Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/msi.c
51481 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Copyright 2006 Jake Moilanen <[email protected]>, IBM Corp.
4
* Copyright 2006-2007 Michael Ellerman, IBM Corp.
5
*/
6
7
#include <linux/crash_dump.h>
8
#include <linux/device.h>
9
#include <linux/irq.h>
10
#include <linux/irqchip/irq-msi-lib.h>
11
#include <linux/irqdomain.h>
12
#include <linux/msi.h>
13
#include <linux/seq_file.h>
14
15
#include <asm/rtas.h>
16
#include <asm/hw_irq.h>
17
#include <asm/ppc-pci.h>
18
#include <asm/machdep.h>
19
20
#include "pseries.h"
21
22
struct pseries_msi_device {
23
unsigned int msi_quota;
24
unsigned int msi_used;
25
};
26
27
static int query_token, change_token;
28
29
#define RTAS_QUERY_FN 0
30
#define RTAS_CHANGE_FN 1
31
#define RTAS_RESET_FN 2
32
#define RTAS_CHANGE_MSI_FN 3
33
#define RTAS_CHANGE_MSIX_FN 4
34
#define RTAS_CHANGE_32MSI_FN 5
35
#define RTAS_CHANGE_32MSIX_FN 6
36
37
/* RTAS Helpers */
38
39
static int rtas_change_msi(struct pci_dn *pdn, u32 func, u32 num_irqs)
40
{
41
u32 addr, seq_num, rtas_ret[3];
42
unsigned long buid;
43
int rc;
44
45
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
46
buid = pdn->phb->buid;
47
48
seq_num = 1;
49
do {
50
if (func == RTAS_CHANGE_MSI_FN || func == RTAS_CHANGE_MSIX_FN ||
51
func == RTAS_CHANGE_32MSI_FN || func == RTAS_CHANGE_32MSIX_FN)
52
rc = rtas_call(change_token, 6, 4, rtas_ret, addr,
53
BUID_HI(buid), BUID_LO(buid),
54
func, num_irqs, seq_num);
55
else
56
rc = rtas_call(change_token, 6, 3, rtas_ret, addr,
57
BUID_HI(buid), BUID_LO(buid),
58
func, num_irqs, seq_num);
59
60
seq_num = rtas_ret[1];
61
} while (rtas_busy_delay(rc));
62
63
/*
64
* If the RTAS call succeeded, return the number of irqs allocated.
65
* If not, make sure we return a negative error code.
66
*/
67
if (rc == 0)
68
rc = rtas_ret[0];
69
else if (rc > 0)
70
rc = -rc;
71
72
pr_debug("rtas_msi: ibm,change_msi(func=%d,num=%d), got %d rc = %d\n",
73
func, num_irqs, rtas_ret[0], rc);
74
75
return rc;
76
}
77
78
static void rtas_disable_msi(struct pci_dev *pdev)
79
{
80
struct pci_dn *pdn;
81
82
pdn = pci_get_pdn(pdev);
83
if (!pdn)
84
return;
85
86
/*
87
* disabling MSI with the explicit interface also disables MSI-X
88
*/
89
if (rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, 0) != 0) {
90
/*
91
* may have failed because explicit interface is not
92
* present
93
*/
94
if (rtas_change_msi(pdn, RTAS_CHANGE_FN, 0) != 0) {
95
pr_debug("rtas_msi: Setting MSIs to 0 failed!\n");
96
}
97
}
98
}
99
100
static int rtas_query_irq_number(struct pci_dn *pdn, int offset)
101
{
102
u32 addr, rtas_ret[2];
103
unsigned long buid;
104
int rc;
105
106
addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
107
buid = pdn->phb->buid;
108
109
do {
110
rc = rtas_call(query_token, 4, 3, rtas_ret, addr,
111
BUID_HI(buid), BUID_LO(buid), offset);
112
} while (rtas_busy_delay(rc));
113
114
if (rc) {
115
pr_debug("rtas_msi: error (%d) querying source number\n", rc);
116
return rc;
117
}
118
119
return rtas_ret[0];
120
}
121
122
static int check_req(struct pci_dev *pdev, int nvec, char *prop_name)
123
{
124
struct device_node *dn;
125
const __be32 *p;
126
u32 req_msi;
127
128
dn = pci_device_to_OF_node(pdev);
129
130
p = of_get_property(dn, prop_name, NULL);
131
if (!p) {
132
