Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/powerpc/sysdev/xive/common.c
26493 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Copyright 2016,2017 IBM Corporation.
4
*/
5
6
#define pr_fmt(fmt) "xive: " fmt
7
8
#include <linux/types.h>
9
#include <linux/threads.h>
10
#include <linux/kernel.h>
11
#include <linux/irq.h>
12
#include <linux/irqdomain.h>
13
#include <linux/debugfs.h>
14
#include <linux/smp.h>
15
#include <linux/interrupt.h>
16
#include <linux/seq_file.h>
17
#include <linux/init.h>
18
#include <linux/cpu.h>
19
#include <linux/of.h>
20
#include <linux/slab.h>
21
#include <linux/spinlock.h>
22
#include <linux/msi.h>
23
#include <linux/vmalloc.h>
24
25
#include <asm/io.h>
26
#include <asm/smp.h>
27
#include <asm/machdep.h>
28
#include <asm/irq.h>
29
#include <asm/errno.h>
30
#include <asm/xive.h>
31
#include <asm/xive-regs.h>
32
#include <asm/xmon.h>
33
34
#include "xive-internal.h"
35
36
#undef DEBUG_FLUSH
37
#undef DEBUG_ALL
38
39
#ifdef DEBUG_ALL
40
#define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
41
smp_processor_id(), ## __VA_ARGS__)
42
#else
43
#define DBG_VERBOSE(fmt...) do { } while(0)
44
#endif
45
46
bool __xive_enabled;
47
EXPORT_SYMBOL_GPL(__xive_enabled);
48
bool xive_cmdline_disabled;
49
50
/* We use only one priority for now */
51
static u8 xive_irq_priority;
52
53
/* TIMA exported to KVM */
54
void __iomem *xive_tima;
55
EXPORT_SYMBOL_GPL(xive_tima);
56
u32 xive_tima_offset;
57
58
/* Backend ops */
59
static const struct xive_ops *xive_ops;
60
61
/* Our global interrupt domain */
62
static struct irq_domain *xive_irq_domain;
63
64
#ifdef CONFIG_SMP
65
/* The IPIs use the same logical irq number when on the same chip */
66
static struct xive_ipi_desc {
67
unsigned int irq;
68
char name[16];
69
atomic_t started;
70
} *xive_ipis;
71
72
/*
73
* Use early_cpu_to_node() for hot-plugged CPUs
74
*/
75
static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
76
{
77
return xive_ipis[early_cpu_to_node(cpu)].irq;
78
}
79
#endif
80
81
/* Xive state for each CPU */
82
static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
83
84
/* An invalid CPU target */
85
#define XIVE_INVALID_TARGET (-1)
86
87
/*
88
* Global toggle to switch on/off StoreEOI
89
*/
90
static bool xive_store_eoi = true;
91
92
static bool xive_is_store_eoi(struct xive_irq_data *xd)
93
{
94
return xd->flags & XIVE_IRQ_FLAG_STORE_EOI && xive_store_eoi;
95
}
96
97
/*
98
* Read the next entry in a queue, return its content if it's valid
99
* or 0 if there is no new entry.
100
*
101
* The queue pointer is moved forward unless "just_peek" is set
102
*/
103
static u32 xive_read_eq(struct xive_q *q, bool just_peek)
104
{
105
u32 cur;
106
107
if (!q->qpage)
108
return 0;
109
cur = be32_to_cpup(q->qpage + q->idx);
110
111
/* Check valid bit (31) vs current toggle polarity */
112
if ((cur >> 31) == q->toggle)
113
return 0;
114
115
/* If consuming from the queue ... */
116
if (!just_peek) {
117
/* Next entry */
118
q->idx = (q->idx + 1) & q->msk;
119
120
/* Wrap around: flip valid toggle */
121
if (q->idx == 0)
122
q->toggle ^= 1;
123
}
124
/* Mask out the valid bit (31) */
125
return cur & 0x7fffffff;
126
}
127
128
/*
129
* Scans all the queue that may have interrupts in them
130
* (based on "pending_prio") in priority order until an
131
* interrupt is found or all the queues are empty.
132
*
133
* Then updates the CPPR (Current Processor Priority
134
* Register) based on the most favored interrupt found
135
* (0xff if none) and return what was found (0 if none).
136
*
137
* If just_peek is set, return the most favored pending
138
* interrupt if any but don't update the queue pointers.
139
*
140
* Note: This function can operate generically on any number
141
* of queues (up to 8). The current implementation of the XIVE
142
* driver only uses a single queue however.
