Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/platforms/pseries/ras.c
26481 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright (C) 2001 Dave Engebretsen IBM Corporation
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/interrupt.h>
8
#include <linux/irq.h>
9
#include <linux/of.h>
10
#include <linux/fs.h>
11
#include <linux/reboot.h>
12
#include <linux/irq_work.h>
13
14
#include <asm/machdep.h>
15
#include <asm/rtas.h>
16
#include <asm/firmware.h>
17
#include <asm/mce.h>
18
19
#include "pseries.h"
20
21
static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22
static DEFINE_SPINLOCK(ras_log_buf_lock);
23
24
static int ras_check_exception_token;
25
26
#define EPOW_SENSOR_TOKEN 9
27
#define EPOW_SENSOR_INDEX 0
28
29
/* EPOW events counter variable */
30
static int num_epow_events;
31
32
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
33
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
34
static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
35
36
/* RTAS pseries MCE errorlog section. */
37
struct pseries_mc_errorlog {
38
__be32 fru_id;
39
__be32 proc_id;
40
u8 error_type;
41
/*
42
* sub_err_type (1 byte). Bit fields depends on error_type
43
*
44
* MSB0
45
* |
46
* V
47
* 01234567
48
* XXXXXXXX
49
*
50
* For error_type == MC_ERROR_TYPE_UE
51
* XXXXXXXX
52
* X 1: Permanent or Transient UE.
53
* X 1: Effective address provided.
54
* X 1: Logical address provided.
55
* XX 2: Reserved.
56
* XXX 3: Type of UE error.
57
*
58
* For error_type == MC_ERROR_TYPE_SLB/ERAT/TLB
59
* XXXXXXXX
60
* X 1: Effective address provided.
61
* XXXXX 5: Reserved.
62
* XX 2: Type of SLB/ERAT/TLB error.
63
*
64
* For error_type == MC_ERROR_TYPE_CTRL_MEM_ACCESS
65
* XXXXXXXX
66
* X 1: Error causing address provided.
67
* XXX 3: Type of error.
68
* XXXX 4: Reserved.
69
*/
70
u8 sub_err_type;
71
u8 reserved_1[6];
72
__be64 effective_address;
73
__be64 logical_address;
74
} __packed;
75
76
/* RTAS pseries MCE error types */
77
#define MC_ERROR_TYPE_UE 0x00
78
#define MC_ERROR_TYPE_SLB 0x01
79
#define MC_ERROR_TYPE_ERAT 0x02
80
#define MC_ERROR_TYPE_UNKNOWN 0x03
81
#define MC_ERROR_TYPE_TLB 0x04
82
#define MC_ERROR_TYPE_D_CACHE 0x05
83
#define MC_ERROR_TYPE_I_CACHE 0x07
84
#define MC_ERROR_TYPE_CTRL_MEM_ACCESS 0x08
85
86
/* RTAS pseries MCE error sub types */
87
#define MC_ERROR_UE_INDETERMINATE 0
88
#define MC_ERROR_UE_IFETCH 1
89
#define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
90
#define MC_ERROR_UE_LOAD_STORE 3
91
#define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
92
93
#define UE_EFFECTIVE_ADDR_PROVIDED 0x40
94
#define UE_LOGICAL_ADDR_PROVIDED 0x20
95
#define MC_EFFECTIVE_ADDR_PROVIDED 0x80
96
97
#define MC_ERROR_SLB_PARITY 0
98
#define MC_ERROR_SLB_MULTIHIT 1
99
#define MC_ERROR_SLB_INDETERMINATE 2
100
101
#define MC_ERROR_ERAT_PARITY 1
102
#define MC_ERROR_ERAT_MULTIHIT 2
103
#define MC_ERROR_ERAT_INDETERMINATE 3
104
105
#define MC_ERROR_TLB_PARITY 1
106
#define MC_ERROR_TLB_MULTIHIT 2
107
#define MC_ERROR_TLB_INDETERMINATE 3
108
109
#define MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK 0
110
#define MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS 1
111
112
static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
113
{
114
switch (mlog->error_type) {
115
case MC_ERROR_TYPE_UE:
116
return (mlog->sub_err_type & 0x07);
117
case MC_ERROR_TYPE_SLB:
118
case MC_ERROR_TYPE_ERAT:
119
case MC_ERROR_TYPE_TLB:
120
return (mlog->sub_err_type & 0x03);
121
case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
122
return (mlog->sub_err_type & 0x70) >> 4;
123
default:
124
return 0;
125
}
126
}
127
128
/*
129
* Enable the hotplug interrupt late because processing them may touch other
130
* devices or systems (e.g. hugepages) that have not been initialized at the
131
* subsys stage.
