Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/sysdev/mpic_timer.c
26424 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* MPIC timer driver
4
*
5
* Copyright 2013 Freescale Semiconductor, Inc.
6
* Author: Dongsheng Wang <[email protected]>
7
* Li Yang <[email protected]>
8
*/
9
10
#include <linux/kernel.h>
11
#include <linux/init.h>
12
#include <linux/module.h>
13
#include <linux/errno.h>
14
#include <linux/mm.h>
15
#include <linux/interrupt.h>
16
#include <linux/slab.h>
17
#include <linux/of.h>
18
#include <linux/of_address.h>
19
#include <linux/of_irq.h>
20
#include <linux/syscore_ops.h>
21
#include <sysdev/fsl_soc.h>
22
#include <asm/io.h>
23
24
#include <asm/mpic_timer.h>
25
26
#define FSL_GLOBAL_TIMER 0x1
27
28
/* Clock Ratio
29
* Divide by 64 0x00000300
30
* Divide by 32 0x00000200
31
* Divide by 16 0x00000100
32
* Divide by 8 0x00000000 (Hardware default div)
33
*/
34
#define MPIC_TIMER_TCR_CLKDIV 0x00000300
35
36
#define MPIC_TIMER_TCR_ROVR_OFFSET 24
37
38
#define TIMER_STOP 0x80000000
39
#define GTCCR_TOG 0x80000000
40
#define TIMERS_PER_GROUP 4
41
#define MAX_TICKS (~0U >> 1)
42
#define MAX_TICKS_CASCADE (~0U)
43
#define TIMER_OFFSET(num) (1 << (TIMERS_PER_GROUP - 1 - num))
44
45
struct timer_regs {
46
u32 gtccr;
47
u32 res0[3];
48
u32 gtbcr;
49
u32 res1[3];
50
u32 gtvpr;
51
u32 res2[3];
52
u32 gtdr;
53
u32 res3[3];
54
};
55
56
struct cascade_priv {
57
u32 tcr_value; /* TCR register: CASC & ROVR value */
58
unsigned int cascade_map; /* cascade map */
59
unsigned int timer_num; /* cascade control timer */
60
};
61
62
struct timer_group_priv {
63
struct timer_regs __iomem *regs;
64
struct mpic_timer timer[TIMERS_PER_GROUP];
65
struct list_head node;
66
unsigned int timerfreq;
67
unsigned int idle;
68
unsigned int flags;
69
spinlock_t lock;
70
void __iomem *group_tcr;
71
};
72
73
static struct cascade_priv cascade_timer[] = {
74
/* cascade timer 0 and 1 */
75
{0x1, 0xc, 0x1},
76
/* cascade timer 1 and 2 */
77
{0x2, 0x6, 0x2},
78
/* cascade timer 2 and 3 */
79
{0x4, 0x3, 0x3}
80
};
81
82
static LIST_HEAD(timer_group_list);
83
84
static void convert_ticks_to_time(struct timer_group_priv *priv,
85
const u64 ticks, time64_t *time)
86
{
87
*time = (u64)div_u64(ticks, priv->timerfreq);
88
}
89
90
/* the time set by the user is converted to "ticks" */
91
static int convert_time_to_ticks(struct timer_group_priv *priv,
92
time64_t time, u64 *ticks)
93
{
94
u64 max_value; /* prevent u64 overflow */
95
96
max_value = div_u64(ULLONG_MAX, priv->timerfreq);
97
98
if (time > max_value)
99
return -EINVAL;
100
101
*ticks = (u64)time * (u64)priv->timerfreq;
102
103
return 0;
104
}
105
106
/* detect whether there is a cascade timer available */
107
static struct mpic_timer *detect_idle_cascade_timer(
108
struct timer_group_priv *priv)
109
{
110
struct cascade_priv *casc_priv;
111
unsigned int map;
112
unsigned int array_size = ARRAY_SIZE(cascade_timer);
113
unsigned int num;
114
unsigned int i;
115
unsigned long flags;
116
117
casc_priv = cascade_timer;
118
for (i = 0; i < array_size; i++) {
119
spin_lock_irqsave(&priv->lock, flags);
120
map = casc_priv->cascade_map & priv->idle;
121
if (map == casc_priv->cascade_map) {
122
num = casc_priv->timer_num;
123
priv->timer[num].cascade_handle = casc_priv;
124
125
/* set timer busy */
126
priv->idle &= ~casc_priv->cascade_map;
127
spin_unlock_irqrestore(&priv->lock, flags);