143
*
144
* Note2: This will also "flush" "the pending_count" of a queue
145
* into the "count" when that queue is observed to be empty.
146
* This is used to keep track of the amount of interrupts
147
* targetting a queue. When an interrupt is moved away from
148
* a queue, we only decrement that queue count once the queue
149
* has been observed empty to avoid races.
150
*/
151
static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
152
{
153
u32 irq = 0;
154
u8 prio = 0;
155
156
/* Find highest pending priority */
157
while (xc->pending_prio != 0) {
158
struct xive_q *q;
159
160
prio = ffs(xc->pending_prio) - 1;
161
DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
162
163
/* Try to fetch */
164
irq = xive_read_eq(&xc->queue[prio], just_peek);
165
166
/* Found something ? That's it */
167
if (irq) {
168
if (just_peek || irq_to_desc(irq))
169
break;
170
/*
171
* We should never get here; if we do then we must
172
* have failed to synchronize the interrupt properly
173
* when shutting it down.
174
*/
175
pr_crit("xive: got interrupt %d without descriptor, dropping\n",
176
irq);
177
WARN_ON(1);
178
continue;
179
}
180
181
/* Clear pending bits */
182
xc->pending_prio &= ~(1 << prio);
183
184
/*
185
* Check if the queue count needs adjusting due to
186
* interrupts being moved away. See description of
187
* xive_dec_target_count()
188
*/
189
q = &xc->queue[prio];
190
if (atomic_read(&q->pending_count)) {
191
int p = atomic_xchg(&q->pending_count, 0);
192
if (p) {
193
WARN_ON(p > atomic_read(&q->count));
194
atomic_sub(p, &q->count);
195
}
196
}
197
}
198
199
/* If nothing was found, set CPPR to 0xff */
200
if (irq == 0)
201
prio = 0xff;
202
203
/* Update HW CPPR to match if necessary */
204
if (prio != xc->cppr) {
205
DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
206
xc->cppr = prio;
207
out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
208
}
209
210
return irq;
211
}
212
213
/*
214
* This is used to perform the magic loads from an ESB
215
* described in xive-regs.h
216
*/
217
static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
218
{
219
u64 val;
220
221
if (offset == XIVE_ESB_SET_PQ_10 && xive_is_store_eoi(xd))
222
offset |= XIVE_ESB_LD_ST_MO;
223
224
if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225
val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
226
else
227
val = in_be64(xd->eoi_mmio + offset);
228
229
return (u8)val;
230
}
231
232
static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
233
{
234
if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
235
xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
236
else
237
out_be64(xd->eoi_mmio + offset, data);
238
}
239
240
#if defined(CONFIG_XMON) || defined(CONFIG_DEBUG_FS)
241
static void xive_irq_data_dump(struct xive_irq_data *xd, char *buffer, size_t size)
242
{
243
u64 val = xive_esb_read(xd, XIVE_ESB_GET);
244
245
snprintf(buffer, size, "flags=%c%c%c PQ=%c%c 0x%016llx 0x%016llx",
246
xive_is_store_eoi(xd) ? 'S' : ' ',
247
xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
248
xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
249
val & XIVE_ESB_VAL_P ? 'P' : '-',
250
val & XIVE_ESB_VAL_Q ? 'Q' : '-',
251
xd->trig_page, xd->eoi_page);
252
}
253
#endif
254
255
#ifdef CONFIG_XMON
256
static notrace void xive_dump_eq(const char *name, struct xive_q *q)
257
{
258
u32 i0, i1, idx;
259
260
if (!q->qpage)
261
return;
262
idx = q->idx;
263
i0 = be32_to_cpup(q->qpage + idx);
264
idx = (idx + 1) & q->msk;
265
i1 = be32_to_cpup(q->qpage + idx);
266
xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
267
q->idx, q->toggle, i0, i1);
268
}
269
270
notrace void xmon_xive_do_dump(int cpu)
271
{
272
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
273
274
xmon_printf("CPU %d:", cpu);
275
if (xc) {
276
xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
277
278
#ifdef CONFIG_SMP
279
{
280
char buffer[128];
281
282
xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
283
xmon_printf("IPI=0x%08x %s", xc->hw_ipi, buffer);
284
}
285
#endif
286
xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
287
}
288
xmon_printf("\n");
289
}
290
291
static struct irq_data *xive_get_irq_data(u32 hw_irq)
292
{
293
unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
294
295
return irq ? irq_get_irq_data(irq) : NULL;
296
}
297
298
int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
299
{
300
int rc;
301
u32 target;
302
u8 prio;
303
u32 lirq;
304
305
rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
306
if (rc) {
307
xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
308
return rc;
309
}
310
311
xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
312
hw_irq, target, prio, lirq);
313
314
if (!d)
315
d = xive_get_irq_data(hw_irq);
316
317
if (d) {
318
char buffer[128];
319
320
xive_irq_data_dump(irq_data_get_irq_handler_data(d),
321
buffer, sizeof(buffer));
322
xmon_printf("%s", buffer);
323
}
324
325
xmon_printf("\n");
326
return 0;
327
}
328
329
void xmon_xive_get_irq_all(void)
330
{
331
unsigned int i;
332
struct irq_desc *desc;
333
334
for_each_irq_desc(i, desc) {
335
struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
336
337
if (d)
338
xmon_xive_get_irq_config(irqd_to_hwirq(d), d);
339
}
340
}
341
342
#endif /* CONFIG_XMON */
343
344
static unsigned int xive_get_irq(void)
345
{
346
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
347
u32 irq;
348
349
/*
350
* This can be called either as a result of a HW interrupt or
351
* as a "replay" because EOI decided there was still something
352
* in one of the queues.