pr_debug("rtas_msi: No %s on %pOF\n", prop_name, dn);
133
return -ENOENT;
134
}
135
136
req_msi = be32_to_cpup(p);
137
if (req_msi < nvec) {
138
pr_debug("rtas_msi: %s requests < %d MSIs\n", prop_name, nvec);
139
140
if (req_msi == 0) /* Be paranoid */
141
return -ENOSPC;
142
143
return req_msi;
144
}
145
146
return 0;
147
}
148
149
static int check_req_msi(struct pci_dev *pdev, int nvec)
150
{
151
return check_req(pdev, nvec, "ibm,req#msi");
152
}
153
154
static int check_req_msix(struct pci_dev *pdev, int nvec)
155
{
156
return check_req(pdev, nvec, "ibm,req#msi-x");
157
}
158
159
/* Quota calculation */
160
161
static struct device_node *__find_pe_total_msi(struct device_node *node, int *total)
162
{
163
struct device_node *dn;
164
const __be32 *p;
165
166
dn = of_node_get(node);
167
while (dn) {
168
p = of_get_property(dn, "ibm,pe-total-#msi", NULL);
169
if (p) {
170
pr_debug("rtas_msi: found prop on dn %pOF\n",
171
dn);
172
*total = be32_to_cpup(p);
173
return dn;
174
}
175
176
dn = of_get_next_parent(dn);
177
}
178
179
return NULL;
180
}
181
182
static struct device_node *find_pe_total_msi(struct pci_dev *dev, int *total)
183
{
184
return __find_pe_total_msi(pci_device_to_OF_node(dev), total);
185
}
186
187
static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
188
{
189
struct device_node *dn;
190
struct eeh_dev *edev;
191
192
/* Found our PE and assume 8 at that point. */
193
194
dn = pci_device_to_OF_node(dev);
195
if (!dn)
196
return NULL;
197
198
/* Get the top level device in the PE */
199
edev = pdn_to_eeh_dev(PCI_DN(dn));
200
if (edev->pe)
201
edev = list_first_entry(&edev->pe->edevs, struct eeh_dev,
202
entry);
203
dn = pci_device_to_OF_node(edev->pdev);
204
if (!dn)
205
return NULL;
206
207
/* We actually want the parent */
208
dn = of_get_parent(dn);
209
if (!dn)
210
return NULL;
211
212
/* Hardcode of 8 for old firmwares */
213
*total = 8;
214
pr_debug("rtas_msi: using PE dn %pOF\n", dn);
215
216
return dn;
217
}
218
219
struct msi_counts {
220
struct device_node *requestor;
221
int num_devices;
222
int request;
223
int quota;
224
int spare;
225
int over_quota;
226
};
227
228
static void *count_non_bridge_devices(struct device_node *dn, void *data)
229
{
230
struct msi_counts *counts = data;
231
const __be32 *p;
232
u32 class;
233
234
pr_debug("rtas_msi: counting %pOF\n", dn);
235
236
p = of_get_property(dn, "class-code", NULL);
237
class = p ? be32_to_cpup(p) : 0;
238
239
if ((class >> 8) != PCI_CLASS_BRIDGE_PCI)
240
counts->num_devices++;
241
242
return NULL;
243
}
244
245
static void *count_spare_msis(struct device_node *dn, void *data)
246
{
247
struct msi_counts *counts = data;
248
const __be32 *p;
249
int req;
250
251
if (dn == counts->requestor)
252
req = counts->request;
253
else {
254
/* We don't know if a driver will try to use MSI or MSI-X,
255
* so we just have to punt and use the larger of the two. */
256
req = 0;
257
p = of_get_property(dn, "ibm,req#msi", NULL);
258
if (p)
259
req = be32_to_cpup(p);
260
261
p = of_get_property(dn, "ibm,req#msi-x", NULL);
262
if (p)
263
req = max(req, (int)be32_to_cpup(p));
264
}
265
266
if (req < counts->quota)
267
counts->spare += counts->quota - req;
268
else if (req > counts->quota)
269
counts->over_quota++;
270
271
return NULL;
272
}
273
274
static int msi_quota_for_device(struct pci_dev *dev, int request)