132
*/
133
static int __init init_ras_hotplug_IRQ(void)
134
{
135
struct device_node *np;
136
137
/* Hotplug Events */
138
np = of_find_node_by_path("/event-sources/hot-plug-events");
139
if (np != NULL) {
140
if (dlpar_workqueue_init() == 0)
141
request_event_sources_irqs(np, ras_hotplug_interrupt,
142
"RAS_HOTPLUG");
143
of_node_put(np);
144
}
145
146
return 0;
147
}
148
machine_late_initcall(pseries, init_ras_hotplug_IRQ);
149
150
/*
151
* Initialize handlers for the set of interrupts caused by hardware errors
152
* and power system events.
153
*/
154
static int __init init_ras_IRQ(void)
155
{
156
struct device_node *np;
157
158
ras_check_exception_token = rtas_function_token(RTAS_FN_CHECK_EXCEPTION);
159
160
/* Internal Errors */
161
np = of_find_node_by_path("/event-sources/internal-errors");
162
if (np != NULL) {
163
request_event_sources_irqs(np, ras_error_interrupt,
164
"RAS_ERROR");
165
of_node_put(np);
166
}
167
168
/* EPOW Events */
169
np = of_find_node_by_path("/event-sources/epow-events");
170
if (np != NULL) {
171
request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
172
of_node_put(np);
173
}
174
175
return 0;
176
}
177
machine_subsys_initcall(pseries, init_ras_IRQ);
178
179
#define EPOW_SHUTDOWN_NORMAL 1
180
#define EPOW_SHUTDOWN_ON_UPS 2
181
#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
182
#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
183
184
static void handle_system_shutdown(char event_modifier)
185
{
186
switch (event_modifier) {
187
case EPOW_SHUTDOWN_NORMAL:
188
pr_emerg("Power off requested\n");
189
orderly_poweroff(true);
190
break;
191
192
case EPOW_SHUTDOWN_ON_UPS:
193
pr_emerg("Loss of system power detected. System is running on"
194
" UPS/battery. Check RTAS error log for details\n");
195
break;
196
197
case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
198
pr_emerg("Loss of system critical functions detected. Check"
199
" RTAS error log for details\n");
200
orderly_poweroff(true);
201
break;
202
203
case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
204
pr_emerg("High ambient temperature detected. Check RTAS"
205
" error log for details\n");
206
orderly_poweroff(true);
207
break;
208
209
default:
210
pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
211
event_modifier);
212
}
213
}
214
215
struct epow_errorlog {
216
unsigned char sensor_value;
217
unsigned char event_modifier;
218
unsigned char extended_modifier;
219
unsigned char reserved;
220
unsigned char platform_reason;
221
};
222
223
#define EPOW_RESET 0
224
#define EPOW_WARN_COOLING 1
225
#define EPOW_WARN_POWER 2
226
#define EPOW_SYSTEM_SHUTDOWN 3
227
#define EPOW_SYSTEM_HALT 4
228
#define EPOW_MAIN_ENCLOSURE 5
229
#define EPOW_POWER_OFF 7
230
231
static void rtas_parse_epow_errlog(struct rtas_error_log *log)
232
{
233
struct pseries_errorlog *pseries_log;
234
struct epow_errorlog *epow_log;
235
char action_code;
236
char modifier;
237
238
pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
239
if (pseries_log == NULL)
240
return;
241
242
epow_log = (struct epow_errorlog *)pseries_log->data;
243
action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
244
modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
245
246
switch (action_code) {
247
case EPOW_RESET:
248
if (num_epow_events) {
249
pr_info("Non critical power/cooling issue cleared\n");
250
num_epow_events--;
251
}
252
break;
253
254
case EPOW_WARN_COOLING:
255
pr_info("Non-critical cooling issue detected. Check RTAS error"
256
" log for details\n");
257
break;
258
259
case EPOW_WARN_POWER:
260
pr_info("Non-critical power issue detected. Check RTAS error"
261
" log for details\n");
262
break;
263
264
case EPOW_SYSTEM_SHUTDOWN:
265
handle_system_shutdown(modifier);
266
break;
267
268
case EPOW_SYSTEM_HALT:
269
pr_emerg("Critical power/cooling issue detected. Check RTAS"
270