353
*
354
* First we perform an ACK cycle in order to update our mask
355
* of pending priorities. This will also have the effect of
356
* updating the CPPR to the most favored pending interrupts.
357
*
358
* In the future, if we have a way to differentiate a first
359
* entry (on HW interrupt) from a replay triggered by EOI,
360
* we could skip this on replays unless we soft-mask tells us
361
* that a new HW interrupt occurred.
362
*/
363
xive_ops->update_pending(xc);
364
365
DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
366
367
/* Scan our queue(s) for interrupts */
368
irq = xive_scan_interrupts(xc, false);
369
370
DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
371
irq, xc->pending_prio);
372
373
/* Return pending interrupt if any */
374
if (irq == XIVE_BAD_IRQ)
375
return 0;
376
return irq;
377
}
378
379
/*
380
* After EOI'ing an interrupt, we need to re-check the queue
381
* to see if another interrupt is pending since multiple
382
* interrupts can coalesce into a single notification to the
383
* CPU.
384
*
385
* If we find that there is indeed more in there, we call
386
* force_external_irq_replay() to make Linux synthesize an
387
* external interrupt on the next call to local_irq_restore().
388
*/
389
static void xive_do_queue_eoi(struct xive_cpu *xc)
390
{
391
if (xive_scan_interrupts(xc, true) != 0) {
392
DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
393
force_external_irq_replay();
394
}
395
}
396
397
/*
398
* EOI an interrupt at the source. There are several methods
399
* to do this depending on the HW version and source type
400
*/
401
static void xive_do_source_eoi(struct xive_irq_data *xd)
402
{
403
u8 eoi_val;
404
405
xd->stale_p = false;
406
407
/* If the XIVE supports the new "store EOI facility, use it */
408
if (xive_is_store_eoi(xd)) {
409
xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
410
return;
411
}
412
413
/*
414
* For LSIs, we use the "EOI cycle" special load rather than
415
* PQ bits, as they are automatically re-triggered in HW when
416
* still pending.
417
*/
418
if (xd->flags & XIVE_IRQ_FLAG_LSI) {
419
xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
420
return;
421
}
422
423
/*
424
* Otherwise, we use the special MMIO that does a clear of
425
* both P and Q and returns the old Q. This allows us to then
426
* do a re-trigger if Q was set rather than synthesizing an
427
* interrupt in software
428
*/
429
eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
430
DBG_VERBOSE("eoi_val=%x\n", eoi_val);
431
432
/* Re-trigger if needed */
433
if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
434
out_be64(xd->trig_mmio, 0);
435
}
436
437
/* irq_chip eoi callback, called with irq descriptor lock held */
438
static void xive_irq_eoi(struct irq_data *d)
439
{
440
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
441
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
442
443
DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
444
d->irq, irqd_to_hwirq(d), xc->pending_prio);
445
446
/*
447
* EOI the source if it hasn't been disabled and hasn't
448
* been passed-through to a KVM guest
449
*/
450
if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
451
!(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
452
xive_do_source_eoi(xd);
453
else
454
xd->stale_p = true;
455
456
/*
457
* Clear saved_p to indicate that it's no longer occupying
458
* a queue slot on the target queue
459
*/
460
xd->saved_p = false;
461
462
/* Check for more work in the queue */
463
xive_do_queue_eoi(xc);
464
}
465
466
/*
467
* Helper used to mask and unmask an interrupt source.
