
}
423
pr_debug("rtas_msi: rtas_change_msi() failed\n");
424
return rc;
425
}
426
427
return 0;
428
}
429
430
static int pseries_msi_ops_prepare(struct irq_domain *domain, struct device *dev,
431
int nvec, msi_alloc_info_t *arg)
432
{
433
struct pci_dev *pdev = to_pci_dev(dev);
434
int type = pdev->msix_enabled ? PCI_CAP_ID_MSIX : PCI_CAP_ID_MSI;
435
436
return rtas_prepare_msi_irqs(pdev, nvec, type, arg);
437
}
438
439
/*
440
* ->msi_free() is called before irq_domain_free_irqs_top() when the
441
* handler data is still available. Use that to clear the XIVE
442
* controller data.
443
*/
444
static void pseries_msi_ops_msi_free(struct irq_domain *domain,
445
struct msi_domain_info *info,
446
unsigned int irq)
447
{
448
if (xive_enabled())
449
xive_irq_free_data(irq);
450
}
451
452
/*
453
* RTAS can not disable one MSI at a time. It's all or nothing. Do it
454
* at the end after all IRQs have been freed.
455
*/
456
static void pseries_msi_post_free(struct irq_domain *domain, struct device *dev)
457
{
458
if (WARN_ON_ONCE(!dev_is_pci(dev)))
459
return;
460
461
rtas_disable_msi(to_pci_dev(dev));
462
}
463
464
static struct msi_domain_ops pseries_pci_msi_domain_ops = {
465
.msi_prepare = pseries_msi_ops_prepare,
466
.msi_free = pseries_msi_ops_msi_free,
467
.msi_post_free = pseries_msi_post_free,
468
};
469
470
static void pseries_msi_shutdown(struct irq_data *d)
471
{
472
d = d->parent_data;
473
if (d->chip->irq_shutdown)
474
d->chip->irq_shutdown(d);
475
}
476
477
static void pseries_msi_mask(struct irq_data *d)
478
{
479
pci_msi_mask_irq(d);
480
irq_chip_mask_parent(d);
481
}
482
483
static void pseries_msi_unmask(struct irq_data *d)
484
{
485
pci_msi_unmask_irq(d);
486
irq_chip_unmask_parent(d);
487
}
488
489
static void pseries_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
490
{
491
struct msi_desc *entry = irq_data_get_msi_desc(data);
492
493
/*
494
* Do not update the MSIx vector table. It's not strictly necessary
495
* because the table is initialized by the underlying hypervisor, PowerVM
496
* or QEMU/KVM. However, if the MSIx vector entry is cleared, any further
497
* activation will fail. This can happen in some drivers (eg. IPR) which
498
* deactivate an IRQ used for testing MSI support.
499
*/
500
entry->msg = *msg;
501
}
502
503
static struct irq_chip pseries_pci_msi_irq_chip = {
504
.name = "pSeries-PCI-MSI",
505
.irq_shutdown = pseries_msi_shutdown,
506
.irq_mask = pseries_msi_mask,
507
.irq_unmask = pseries_msi_unmask,
508
.irq_eoi = irq_chip_eoi_parent,
509
.irq_write_msi_msg = pseries_msi_write_msg,
510
};
511
512
513
/*
514
* Set MSI_FLAG_MSIX_CONTIGUOUS as there is no way to express to
515
* firmware to request a discontiguous or non-zero based range of
516
* MSI-X entries. Core code will reject such setup attempts.
517
*/
518
static struct msi_domain_info pseries_msi_domain_info = {
519
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
520
MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX |
521
MSI_FLAG_MSIX_CONTIGUOUS),
522
.ops = &pseries_pci_msi_domain_ops,
523
.chip = &pseries_pci_msi_irq_chip,
524
};
525
526
static void pseries_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
527
{
528
struct pci_dev *dev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
529
530
if (dev->current_state == PCI_D0)
531
__pci_read_msi_msg(irq_data_get_msi_desc(data), msg);
532
else
533
get_cached_msi_msg(data->irq, msg);
534
}
535
536
static struct irq_chip pseries_msi_irq_chip = {
537
.name = "pSeries-MSI",
538
.irq_shutdown = pseries_msi_shutdown,
539
.irq_mask = irq_chip_mask_parent,
540
.irq_unmask = irq_chip_unmask_parent,
541
.irq_eoi = irq_chip_eoi_parent,
542
.irq_set_affinity = irq_chip_set_affinity_parent,
543
.irq_compose_msi_msg = pseries_msi_compose_msg,
544
};
545
546
static int pseries_irq_parent_domain_alloc(struct irq_domain *domain, unsigned int virq,
547
irq_hw_number_t hwirq)
548
{
549
struct irq_fwspec parent_fwspec;
550
int ret;
551
552
parent_fwspec.fwnode = domain->parent->fwnode;
553
parent_fwspec.param_count = 2;
554
parent_fwspec.param[0] = hwirq;
555
parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
556
557
ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
558
if (ret)
559
return ret;
560
561
return 0;
562
}
563
564
static int pseries_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