" error log for details. Powering off.\n");
271
orderly_poweroff(true);
272
break;
273
274
case EPOW_MAIN_ENCLOSURE:
275
case EPOW_POWER_OFF:
276
pr_emerg("System about to lose power. Check RTAS error log "
277
" for details. Powering off immediately.\n");
278
emergency_sync();
279
kernel_power_off();
280
break;
281
282
default:
283
pr_err("Unknown power/cooling event (action code = %d)\n",
284
action_code);
285
}
286
287
/* Increment epow events counter variable */
288
if (action_code != EPOW_RESET)
289
num_epow_events++;
290
}
291
292
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
293
{
294
struct pseries_errorlog *pseries_log;
295
struct pseries_hp_errorlog *hp_elog;
296
297
spin_lock(&ras_log_buf_lock);
298
299
rtas_call(ras_check_exception_token, 6, 1, NULL,
300
RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
301
RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
302
rtas_get_error_log_max());
303
304
pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
305
PSERIES_ELOG_SECT_ID_HOTPLUG);
306
hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
307
308
/*
309
* Since PCI hotplug is not currently supported on pseries, put PCI
310
* hotplug events on the ras_log_buf to be handled by rtas_errd.
311
*/
312
if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
313
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
314
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
315
queue_hotplug_event(hp_elog);
316
else
317
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
318
319
spin_unlock(&ras_log_buf_lock);
320
return IRQ_HANDLED;
321
}
322
323
/* Handle environmental and power warning (EPOW) interrupts. */
324
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
325
{
326
int state;
327
int critical;
328
329
rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
330
331
if (state > 3)
332
critical = 1; /* Time Critical */
333
else
334
critical = 0;
335
336
spin_lock(&ras_log_buf_lock);
337
338
rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
339
virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
340
rtas_get_error_log_max());
341
342
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
343
344
rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
345
346
spin_unlock(&ras_log_buf_lock);
347
return IRQ_HANDLED;
348
}
349
350
/*
351
* Handle hardware error interrupts.
352
*
353
* RTAS check-exception is called to collect data on the exception. If
354
* the error is deemed recoverable, we log a warning and return.
355
* For nonrecoverable errors, an error is logged and we stop all processing
356
* as quickly as possible in order to prevent propagation of the failure.
357
*/
358
static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
359
{
360
struct rtas_error_log *rtas_elog;
361
int status;
362
int fatal;
363
364
spin_lock(&ras_log_buf_lock);
365
366
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
367
RTAS_VECTOR_EXTERNAL_INTERRUPT,
368
virq_to_hw(irq),
369
RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
370
__pa(&ras_log_buf),
371
rtas_get_error_log_max());
372
373
rtas_elog = (struct rtas_error_log *)ras_log_buf;
374
375
if (status == 0 &&
376
rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
377
fatal = 1;
378
else
379
fatal = 0;
380
381
/* format and print the extended information */
382
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
383
384
if (fatal) {
385
pr_emerg("Fatal hardware error detected. Check RTAS error"
386
" log for details. Powering off immediately\n");
387
emergency_sync();
388
kernel_power_off();
389
} else {
390
pr_err("Recoverable hardware error detected\n");
391
}
392
393
spin_unlock(&ras_log_buf_lock);
394
return IRQ_HANDLED;
395
}
396
397
/*
398
* Some versions of FWNMI place the buffer inside the 4kB page starting at
399
* 0x7000. Other versions place it inside the rtas buffer. We check both.