468
*/
469
static void xive_do_source_set_mask(struct xive_irq_data *xd,
470
bool mask)
471
{
472
u64 val;
473
474
pr_debug("%s: HW 0x%x %smask\n", __func__, xd->hw_irq, mask ? "" : "un");
475
476
/*
477
* If the interrupt had P set, it may be in a queue.
478
*
479
* We need to make sure we don't re-enable it until it
480
* has been fetched from that queue and EOId. We keep
481
* a copy of that P state and use it to restore the
482
* ESB accordingly on unmask.
483
*/
484
if (mask) {
485
val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
486
if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
487
xd->saved_p = true;
488
xd->stale_p = false;
489
} else if (xd->saved_p) {
490
xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
491
xd->saved_p = false;
492
} else {
493
xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
494
xd->stale_p = false;
495
}
496
}
497
498
/*
499
* Try to chose "cpu" as a new interrupt target. Increments
500
* the queue accounting for that target if it's not already
501
* full.
502
*/
503
static bool xive_try_pick_target(int cpu)
504
{
505
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
506
struct xive_q *q = &xc->queue[xive_irq_priority];
507
int max;
508
509
/*
510
* Calculate max number of interrupts in that queue.
511
*
512
* We leave a gap of 1 just in case...
513
*/
514
max = (q->msk + 1) - 1;
515
return !!atomic_add_unless(&q->count, 1, max);
516
}
517
518
/*
519
* Un-account an interrupt for a target CPU. We don't directly
520
* decrement q->count since the interrupt might still be present
521
* in the queue.
522
*
523
* Instead increment a separate counter "pending_count" which
524
* will be substracted from "count" later when that CPU observes
525
* the queue to be empty.
526
*/
527
static void xive_dec_target_count(int cpu)
528
{
529
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
530
struct xive_q *q = &xc->queue[xive_irq_priority];
531
532
if (WARN_ON(cpu < 0 || !xc)) {
533
pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
534
return;
535
}
536
537
/*
538
* We increment the "pending count" which will be used
539
* to decrement the target queue count whenever it's next
540
* processed and found empty. This ensure that we don't
541
* decrement while we still have the interrupt there
542
* occupying a slot.
543
*/
544
atomic_inc(&q->pending_count);
545
}
546
547
/* Find a tentative CPU target in a CPU mask */
548
static int xive_find_target_in_mask(const struct cpumask *mask,
549
unsigned int fuzz)
550
{
551
int cpu, first, num, i;
552
553
/* Pick up a starting point CPU in the mask based on fuzz */
554
num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
555
first = fuzz % num;
556
557
/* Locate it */
558
cpu = cpumask_first(mask);
559
for (i = 0; i < first && cpu < nr_cpu_ids; i++)
560
cpu = cpumask_next(cpu, mask);
561
562
/* Sanity check */
563
if (WARN_ON(cpu >= nr_cpu_ids))
564
cpu = cpumask_first(cpu_online_mask);
565
566
/* Remember first one to handle wrap-around */
567
first = cpu;
568
569
/*
570
* Now go through the entire mask until we find a valid
571
* target.
572
*/
573
do {
574
/*
575
* We re-check online as the fallback case passes us
576
* an untested affinity mask
577
*/
578
if (cpu_online(cpu) && xive_try_pick_target(cpu))
579
return cpu;
580
cpu = cpumask_next(cpu, mask);
581
/* Wrap around */
582
if (cpu >= nr_cpu_ids)
583
cpu = cpumask_first(mask);
584
} while (cpu != first);
585
586
return -1;
587
}
588
589
/*
590
* Pick a target CPU for an interrupt. This is done at
591
* startup or if the affinity is changed in a way that
592
* invalidates the current target.