128
return &priv->timer[num];
129
}
130
spin_unlock_irqrestore(&priv->lock, flags);
131
casc_priv++;
132
}
133
134
return NULL;
135
}
136
137
static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
138
unsigned int num)
139
{
140
struct cascade_priv *casc_priv;
141
u32 tcr;
142
u32 tmp_ticks;
143
u32 rem_ticks;
144
145
/* set group tcr reg for cascade */
146
casc_priv = priv->timer[num].cascade_handle;
147
if (!casc_priv)
148
return -EINVAL;
149
150
tcr = casc_priv->tcr_value |
151
(casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
152
setbits32(priv->group_tcr, tcr);
153
154
tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
155
156
out_be32(&priv->regs[num].gtccr, 0);
157
out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
158
159
out_be32(&priv->regs[num - 1].gtccr, 0);
160
out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
161
162
return 0;
163
}
164
165
static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
166
u64 ticks)
167
{
168
struct mpic_timer *allocated_timer;
169
170
/* Two cascade timers: Support the maximum time */
171
const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
172
int ret;
173
174
if (ticks > max_ticks)
175
return NULL;
176
177
/* detect idle timer */
178
allocated_timer = detect_idle_cascade_timer(priv);
179
if (!allocated_timer)
180
return NULL;
181
182
/* set ticks to timer */
183
ret = set_cascade_timer(priv, ticks, allocated_timer->num);
184
if (ret < 0)
185
return NULL;
186
187
return allocated_timer;
188
}
189
190
static struct mpic_timer *get_timer(time64_t time)
191
{
192
struct timer_group_priv *priv;
193
struct mpic_timer *timer;
194
195
u64 ticks;
196
unsigned int num;
197
unsigned int i;
198
unsigned long flags;
199
int ret;
200
201
list_for_each_entry(priv, &timer_group_list, node) {
202
ret = convert_time_to_ticks(priv, time, &ticks);
203
if (ret < 0)
204
return NULL;
205
206
if (ticks > MAX_TICKS) {
207
if (!(priv->flags & FSL_GLOBAL_TIMER))
208
return NULL;
209
210
timer = get_cascade_timer(priv, ticks);
211
if (!timer)
212
continue;
213
214
return timer;
215
}
216
217
for (i = 0; i < TIMERS_PER_GROUP; i++) {
218
/* one timer: Reverse allocation */
219
num = TIMERS_PER_GROUP - 1 - i;
220
spin_lock_irqsave(&priv->lock, flags);
221
if (priv->idle & (1 << i)) {
222
/* set timer busy */
223
priv->idle &= ~(1 << i);
224
/* set ticks & stop timer */
225
out_be32(&priv->regs[num].gtbcr,
226
ticks | TIMER_STOP);
227
out_be32(&priv->regs[num].gtccr, 0);
228
priv->timer[num].cascade_handle = NULL;
229
spin_unlock_irqrestore(&priv->lock, flags);
230
return &priv->timer[num];
231
}
232
spin_unlock_irqrestore(&priv->lock, flags);
233
}
234
}
235
236
return NULL;
237
}
238
239
/**
240
* mpic_start_timer - start hardware timer
241
* @handle: the timer to be started.
242
*
243
* It will do ->fn(->dev) callback from the hardware interrupt at
244
* the 'time64_t' point in the future.
245
*/
246
void mpic_start_timer(struct mpic_timer *handle)
247
{
248
struct timer_group_priv *priv = container_of(handle,
249
struct timer_group_priv, timer[handle->num]);
250
251
clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
252
}
253
EXPORT_SYMBOL(mpic_start_timer);
254
255
/**
256
* mpic_stop_timer - stop hardware timer
257
* @handle: the timer to be stopped
258
*
259
* The timer periodically generates an interrupt. Unless user stops the timer.