400
* Minimum size of the buffer is 16 bytes.
401
*/
402
#define VALID_FWNMI_BUFFER(A) \
403
((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
404
(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
405
406
static inline struct rtas_error_log *fwnmi_get_errlog(void)
407
{
408
return (struct rtas_error_log *)local_paca->mce_data_buf;
409
}
410
411
static __be64 *fwnmi_get_savep(struct pt_regs *regs)
412
{
413
unsigned long savep_ra;
414
415
/* Mask top two bits */
416
savep_ra = regs->gpr[3] & ~(0x3UL << 62);
417
if (!VALID_FWNMI_BUFFER(savep_ra)) {
418
printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
419
return NULL;
420
}
421
422
return __va(savep_ra);
423
}
424
425
/*
426
* Get the error information for errors coming through the
427
* FWNMI vectors. The pt_regs' r3 will be updated to reflect
428
* the actual r3 if possible, and a ptr to the error log entry
429
* will be returned if found.
430
*
431
* Use one buffer mce_data_buf per cpu to store RTAS error.
432
*
433
* The mce_data_buf does not have any locks or protection around it,
434
* if a second machine check comes in, or a system reset is done
435
* before we have logged the error, then we will get corruption in the
436
* error log. This is preferable over holding off on calling
437
* ibm,nmi-interlock which would result in us checkstopping if a
438
* second machine check did come in.
439
*/
440
static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
441
{
442
struct rtas_error_log *h;
443
__be64 *savep;
444
445
savep = fwnmi_get_savep(regs);
446
if (!savep)
447
return NULL;
448
449
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
450
451
h = (struct rtas_error_log *)&savep[1];
452
/* Use the per cpu buffer from paca to store rtas error log */
453
memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
454
if (!rtas_error_extended(h)) {
455
memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
456
} else {
457
int len, error_log_length;
458
459
error_log_length = 8 + rtas_error_extended_log_length(h);
460
len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
461
memcpy(local_paca->mce_data_buf, h, len);
462
}
463
464
return (struct rtas_error_log *)local_paca->mce_data_buf;
465
}
466
467
/* Call this when done with the data returned by FWNMI_get_errinfo.
468
* It will release the saved data area for other CPUs in the
469
* partition to receive FWNMI errors.
470
*/
471
static void fwnmi_release_errinfo(void)
472
{
473
struct rtas_args rtas_args;
474
int ret;
475
476
/*
477
* On pseries, the machine check stack is limited to under 4GB, so
478
* args can be on-stack.
479
*/
480
rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
481
ret = be32_to_cpu(rtas_args.rets[0]);
482
if (ret != 0)
483
printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
484
}
485
486
int pSeries_system_reset_exception(struct pt_regs *regs)
487
{
488
#ifdef __LITTLE_ENDIAN__
489
/*
490
* Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
491
* to detect the bad SRR1 pattern here. Flip the NIP back to correct
492
* endian for reporting purposes. Unfortunately the MSR can't be fixed,
493
* so clear it. It will be missing MSR_RI so we won't try to recover.
494
*/
495
if ((be64_to_cpu(regs->msr) &
496
(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
497
MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
498
regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
499
regs_set_return_msr(regs, 0);
500
}
501
#endif
502
503
if (fwnmi_active) {
504
__be64 *savep;
505
506
/*
507
* Firmware (PowerVM and KVM) saves r3 to a save area like
508
* machine check, which is not exactly what PAPR (2.9)
509
* suggests but there is no way to detect otherwise, so this
510
* is the interface now.