593
*/
594
static int xive_pick_irq_target(struct irq_data *d,
595
const struct cpumask *affinity)
596
{
597
static unsigned int fuzz;
598
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
599
cpumask_var_t mask;
600
int cpu = -1;
601
602
/*
603
* If we have chip IDs, first we try to build a mask of
604
* CPUs matching the CPU and find a target in there
605
*/
606
if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
607
zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
608
/* Build a mask of matching chip IDs */
609
for_each_cpu_and(cpu, affinity, cpu_online_mask) {
610
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
611
if (xc->chip_id == xd->src_chip)
612
cpumask_set_cpu(cpu, mask);
613
}
614
/* Try to find a target */
615
if (cpumask_empty(mask))
616
cpu = -1;
617
else
618
cpu = xive_find_target_in_mask(mask, fuzz++);
619
free_cpumask_var(mask);
620
if (cpu >= 0)
621
return cpu;
622
fuzz--;
623
}
624
625
/* No chip IDs, fallback to using the affinity mask */
626
return xive_find_target_in_mask(affinity, fuzz++);
627
}
628
629
static unsigned int xive_irq_startup(struct irq_data *d)
630
{
631
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
632
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
633
int target, rc;
634
635
xd->saved_p = false;
636
xd->stale_p = false;
637
638
pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
639
640
/* Pick a target */
641
target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
642
if (target == XIVE_INVALID_TARGET) {
643
/* Try again breaking affinity */
644
target = xive_pick_irq_target(d, cpu_online_mask);
645
if (target == XIVE_INVALID_TARGET)
646
return -ENXIO;
647
pr_warn("irq %d started with broken affinity\n", d->irq);
648
}
649
650
/* Sanity check */
651
if (WARN_ON(target == XIVE_INVALID_TARGET ||
652
target >= nr_cpu_ids))
653
target = smp_processor_id();
654
655
xd->target = target;
656
657
/*
658
* Configure the logical number to be the Linux IRQ number
659
* and set the target queue
660
*/
661
rc = xive_ops->configure_irq(hw_irq,
662
get_hard_smp_processor_id(target),
663
xive_irq_priority, d->irq);
664
if (rc)
665
return rc;
666
667
/* Unmask the ESB */
668
xive_do_source_set_mask(xd, false);
669
670
return 0;
671
}
672
673
/* called with irq descriptor lock held */
674
static void xive_irq_shutdown(struct irq_data *d)
675
{
676
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
677
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
678
679
pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
680
681
if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
682
return;
683
684
/* Mask the interrupt at the source */
685
xive_do_source_set_mask(xd, true);
686
687
/*
688
* Mask the interrupt in HW in the IVT/EAS and set the number
689
* to be the "bad" IRQ number
690
*/
691
xive_ops->configure_irq(hw_irq,
692
get_hard_smp_processor_id(xd->target),
693
0xff, XIVE_BAD_IRQ);
694
695
xive_dec_target_count(xd->target);
696
xd->target = XIVE_INVALID_TARGET;
697
}
698
699
static void xive_irq_unmask(struct irq_data *d)
700
{
701
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
702
703
pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
704
705
xive_do_source_set_mask(xd, false);
706
}
707
708
static void xive_irq_mask(struct irq_data *d)
709
{
710
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
711
712
pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
713
714
xive_do_source_set_mask(xd, true);
715
}
716
717
static int xive_irq_set_affinity(struct irq_data *d,
718
const struct cpumask *cpumask,
719
bool force)
720
{
721
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
722
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
723
u32 target, old_target;
724
int rc = 0;
725
726
pr_debug("%s: irq %d/0x%x\n", __func__, d->irq, hw_irq);
727
728
/* Is this valid ? */
729
if (!cpumask_intersects(cpumask, cpu_online_mask))
730
return -EINVAL;
731
732
/*
733
* If existing target is already in the new mask, and is
734
* online then do nothing.
735
*/
736
if (xd->target != XIVE_INVALID_TARGET &&
737
cpu_online(xd->target) &&
738
cpumask_test_cpu(xd->target, cpumask))
739
return IRQ_SET_MASK_OK;
740
741
/* Pick a new target */
742
target = xive_pick_irq_target(d, cpumask);
743
744
/* No target found */
745
if (target == XIVE_INVALID_TARGET)
746
return -ENXIO;
747
748
/* Sanity check */
749
if (WARN_ON(target >= nr_cpu_ids))
750
target = smp_processor_id();
751
752
old_target = xd->target;
753
754
/*
755
* Only configure the irq if it's not currently passed-through to
756
* a KVM guest
757
*/
758
if (!irqd_is_forwarded_to_vcpu(d))
759
rc = xive_ops->configure_irq(hw_irq,
760
get_hard_smp_processor_id(target),
761
xive_irq_priority, d->irq);
762
if (rc < 0) {
763
pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
764
return rc;
765
}
766
767
pr_debug(" target: 0x%x\n", target);
768
xd->target = target;
769
770
/* Give up previous target */
771
if (old_target != XIVE_INVALID_TARGET)
772
xive_dec_target_count(old_target);
773
774
return IRQ_SET_MASK_OK;
775
}
776
777
static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
778
{
779
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
780
781
/*
782
* We only support these. This has really no effect other than setting
783
* the corresponding descriptor bits mind you but those will in turn
784
* affect the resend function when re-enabling an edge interrupt.