260
*/
261
void mpic_stop_timer(struct mpic_timer *handle)
262
{
263
struct timer_group_priv *priv = container_of(handle,
264
struct timer_group_priv, timer[handle->num]);
265
struct cascade_priv *casc_priv;
266
267
setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
268
269
casc_priv = priv->timer[handle->num].cascade_handle;
270
if (casc_priv) {
271
out_be32(&priv->regs[handle->num].gtccr, 0);
272
out_be32(&priv->regs[handle->num - 1].gtccr, 0);
273
} else {
274
out_be32(&priv->regs[handle->num].gtccr, 0);
275
}
276
}
277
EXPORT_SYMBOL(mpic_stop_timer);
278
279
/**
280
* mpic_get_remain_time - get timer time
281
* @handle: the timer to be selected.
282
* @time: time for timer
283
*
284
* Query timer remaining time.
285
*/
286
void mpic_get_remain_time(struct mpic_timer *handle, time64_t *time)
287
{
288
struct timer_group_priv *priv = container_of(handle,
289
struct timer_group_priv, timer[handle->num]);
290
struct cascade_priv *casc_priv;
291
292
u64 ticks;
293
u32 tmp_ticks;
294
295
casc_priv = priv->timer[handle->num].cascade_handle;
296
if (casc_priv) {
297
tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
298
tmp_ticks &= ~GTCCR_TOG;
299
ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
300
tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
301
ticks += tmp_ticks;
302
} else {
303
ticks = in_be32(&priv->regs[handle->num].gtccr);
304
ticks &= ~GTCCR_TOG;
305
}
306
307
convert_ticks_to_time(priv, ticks, time);
308
}
309
EXPORT_SYMBOL(mpic_get_remain_time);
310
311
/**
312
* mpic_free_timer - free hardware timer
313
* @handle: the timer to be removed.
314
*
315
* Free the timer.
316
*
317
* Note: can not be used in interrupt context.
318
*/
319
void mpic_free_timer(struct mpic_timer *handle)
320
{
321
struct timer_group_priv *priv = container_of(handle,
322
struct timer_group_priv, timer[handle->num]);
323
324
struct cascade_priv *casc_priv;
325
unsigned long flags;
326
327
mpic_stop_timer(handle);
328
329
casc_priv = priv->timer[handle->num].cascade_handle;
330
331
free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
332
333
spin_lock_irqsave(&priv->lock, flags);
334
if (casc_priv) {
335
u32 tcr;
336
tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
337
MPIC_TIMER_TCR_ROVR_OFFSET);
338
clrbits32(priv->group_tcr, tcr);
339
priv->idle |= casc_priv->cascade_map;
340
priv->timer[handle->num].cascade_handle = NULL;
341
} else {
342
priv->idle |= TIMER_OFFSET(handle->num);
343
}
344
spin_unlock_irqrestore(&priv->lock, flags);
345
}
346
EXPORT_SYMBOL(mpic_free_timer);
347
348
/**
349
* mpic_request_timer - get a hardware timer
350
* @fn: interrupt handler function
351
* @dev: callback function of the data
352
* @time: time for timer
353
*
354
* This executes the "request_irq", returning NULL
355
* else "handle" on success.