565
unsigned int nr_irqs, void *arg)
566
{
567
struct pci_controller *phb = domain->host_data;
568
msi_alloc_info_t *info = arg;
569
struct msi_desc *desc = info->desc;
570
struct pci_dev *pdev = msi_desc_to_pci_dev(desc);
571
int hwirq;
572
int i, ret;
573
574
hwirq = rtas_query_irq_number(pci_get_pdn(pdev), desc->msi_index);
575
if (hwirq < 0) {
576
dev_err(&pdev->dev, "Failed to query HW IRQ: %d\n", hwirq);
577
return hwirq;
578
}
579
580
dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
581
phb->dn, virq, hwirq, nr_irqs);
582
583
for (i = 0; i < nr_irqs; i++) {
584
ret = pseries_irq_parent_domain_alloc(domain, virq + i, hwirq + i);
585
if (ret)
586
goto out;
587
588
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
589
&pseries_msi_irq_chip, domain->host_data);
590
}
591
592
return 0;
593
594
out:
595
/* TODO: handle RTAS cleanup in ->msi_finish() ? */
596
irq_domain_free_irqs_parent(domain, virq, i - 1);
597
return ret;
598
}
599
600
static void pseries_irq_domain_free(struct irq_domain *domain, unsigned int virq,
601
unsigned int nr_irqs)
602
{
603
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
604
struct pci_controller *phb = irq_data_get_irq_chip_data(d);
605
606
pr_debug("%s bridge %pOF %d #%d\n", __func__, phb->dn, virq, nr_irqs);
607
608
/* XIVE domain data is cleared through ->msi_free() */
609
}
610
611
static const struct irq_domain_ops pseries_irq_domain_ops = {
612
.alloc = pseries_irq_domain_alloc,
613
.free = pseries_irq_domain_free,
614
};
615
616
static int __pseries_msi_allocate_domains(struct pci_controller *phb,
617
unsigned int count)
618
{
619
struct irq_domain *parent = irq_get_default_domain();
620
621
phb->fwnode = irq_domain_alloc_named_id_fwnode("pSeries-MSI",
622
phb->global_number);
623
if (!phb->fwnode)
624
return -ENOMEM;
625
626
phb->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
627
phb->fwnode,
628
&pseries_irq_domain_ops, phb);
629
if (!phb->dev_domain) {
630
pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
631
phb->dn, phb->global_number);
632
irq_domain_free_fwnode(phb->fwnode);
633
return -ENOMEM;
634
}
635
636
phb->msi_domain = pci_msi_create_irq_domain(of_fwnode_handle(phb->dn),
637
&pseries_msi_domain_info,
638
phb->dev_domain);
639
if (!phb->msi_domain) {
640
pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
641
phb->dn, phb->global_number);
642
irq_domain_free_fwnode(phb->fwnode);
643
irq_domain_remove(phb->dev_domain);
644
return -ENOMEM;
645
}
646
647
return 0;
648
}
649
650
int pseries_msi_allocate_domains(struct pci_controller *phb)
651
{
652
int count;
653
654
if (!__find_pe_total_msi(phb->dn, &count)) {
655
pr_err("PCI: failed to find MSIs for bridge %pOF (domain %d)\n",
656
phb->dn, phb->global_number);
657
return -ENOSPC;
658
}
659
660
return __pseries_msi_allocate_domains(phb, count);
661
}
662
663
void pseries_msi_free_domains(struct pci_controller *phb)
664
{
665
if (phb->msi_domain)
666
irq_domain_remove(phb->msi_domain);
667
if (phb->dev_domain)
668
irq_domain_remove(phb->dev_domain);
669
if (phb->fwnode)
670
irq_domain_free_fwnode(phb->fwnode);
671
}
672
673
static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev)
674
{
675
/* No LSI -> leave MSIs (if any) configured */
676
if (!pdev->irq) {
677
dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n");
678
return;
679
}
680
681
/* No MSI -> MSIs can't have been assigned by fw, leave LSI */
682
if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) {
683
dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n");
684
return;
685
}
686
687
dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n");
688
rtas_disable_msi(pdev);
689
}
690
691
static int rtas_msi_init(void)
692
{
693
query_token = rtas_function_token(RTAS_FN_IBM_QUERY_INTERRUPT_SOURCE_NUMBER);
694
change_token = rtas_function_token(RTAS_FN_IBM_CHANGE_MSI);
695
696
if ((query_token == RTAS_UNKNOWN_SERVICE) ||
697
(change_token == RTAS_UNKNOWN_SERVICE)) {
698
pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n");
699
return -1;
700
}
701
702
pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n");
703
704
WARN_ON(ppc_md.pci_irq_fixup);
705
ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup;
706
707
return 0;
708
}
709
machine_arch_initcall(pseries, rtas_msi_init);
710
711