785
*
786
* Set the default to edge as explained in map().
787
*/
788
if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
789
flow_type = IRQ_TYPE_EDGE_RISING;
790
791
if (flow_type != IRQ_TYPE_EDGE_RISING &&
792
flow_type != IRQ_TYPE_LEVEL_LOW)
793
return -EINVAL;
794
795
irqd_set_trigger_type(d, flow_type);
796
797
/*
798
* Double check it matches what the FW thinks
799
*
800
* NOTE: We don't know yet if the PAPR interface will provide
801
* the LSI vs MSI information apart from the device-tree so
802
* this check might have to move into an optional backend call
803
* that is specific to the native backend
804
*/
805
if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
806
!!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
807
pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
808
d->irq, (u32)irqd_to_hwirq(d),
809
(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
810
(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
811
}
812
813
return IRQ_SET_MASK_OK_NOCOPY;
814
}
815
816
static int xive_irq_retrigger(struct irq_data *d)
817
{
818
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
819
820
/* This should be only for MSIs */
821
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
822
return 0;
823
824
/*
825
* To perform a retrigger, we first set the PQ bits to
826
* 11, then perform an EOI.
827
*/
828
xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
829
xive_do_source_eoi(xd);
830
831
return 1;
832
}
833
834
/*
835
* Caller holds the irq descriptor lock, so this won't be called
836
* concurrently with xive_get_irqchip_state on the same interrupt.
837
*/
838
static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
839
{
840
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
841
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
842
int rc;
843
u8 pq;
844
845
/*
846
* This is called by KVM with state non-NULL for enabling
847
* pass-through or NULL for disabling it
848
*/
849
if (state) {
850
irqd_set_forwarded_to_vcpu(d);
851
852
/* Set it to PQ=10 state to prevent further sends */
853
pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
854
if (!xd->stale_p) {
855
xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
856
xd->stale_p = !xd->saved_p;
857
}
858
859
/* No target ? nothing to do */
860
if (xd->target == XIVE_INVALID_TARGET) {
861
/*
862
* An untargetted interrupt should have been
863
* also masked at the source
864
*/
865
WARN_ON(xd->saved_p);
866
867
return 0;
868
}
869
870
/*
871
* If P was set, adjust state to PQ=11 to indicate
872
* that a resend is needed for the interrupt to reach
873
* the guest. Also remember the value of P.
874
*
875
* This also tells us that it's in flight to a host queue
876
* or has already been fetched but hasn't been EOIed yet
877
* by the host. Thus it's potentially using up a host
878
* queue slot. This is important to know because as long
879
* as this is the case, we must not hard-unmask it when
880
* "returning" that interrupt to the host.
881
*
882
* This saved_p is cleared by the host EOI, when we know
883
* for sure the queue slot is no longer in use.
884
*/
885
if (xd->saved_p) {
886
xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
887
888
/*
889
* Sync the XIVE source HW to ensure the interrupt
890
* has gone through the EAS before we change its
891
* target to the guest. That should guarantee us
892
* that we *will* eventually get an EOI for it on
893
* the host. Otherwise there would be a small window
894
* for P to be seen here but the interrupt going
895
* to the guest queue.
896
*/
897
if (xive_ops->sync_source)
898
xive_ops->sync_source(hw_irq);
899
}
900
} else {
901
irqd_clr_forwarded_to_vcpu(d);
902
903
/* No host target ? hard mask and return */
904
if (xd->target == XIVE_INVALID_TARGET) {
905
xive_do_source_set_mask(xd, true);
906
return 0;
907
}
908
909
/*
910
* Sync the XIVE source HW to ensure the interrupt
911
* has gone through the EAS before we change its
912
* target to the host.
913
*/
914
if (xive_ops->sync_source)
915
xive_ops->sync_source(hw_irq);
916
917
/*
918
* By convention we are called with the interrupt in
919
* a PQ=10 or PQ=11 state, ie, it won't fire and will
920
* have latched in Q whether there's a pending HW
921
* interrupt or not.