275
{
276
struct device_node *pe_dn;
277
struct msi_counts counts;
278
int total;
279
280
pr_debug("rtas_msi: calc quota for %s, request %d\n", pci_name(dev),
281
request);
282
283
pe_dn = find_pe_total_msi(dev, &total);
284
if (!pe_dn)
285
pe_dn = find_pe_dn(dev, &total);
286
287
if (!pe_dn) {
288
pr_err("rtas_msi: couldn't find PE for %s\n", pci_name(dev));
289
goto out;
290
}
291
292
pr_debug("rtas_msi: found PE %pOF\n", pe_dn);
293
294
memset(&counts, 0, sizeof(struct msi_counts));
295
296
/* Work out how many devices we have below this PE */
297
pci_traverse_device_nodes(pe_dn, count_non_bridge_devices, &counts);
298
299
if (counts.num_devices == 0) {
300
pr_err("rtas_msi: found 0 devices under PE for %s\n",
301
pci_name(dev));
302
goto out;
303
}
304
305
counts.quota = total / counts.num_devices;
306
if (request <= counts.quota)
307
goto out;
308
309
/* else, we have some more calculating to do */
310
counts.requestor = pci_device_to_OF_node(dev);
311
counts.request = request;
312
pci_traverse_device_nodes(pe_dn, count_spare_msis, &counts);
313
314
/* If the quota isn't an integer multiple of the total, we can
315
* use the remainder as spare MSIs for anyone that wants them. */
316
counts.spare += total % counts.num_devices;
317
318
/* Divide any spare by the number of over-quota requestors */
319
if (counts.over_quota)
320
counts.quota += counts.spare / counts.over_quota;
321
322
/* And finally clamp the request to the possibly adjusted quota */
323
request = min(counts.quota, request);
324
325
pr_debug("rtas_msi: request clamped to quota %d\n", request);
326
out:
327
of_node_put(pe_dn);
328
329
return request;
330
}
331
332
static void rtas_hack_32bit_msi_gen2(struct pci_dev *pdev)
333
{
334
u32 addr_hi, addr_lo;
335
336
/*
337
* We should only get in here for IODA1 configs. This is based on the
338
* fact that we using RTAS for MSIs, we don't have the 32 bit MSI RTAS
339
* support, and we are in a PCIe Gen2 slot.
340
*/
341
dev_info(&pdev->dev,
342
"rtas_msi: No 32 bit MSI firmware support, forcing 32 bit MSI\n");
343
pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, &addr_hi);
344
addr_lo = 0xffff0000 | ((addr_hi >> (48 - 32)) << 4);
345
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_LO, addr_lo);
346
pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_ADDRESS_HI, 0);
347
}
348
349
static int rtas_prepare_msi_irqs(struct pci_dev *pdev, int nvec_in, int type,
350
msi_alloc_info_t *arg)
351
{
352
struct pci_dn *pdn;
353
int quota, rc;
354
int nvec = nvec_in;
355
int use_32bit_msi_hack = 0;
356
357
if (type == PCI_CAP_ID_MSIX)
358
rc = check_req_msix(pdev, nvec);
359
else
360
rc = check_req_msi(pdev, nvec);
361
362
if (rc)
363
return rc;
364
365
quota = msi_quota_for_device(pdev, nvec);
366
367
if (quota && quota < nvec)
368
return quota;
369
370
/*
371
* Firmware currently refuse any non power of two allocation
372
* so we round up if the quota will allow it.
373
*/
374
if (type == PCI_CAP_ID_MSIX) {
375
int m = roundup_pow_of_two(nvec);
376
quota = msi_quota_for_device(pdev, m);
377
378
if (quota >= m)
379
nvec = m;
380
}
381
382
pdn = pci_get_pdn(pdev);
383
384
/*
385
* Try the new more explicit firmware interface, if that fails fall
386
* back to the old interface. The old interface is known to never
387
* return MSI-Xs.