511
*
512
* System resets do not save any error log or require an
513
* "ibm,nmi-interlock" rtas call to release.
514
*/
515
516
savep = fwnmi_get_savep(regs);
517
if (savep)
518
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
519
}
520
521
if (smp_handle_nmi_ipi(regs))
522
return 1;
523
524
return 0; /* need to perform reset */
525
}
526
527
static int mce_handle_err_realmode(int disposition, u8 error_type)
528
{
529
#ifdef CONFIG_PPC_BOOK3S_64
530
if (disposition == RTAS_DISP_NOT_RECOVERED) {
531
switch (error_type) {
532
case MC_ERROR_TYPE_ERAT:
533
flush_erat();
534
disposition = RTAS_DISP_FULLY_RECOVERED;
535
break;
536
case MC_ERROR_TYPE_SLB:
537
#ifdef CONFIG_PPC_64S_HASH_MMU
538
/*
539
* Store the old slb content in paca before flushing.
540
* Print this when we go to virtual mode.
541
* There are chances that we may hit MCE again if there
542
* is a parity error on the SLB entry we trying to read
543
* for saving. Hence limit the slb saving to single
544
* level of recursion.
545
*/
546
if (local_paca->in_mce == 1)
547
slb_save_contents(local_paca->mce_faulty_slbs);
548
flush_and_reload_slb();
549
disposition = RTAS_DISP_FULLY_RECOVERED;
550
#endif
551
break;
552
default:
553
break;
554
}
555
} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
556
/* Platform corrected itself but could be degraded */
557
pr_err("MCE: limited recovery, system may be degraded\n");
558
disposition = RTAS_DISP_FULLY_RECOVERED;
559
}
560
#endif
561
return disposition;
562
}
563
564
static int mce_handle_err_virtmode(struct pt_regs *regs,
565
struct rtas_error_log *errp,
566
struct pseries_mc_errorlog *mce_log,
567
int disposition)
568
{
569
struct mce_error_info mce_err = { 0 };
570
int initiator = rtas_error_initiator(errp);
571
int severity = rtas_error_severity(errp);
572
unsigned long eaddr = 0, paddr = 0;
573
u8 error_type, err_sub_type;
574
575
if (!mce_log)
576
goto out;
577
578
error_type = mce_log->error_type;
579
err_sub_type = rtas_mc_error_sub_type(mce_log);
580
581
if (initiator == RTAS_INITIATOR_UNKNOWN)
582
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
583
else if (initiator == RTAS_INITIATOR_CPU)
584
mce_err.initiator = MCE_INITIATOR_CPU;
585
else if (initiator == RTAS_INITIATOR_PCI)
586
mce_err.initiator = MCE_INITIATOR_PCI;
587
else if (initiator == RTAS_INITIATOR_ISA)
588
mce_err.initiator = MCE_INITIATOR_ISA;
589
else if (initiator == RTAS_INITIATOR_MEMORY)
590
mce_err.initiator = MCE_INITIATOR_MEMORY;
591
else if (initiator == RTAS_INITIATOR_POWERMGM)
592
mce_err.initiator = MCE_INITIATOR_POWERMGM;
593
else
594
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
595
596
if (severity == RTAS_SEVERITY_NO_ERROR)
597
mce_err.severity = MCE_SEV_NO_ERROR;
598
else if (severity == RTAS_SEVERITY_EVENT)
599
mce_err.severity = MCE_SEV_WARNING;
600
else if (severity == RTAS_SEVERITY_WARNING)
601
mce_err.severity = MCE_SEV_WARNING;
602
else if (severity == RTAS_SEVERITY_ERROR_SYNC)
603
mce_err.severity = MCE_SEV_SEVERE;
604
else if (severity == RTAS_SEVERITY_ERROR)
605
mce_err.severity = MCE_SEV_SEVERE;
606
else
607
mce_err.severity = MCE_SEV_FATAL;
608
609
if (severity <= RTAS_SEVERITY_ERROR_SYNC)
610
mce_err.sync_error = true;
611
else
612
mce_err.sync_error = false;
613
614
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
615
mce_err.error_class = MCE_ECLASS_UNKNOWN;
616
617
switch (error_type) {
618
case MC_ERROR_TYPE_UE:
619
mce_err.error_type = MCE_ERROR_TYPE_UE;
620
mce_common_process_ue(regs, &mce_err);
621
if (mce_err.ignore_event)
622
disposition = RTAS_DISP_FULLY_RECOVERED;
623
switch (err_sub_type) {
624
case MC_ERROR_UE_IFETCH:
625
mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
626
break;
627
case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
628
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
629
break;
630
case MC_ERROR_UE_LOAD_STORE:
631
mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
632
break;
633
case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
634