922
*
923
* First reconfigure the target.
924
*/
925
rc = xive_ops->configure_irq(hw_irq,
926
get_hard_smp_processor_id(xd->target),
927
xive_irq_priority, d->irq);
928
if (rc)
929
return rc;
930
931
/*
932
* Then if saved_p is not set, effectively re-enable the
933
* interrupt with an EOI. If it is set, we know there is
934
* still a message in a host queue somewhere that will be
935
* EOId eventually.
936
*
937
* Note: We don't check irqd_irq_disabled(). Effectively,
938
* we *will* let the irq get through even if masked if the
939
* HW is still firing it in order to deal with the whole
940
* saved_p business properly. If the interrupt triggers
941
* while masked, the generic code will re-mask it anyway.
942
*/
943
if (!xd->saved_p)
944
xive_do_source_eoi(xd);
945
946
}
947
return 0;
948
}
949
950
/* Called with irq descriptor lock held. */
951
static int xive_get_irqchip_state(struct irq_data *data,
952
enum irqchip_irq_state which, bool *state)
953
{
954
struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
955
u8 pq;
956
957
switch (which) {
958
case IRQCHIP_STATE_ACTIVE:
959
pq = xive_esb_read(xd, XIVE_ESB_GET);
960
961
/*
962
* The esb value being all 1's means we couldn't get
963
* the PQ state of the interrupt through mmio. It may
964
* happen, for example when querying a PHB interrupt
965
* while the PHB is in an error state. We consider the
966
* interrupt to be inactive in that case.
967
*/
968
*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
969
(xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
970
!irqd_irq_disabled(data)));
971
return 0;
972
default:
973
return -EINVAL;
974
}
975
}
976
977
static struct irq_chip xive_irq_chip = {
978
.name = "XIVE-IRQ",
979
.irq_startup = xive_irq_startup,
980
.irq_shutdown = xive_irq_shutdown,
981
.irq_eoi = xive_irq_eoi,
982
.irq_mask = xive_irq_mask,
983
.irq_unmask = xive_irq_unmask,
984
.irq_set_affinity = xive_irq_set_affinity,
985
.irq_set_type = xive_irq_set_type,
986
.irq_retrigger = xive_irq_retrigger,
987
.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
988
.irq_get_irqchip_state = xive_get_irqchip_state,
989
};
990
991
bool is_xive_irq(struct irq_chip *chip)
992
{
993
return chip == &xive_irq_chip;
994
}
995
EXPORT_SYMBOL_GPL(is_xive_irq);
996
997
void xive_cleanup_irq_data(struct xive_irq_data *xd)
998
{
999
pr_debug("%s for HW 0x%x\n", __func__, xd->hw_irq);
1000
1001
if (xd->eoi_mmio) {
1002
iounmap(xd->eoi_mmio);
1003
if (xd->eoi_mmio == xd->trig_mmio)
1004
xd->trig_mmio = NULL;
1005
xd->eoi_mmio = NULL;
1006
}
1007
if (xd->trig_mmio) {
1008
iounmap(xd->trig_mmio);
1009
xd->trig_mmio = NULL;
1010
}
1011
}
1012
EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1013
1014
static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1015
{
1016
struct xive_irq_data *xd;
1017
int rc;
1018
1019
xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1020
if (!xd)
1021
return -ENOMEM;
1022
rc = xive_ops->populate_irq_data(hw, xd);
1023
if (rc) {
1024
kfree(xd);
1025
return rc;
1026
}
1027
xd->target = XIVE_INVALID_TARGET;
1028
irq_set_handler_data(virq, xd);
1029
1030
/*
1031
* Turn OFF by default the interrupt being mapped. A side
1032
* effect of this check is the mapping the ESB page of the
1033
* interrupt in the Linux address space. This prevents page
1034
* fault issues in the crash handler which masks all
1035
* interrupts.