388
*/
389
again:
390
if (type == PCI_CAP_ID_MSI) {
391
if (pdev->msi_addr_mask < DMA_BIT_MASK(64)) {
392
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSI_FN, nvec);
393
if (rc < 0) {
394
/*
395
* We only want to run the 32 bit MSI hack below if
396
* the max bus speed is Gen2 speed
397
*/
398
if (pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT)
399
return rc;
400
401
use_32bit_msi_hack = 1;
402
}
403
} else
404
rc = -1;
405
406
if (rc < 0)
407
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSI_FN, nvec);
408
409
if (rc < 0) {
410
pr_debug("rtas_msi: trying the old firmware call.\n");
411
rc = rtas_change_msi(pdn, RTAS_CHANGE_FN, nvec);
412
}
413
414
if (use_32bit_msi_hack && rc > 0)
415
rtas_hack_32bit_msi_gen2(pdev);
416
} else {
417
if (pdev->msi_addr_mask < DMA_BIT_MASK(64))
418
rc = rtas_change_msi(pdn, RTAS_CHANGE_32MSIX_FN, nvec);
419
else
420
rc = rtas_change_msi(pdn, RTAS_CHANGE_MSIX_FN, nvec);
421
}
422
423
if (rc != nvec) {
424
if (nvec != nvec_in) {
425
nvec = nvec_in;
426
goto again;
427
}
428
pr_debug("rtas_msi: rtas_change_msi() failed\n");
429
return rc;
430
}
431
432
return 0;
433
}
434
435
static int pseries_msi_ops_prepare(struct irq_domain *domain, struct device *dev,
436
int nvec, msi_alloc_info_t *arg)
437
{
438
struct msi_domain_info *info = domain->host_data;
439
struct pci_dev *pdev = to_pci_dev(dev);
440
int type = (info->flags & MSI_FLAG_PCI_MSIX) ? PCI_CAP_ID_MSIX : PCI_CAP_ID_MSI;
441
int ret;
442
443
struct pseries_msi_device *pseries_dev __free(kfree)
444
= kmalloc(sizeof(*pseries_dev), GFP_KERNEL);
445
if (!pseries_dev)
446
return -ENOMEM;
447
448
while (1) {
449
ret = rtas_prepare_msi_irqs(pdev, nvec, type, arg);
450
if (!ret)
451
break;
452
else if (ret > 0)
453
nvec = ret;
454
else
455
return ret;
456
}
457
458
pseries_dev->msi_quota = nvec;
459
pseries_dev->msi_used = 0;
460
461
arg->scratchpad[0].ptr = no_free_ptr(pseries_dev);
462
return 0;
463
}
464
465
/*
466
* RTAS can not disable one MSI at a time. It's all or nothing. Do it
467
* at the end after all IRQs have been freed.
468
*/
469
static void pseries_msi_ops_teardown(struct irq_domain *domain, msi_alloc_info_t *arg)
470
{
471
struct pseries_msi_device *pseries_dev = arg->scratchpad[0].ptr;
472
struct pci_dev *pdev = to_pci_dev(domain->dev);
473
474
rtas_disable_msi(pdev);
475
476
WARN_ON(pseries_dev->msi_used);
477
kfree(pseries_dev);
478
}
479
480
static void pseries_msi_shutdown(struct irq_data *d)
481
{
482
d = d->parent_data;
483
if (d->chip->irq_shutdown)
484
d->chip->irq_shutdown(d);
485
}
486
487
static void pseries_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
488
{
489
struct msi_desc *entry = irq_data_get_msi_desc(data);
490
491
/*
492
* Do not update the MSIx vector table. It's not strictly necessary
493
* because the table is initialized by the underlying hypervisor, PowerVM
494
* or QEMU/KVM. However, if the MSIx vector entry is cleared, any further
495
* activation will fail. This can happen in some drivers (eg. IPR) which
496
* deactivate an IRQ used for testing MSI support.