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
635
break;
636
case MC_ERROR_UE_INDETERMINATE:
637
default:
638
mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
639
break;
640
}
641
if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
642
eaddr = be64_to_cpu(mce_log->effective_address);
643
644
if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
645
paddr = be64_to_cpu(mce_log->logical_address);
646
} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
647
unsigned long pfn;
648
649
pfn = addr_to_pfn(regs, eaddr);
650
if (pfn != ULONG_MAX)
651
paddr = pfn << PAGE_SHIFT;
652
}
653
654
break;
655
case MC_ERROR_TYPE_SLB:
656
mce_err.error_type = MCE_ERROR_TYPE_SLB;
657
switch (err_sub_type) {
658
case MC_ERROR_SLB_PARITY:
659
mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
660
break;
661
case MC_ERROR_SLB_MULTIHIT:
662
mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
663
break;
664
case MC_ERROR_SLB_INDETERMINATE:
665
default:
666
mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
667
break;
668
}
669
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
670
eaddr = be64_to_cpu(mce_log->effective_address);
671
break;
672
case MC_ERROR_TYPE_ERAT:
673
mce_err.error_type = MCE_ERROR_TYPE_ERAT;
674
switch (err_sub_type) {
675
case MC_ERROR_ERAT_PARITY:
676
mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
677
break;
678
case MC_ERROR_ERAT_MULTIHIT:
679
mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
680
break;
681
case MC_ERROR_ERAT_INDETERMINATE:
682
default:
683
mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
684
break;
685
}
686
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
687
eaddr = be64_to_cpu(mce_log->effective_address);
688
break;
689
case MC_ERROR_TYPE_TLB:
690
mce_err.error_type = MCE_ERROR_TYPE_TLB;
691
switch (err_sub_type) {
692
case MC_ERROR_TLB_PARITY:
693
mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
694
break;
695
case MC_ERROR_TLB_MULTIHIT:
696
mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
697
break;
698
case MC_ERROR_TLB_INDETERMINATE:
699
default:
700
mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
701
break;
702
}
703
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
704
eaddr = be64_to_cpu(mce_log->effective_address);
705
break;
706
case MC_ERROR_TYPE_D_CACHE:
707
mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
708
break;
709
case MC_ERROR_TYPE_I_CACHE:
710
mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
711
break;
712
case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
713
mce_err.error_type = MCE_ERROR_TYPE_RA;
714
switch (err_sub_type) {
715
case MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK:
716
mce_err.u.ra_error_type =
717
MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN;
718
break;
719
case MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS:
720
mce_err.u.ra_error_type =
721
MCE_RA_ERROR_LOAD_STORE_FOREIGN;
722
break;
723
}
724
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
725
eaddr = be64_to_cpu(mce_log->effective_address);
726
break;
727
case MC_ERROR_TYPE_UNKNOWN:
728
default:
729
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
730
break;
731
}
732
out:
733
save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
734
&mce_err, regs->nip, eaddr, paddr);
735
return disposition;
736
}
737
738
static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
739
{
740
struct pseries_errorlog *pseries_log;
741
struct pseries_mc_errorlog *mce_log = NULL;
742
int disposition = rtas_error_disposition(errp);
743
u8 error_type;
744
745
if (!rtas_error_extended(errp))
746
goto out;
747
748
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
749
if (!pseries_log)
750
goto out;
751
752
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
753
error_type = mce_log->error_type;
754
755
disposition = mce_handle_err_realmode(disposition, error_type);
756
out:
757
disposition = mce_handle_err_virtmode(regs, errp, mce_log,
758
disposition);
759
return disposition;
760
}
761
762
/*
763
* Process MCE rtas errlog event.