356
*/
357
struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
358
time64_t time)
359
{
360
struct mpic_timer *allocated_timer;
361
int ret;
362
363
if (list_empty(&timer_group_list))
364
return NULL;
365
366
if (time < 0)
367
return NULL;
368
369
allocated_timer = get_timer(time);
370
if (!allocated_timer)
371
return NULL;
372
373
ret = request_irq(allocated_timer->irq, fn,
374
IRQF_TRIGGER_LOW, "global-timer", dev);
375
if (ret) {
376
mpic_free_timer(allocated_timer);
377
return NULL;
378
}
379
380
allocated_timer->dev = dev;
381
382
return allocated_timer;
383
}
384
EXPORT_SYMBOL(mpic_request_timer);
385
386
static int __init timer_group_get_freq(struct device_node *np,
387
struct timer_group_priv *priv)
388
{
389
u32 div;
390
391
if (priv->flags & FSL_GLOBAL_TIMER) {
392
struct device_node *dn;
393
394
dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
395
if (dn) {
396
of_property_read_u32(dn, "clock-frequency",
397
&priv->timerfreq);
398
of_node_put(dn);
399
}
400
}
401
402
if (priv->timerfreq <= 0)
403
return -EINVAL;
404
405
if (priv->flags & FSL_GLOBAL_TIMER) {
406
div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
407
priv->timerfreq /= div;
408
}
409
410
return 0;
411
}
412
413
static int __init timer_group_get_irq(struct device_node *np,
414
struct timer_group_priv *priv)
415
{
416
const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
417
const u32 *p;
418
u32 offset;
419
u32 count;
420
421
unsigned int i;
422
unsigned int j;
423
unsigned int irq_index = 0;
424
unsigned int irq;
425
int len;
426
427
p = of_get_property(np, "fsl,available-ranges", &len);
428
if (p && len % (2 * sizeof(u32)) != 0) {
429
pr_err("%pOF: malformed available-ranges property.\n", np);
430
return -EINVAL;
431
}
432
433
if (!p) {
434
p = all_timer;
435
len = sizeof(all_timer);
436
}
437
438
len /= 2 * sizeof(u32);
439
440
for (i = 0; i < len; i++) {
441
offset = p[i * 2];
442
count = p[i * 2 + 1];
443
for (j = 0; j < count; j++) {
444
irq = irq_of_parse_and_map(np, irq_index);
445
if (!irq) {
446
pr_err("%pOF: irq parse and map failed.\n", np);
447
return -EINVAL;
448
}
449
450
/* Set timer idle */
451
priv->idle |= TIMER_OFFSET((offset + j));
452
priv->timer[offset + j].irq = irq;
453
priv->timer[offset + j].num = offset + j;
454
irq_index++;
455
}
456
}
457
458
return 0;
459
}
460
461
static void __init timer_group_init(struct device_node *np)
462
{
463
struct timer_group_priv *priv;
464
unsigned int i = 0;
465
int ret;
466
467
priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
468
if (!priv) {
469
pr_err("%pOF: cannot allocate memory for group.\n", np);
470
return;
471
}
472
473
if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
474
priv->flags |= FSL_GLOBAL_TIMER;
475
476
priv->regs = of_iomap(np, i++);
477
if (!priv->regs) {
478
pr_err("%pOF: cannot ioremap timer register address.\n", np);
479
goto out;
480
}
481
482
if (priv->flags & FSL_GLOBAL_TIMER) {
483
priv->group_tcr = of_iomap(np, i++);
484
if (!priv->group_tcr) {
485
pr_err("%pOF: cannot ioremap tcr address.\n", np);
486
goto out;
487
}
488
}
489
490
ret = timer_group_get_freq(np, priv);
491
if (ret < 0) {
492
pr_err("%pOF: cannot get timer frequency.\n", np);
493
goto out;
494
}
495
496
ret = timer_group_get_irq(np, priv);
497
if (ret < 0) {
498
pr_err("%pOF: cannot get timer irqs.\n", np);
499
goto out;
500
}
501
502
spin_lock_init(&priv->lock);
503
504
/* Init FSL timer hardware */
505
if (priv->flags & FSL_GLOBAL_TIMER)
506
setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
507
508
list_add_tail(&priv->node, &timer_group_list);
509
510
return;
511
512
out:
513
if (priv->regs)
514
iounmap(priv->regs);
515
516
if (priv->group_tcr)
517
iounmap(priv->group_tcr);
518
519
kfree(priv);
520
}
521
522
static void mpic_timer_resume(void)
523
{
524
struct timer_group_priv *priv;
525
526
list_for_each_entry(priv, &timer_group_list, node) {
527
/* Init FSL timer hardware */
528
if (priv->flags & FSL_GLOBAL_TIMER)
529
setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
530
}
531
}
532
533
static const struct of_device_id mpic_timer_ids[] = {
534
{ .compatible = "fsl,mpic-global-timer", },
535
{},
536
};
537
538
static struct syscore_ops mpic_timer_syscore_ops = {
539
.resume = mpic_timer_resume,
540
};
541
542
static int __init mpic_timer_init(void)
543
{
544
struct device_node *np = NULL;
545
546
for_each_matching_node(np, mpic_timer_ids)
547
timer_group_init(np);
548
549
register_syscore_ops(&mpic_timer_syscore_ops);
550
551
if (list_empty(&timer_group_list))
552
return -ENODEV;
553
554
return 0;
555
}
556
subsys_initcall(mpic_timer_init);
557
558