497
*/
498
entry->msg = *msg;
499
}
500
501
static bool pseries_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
502
struct irq_domain *real_parent, struct msi_domain_info *info)
503
{
504
struct irq_chip *chip = info->chip;
505
506
if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
507
return false;
508
509
chip->irq_shutdown = pseries_msi_shutdown;
510
chip->irq_write_msi_msg = pseries_msi_write_msg;
511
512
info->ops->msi_prepare = pseries_msi_ops_prepare;
513
info->ops->msi_teardown = pseries_msi_ops_teardown;
514
515
return true;
516
}
517
518
#define PSERIES_PCI_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \
519
MSI_FLAG_USE_DEF_CHIP_OPS | \
520
MSI_FLAG_PCI_MSI_MASK_PARENT)
521
#define PSERIES_PCI_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK | \
522
MSI_FLAG_PCI_MSIX | \
523
MSI_FLAG_MSIX_CONTIGUOUS | \
524
MSI_FLAG_MULTI_PCI_MSI)
525
526
static const struct msi_parent_ops pseries_msi_parent_ops = {
527
.required_flags = PSERIES_PCI_MSI_FLAGS_REQUIRED,
528
.supported_flags = PSERIES_PCI_MSI_FLAGS_SUPPORTED,
529
.chip_flags = MSI_CHIP_FLAG_SET_EOI,
530
.bus_select_token = DOMAIN_BUS_NEXUS,
531
.bus_select_mask = MATCH_PCI_MSI,
532
.prefix = "pSeries-",
533
.init_dev_msi_info = pseries_init_dev_msi_info,
534
};
535
536
static void pseries_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
537
{
538
struct pci_dev *dev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
539
540
if (dev->current_state == PCI_D0)
541
__pci_read_msi_msg(irq_data_get_msi_desc(data), msg);
542
else
543
get_cached_msi_msg(data->irq, msg);
544
}
545
546
static struct irq_chip pseries_msi_irq_chip = {
547
.name = "pSeries-MSI",
548
.irq_shutdown = pseries_msi_shutdown,
549
.irq_mask = irq_chip_mask_parent,
550
.irq_unmask = irq_chip_unmask_parent,
551
.irq_eoi = irq_chip_eoi_parent,
552
.irq_set_affinity = irq_chip_set_affinity_parent,
553
.irq_compose_msi_msg = pseries_msi_compose_msg,
554
};
555
556
static int pseries_irq_parent_domain_alloc(struct irq_domain *domain, unsigned int virq,
557
irq_hw_number_t hwirq)
558
{
559
struct irq_fwspec parent_fwspec;
560
int ret;
561
562
parent_fwspec.fwnode = domain->parent->fwnode;
563
parent_fwspec.param_count = 2;
564
parent_fwspec.param[0] = hwirq;
565
parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
566
567
ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
568
if (ret)
569
return ret;
570
571
return 0;
572
}
573
574
static int pseries_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
575
unsigned int nr_irqs, void *arg)
576
{
577
struct pci_controller *phb = domain->host_data;
578
struct pseries_msi_device *pseries_dev;
579
msi_alloc_info_t *info = arg;
580
struct msi_desc *desc = info->desc;
581
struct pci_dev *pdev = msi_desc_to_pci_dev(desc);
582
int hwirq;
583
int i, ret;
584
585
pseries_dev = info->scratchpad[0].ptr;
586
587
if (pseries_dev->msi_used + nr_irqs > pseries_dev->msi_quota)
588
return -ENOSPC;
589
590
hwirq = rtas_query_irq_number(pci_get_pdn(pdev), desc->msi_index);
591
if (hwirq < 0) {
592
dev_err(&pdev->dev, "Failed to query HW IRQ: %d\n", hwirq);
593
return hwirq;
594
}
595
596
dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
597
phb->dn, virq, hwirq, nr_irqs);
598
599
for (i = 0; i < nr_irqs; i++) {
600