764
*/
765
void pSeries_machine_check_log_err(void)
766
{
767
struct rtas_error_log *err;
768
769
err = fwnmi_get_errlog();
770
log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
771
}
772
773
/*
774
* See if we can recover from a machine check exception.
775
* This is only called on power4 (or above) and only via
776
* the Firmware Non-Maskable Interrupts (fwnmi) handler
777
* which provides the error analysis for us.
778
*
779
* Return 1 if corrected (or delivered a signal).
780
* Return 0 if there is nothing we can do.
781
*/
782
static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
783
{
784
int recovered = 0;
785
786
if (regs_is_unrecoverable(regs)) {
787
/* If MSR_RI isn't set, we cannot recover */
788
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
789
recovered = 0;
790
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
791
/* Platform corrected itself */
792
recovered = 1;
793
} else if (evt->severity == MCE_SEV_FATAL) {
794
/* Fatal machine check */
795
pr_err("Machine check interrupt is fatal\n");
796
recovered = 0;
797
}
798
799
if (!recovered && evt->sync_error) {
800
/*
801
* Try to kill processes if we get a synchronous machine check
802
* (e.g., one caused by execution of this instruction). This
803
* will devolve into a panic if we try to kill init or are in
804
* an interrupt etc.
805
*
806
* TODO: Queue up this address for hwpoisioning later.
807
* TODO: This is not quite right for d-side machine
808
* checks ->nip is not necessarily the important
809
* address.
810
*/
811
if ((user_mode(regs))) {
812
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
813
recovered = 1;
814
} else if (die_will_crash()) {
815
/*
816
* die() would kill the kernel, so better to go via
817
* the platform reboot code that will log the
818
* machine check.
819
*/
820
recovered = 0;
821
} else {
822
die_mce("Machine check", regs, SIGBUS);
823
recovered = 1;
824
}
825
}
826
827
return recovered;
828
}
829
830
/*
831
* Handle a machine check.
832
*
833
* Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
834
* should be present. If so the handler which called us tells us if the
835
* error was recovered (never true if RI=0).
836
*
837
* On hardware prior to Power 4 these exceptions were asynchronous which
838
* means we can't tell exactly where it occurred and so we can't recover.
839
*/
840
int pSeries_machine_check_exception(struct pt_regs *regs)
841
{
842
struct machine_check_event evt;
843
844
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
845
return 0;
846
847
/* Print things out */
848
if (evt.version != MCE_V1) {
849
pr_err("Machine Check Exception, Unknown event version %d !\n",
850
evt.version);
851
return 0;
852
}
853
machine_check_print_event_info(&evt, user_mode(regs), false);
854
855
if (recover_mce(regs, &evt))
856
return 1;
857
858
return 0;
859
}
860
861
long pseries_machine_check_realmode(struct pt_regs *regs)
862
{
863
struct rtas_error_log *errp;
864
int disposition;
865
866
if (fwnmi_active) {
867
errp = fwnmi_get_errinfo(regs);
868
/*
869
* Call to fwnmi_release_errinfo() in real mode causes kernel
870
* to panic. Hence we will call it as soon as we go into
871
* virtual mode.
872
*/
873
disposition = mce_handle_error(regs, errp);
874
875
fwnmi_release_errinfo();
876
877
if (disposition == RTAS_DISP_FULLY_RECOVERED)
878
return 1;
879
}
880
881
return 0;
882
}
883
884