ret = pseries_irq_parent_domain_alloc(domain, virq + i, hwirq + i);
601
if (ret)
602
goto out;
603
604
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
605
&pseries_msi_irq_chip, pseries_dev);
606
}
607
608
pseries_dev->msi_used++;
609
return 0;
610
611
out:
612
/* TODO: handle RTAS cleanup in ->msi_finish() ? */
613
irq_domain_free_irqs_parent(domain, virq, i);
614
return ret;
615
}
616
617
static void pseries_irq_domain_free(struct irq_domain *domain, unsigned int virq,
618
unsigned int nr_irqs)
619
{
620
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
621
struct pseries_msi_device *pseries_dev = irq_data_get_irq_chip_data(d);
622
struct pci_controller *phb = domain->host_data;
623
624
pr_debug("%s bridge %pOF %d #%d\n", __func__, phb->dn, virq, nr_irqs);
625
pseries_dev->msi_used -= nr_irqs;
626
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
627
}
628
629
static const struct irq_domain_ops pseries_irq_domain_ops = {
630
.select = msi_lib_irq_domain_select,
631
.alloc = pseries_irq_domain_alloc,
632
.free = pseries_irq_domain_free,
633
};
634
635
static int __pseries_msi_allocate_domains(struct pci_controller *phb,
636
unsigned int count)
637
{
638
struct irq_domain *parent = irq_get_default_domain();
639
struct irq_domain_info info = {
640
.fwnode = of_fwnode_handle(phb->dn),
641
.ops = &pseries_irq_domain_ops,
642
.host_data = phb,
643
.size = count,
644
.parent = parent,
645
};
646
647
phb->dev_domain = msi_create_parent_irq_domain(&info, &pseries_msi_parent_ops);
648
if (!phb->dev_domain) {
649
pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
650
phb->dn, phb->global_number);
651
return -ENOMEM;
652
}
653
654
return 0;
655
}
656
657
int pseries_msi_allocate_domains(struct pci_controller *phb)
658
{
659
int count;
660
661
if (!__find_pe_total_msi(phb->dn, &count)) {
662
pr_err("PCI: failed to find MSIs for bridge %pOF (domain %d)\n",
663
phb->dn, phb->global_number);
664
return -ENOSPC;
665
}
666
667
return __pseries_msi_allocate_domains(phb, count);
668
}
669
670
void pseries_msi_free_domains(struct pci_controller *phb)
671
{
672
if (phb->dev_domain)
673
irq_domain_remove(phb->dev_domain);
674
}
675
676
static void rtas_msi_pci_irq_fixup(struct pci_dev *pdev)
677
{
678
/* No LSI -> leave MSIs (if any) configured */
679
if (!pdev->irq) {
680
dev_dbg(&pdev->dev, "rtas_msi: no LSI, nothing to do.\n");
681
return;
682
}
683
684
/* No MSI -> MSIs can't have been assigned by fw, leave LSI */
685
if (check_req_msi(pdev, 1) && check_req_msix(pdev, 1)) {
686
dev_dbg(&pdev->dev, "rtas_msi: no req#msi/x, nothing to do.\n");
687
return;
688
}
689
690
dev_dbg(&pdev->dev, "rtas_msi: disabling existing MSI.\n");
691
rtas_disable_msi(pdev);
692
}
693
694
static int rtas_msi_init(void)
695
{
696
query_token = rtas_function_token(RTAS_FN_IBM_QUERY_INTERRUPT_SOURCE_NUMBER);
697
change_token = rtas_function_token(RTAS_FN_IBM_CHANGE_MSI);
698
699
if ((query_token == RTAS_UNKNOWN_SERVICE) ||
700
(change_token == RTAS_UNKNOWN_SERVICE)) {
701
pr_debug("rtas_msi: no RTAS tokens, no MSI support.\n");
702
return -1;
703
}
704
705
pr_debug("rtas_msi: Registering RTAS MSI callbacks.\n");
706
707
WARN_ON(ppc_md.pci_irq_fixup);
708
ppc_md.pci_irq_fixup = rtas_msi_pci_irq_fixup;
709
710
return 0;
711
}
712
machine_arch_initcall(pseries, rtas_msi_init);
713
714