1036
*/
1037
xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1038
1039
return 0;
1040
}
1041
1042
void xive_irq_free_data(unsigned int virq)
1043
{
1044
struct xive_irq_data *xd = irq_get_handler_data(virq);
1045
1046
if (!xd)
1047
return;
1048
irq_set_handler_data(virq, NULL);
1049
xive_cleanup_irq_data(xd);
1050
kfree(xd);
1051
}
1052
EXPORT_SYMBOL_GPL(xive_irq_free_data);
1053
1054
#ifdef CONFIG_SMP
1055
1056
static void xive_cause_ipi(int cpu)
1057
{
1058
struct xive_cpu *xc;
1059
struct xive_irq_data *xd;
1060
1061
xc = per_cpu(xive_cpu, cpu);
1062
1063
DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1064
smp_processor_id(), cpu, xc->hw_ipi);
1065
1066
xd = &xc->ipi_data;
1067
if (WARN_ON(!xd->trig_mmio))
1068
return;
1069
out_be64(xd->trig_mmio, 0);
1070
}
1071
1072
static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1073
{
1074
return smp_ipi_demux();
1075
}
1076
1077
static void xive_ipi_eoi(struct irq_data *d)
1078
{
1079
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1080
1081
/* Handle possible race with unplug and drop stale IPIs */
1082
if (!xc)
1083
return;
1084
1085
DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1086
d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1087
1088
xive_do_source_eoi(&xc->ipi_data);
1089
xive_do_queue_eoi(xc);
1090
}
1091
1092
static void xive_ipi_do_nothing(struct irq_data *d)
1093
{
1094
/*
1095
* Nothing to do, we never mask/unmask IPIs, but the callback
1096
* has to exist for the struct irq_chip.
1097
*/
1098
}
1099
1100
static struct irq_chip xive_ipi_chip = {
1101
.name = "XIVE-IPI",
1102
.irq_eoi = xive_ipi_eoi,
1103
.irq_mask = xive_ipi_do_nothing,
1104
.irq_unmask = xive_ipi_do_nothing,
1105
};
1106
1107
/*
1108
* IPIs are marked per-cpu. We use separate HW interrupts under the
1109
* hood but associated with the same "linux" interrupt
1110
*/
1111
struct xive_ipi_alloc_info {
1112
irq_hw_number_t hwirq;
1113
};
1114
1115
static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1116
unsigned int nr_irqs, void *arg)
1117
{
1118
struct xive_ipi_alloc_info *info = arg;
1119
int i;
1120
1121
for (i = 0; i < nr_irqs; i++) {
1122
irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1123
domain->host_data, handle_percpu_irq,
1124
NULL, NULL);
1125
}
1126
return 0;
1127
}
1128
1129
static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1130
.alloc = xive_ipi_irq_domain_alloc,
1131
};
1132
1133
static int __init xive_init_ipis(void)
1134
{
1135
struct fwnode_handle *fwnode;
1136
struct irq_domain *ipi_domain;
1137
unsigned int node;
1138
int ret = -ENOMEM;
1139
1140
fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1141
if (!fwnode)
1142
goto out;
1143
1144
ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1145
&xive_ipi_irq_domain_ops, NULL);
1146
if (!ipi_domain)
1147
goto out_free_fwnode;
1148
1149
xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1150
if (!xive_ipis)
1151
goto out_free_domain;
1152
1153
for_each_node(node) {
1154
struct xive_ipi_desc *xid = &xive_ipis[node];
1155
struct xive_ipi_alloc_info info = { node };
1156
1157
/*
1158
* Map one IPI interrupt per node for all cpus of that node.
1159
* Since the HW interrupt number doesn't have any meaning,
1160
* simply use the node number.
1161
*/
1162
ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1163
if (ret < 0)
1164
goto out_free_xive_ipis;
1165
xid->irq = ret;
1166
1167
snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1168
}
1169
1170
return ret;
1171
1172
out_free_xive_ipis:
1173
kfree(xive_ipis);
1174
out_free_domain:
1175
irq_domain_remove(ipi_domain);
1176
out_free_fwnode:
1177
irq_domain_free_fwnode(fwnode);
1178
out:
1179
return ret;
1180
}
1181
1182
static int xive_request_ipi(unsigned int cpu)
1183
{
1184
struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1185
int ret;
1186
1187
if (atomic_inc_return(&xid->started) > 1)
1188
return 0;
1189
1190
ret = request_irq(xid->irq, xive_muxed_ipi_action,
1191
IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD,
1192
xid->name, NULL);
1193
1194
WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1195
return ret;
1196
}
1197
1198
static int xive_setup_cpu_ipi(unsigned int cpu)
1199
{
1200
unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1201
struct xive_cpu *xc;
1202
int rc;
1203
1204
pr_debug("Setting up IPI for CPU %d\n", cpu);
1205
1206
xc = per_cpu(xive_cpu, cpu);
1207
1208
/* Check if we are already setup */
1209
if (xc->hw_ipi != XIVE_BAD_IRQ)
1210
return 0;
1211
1212
/* Register the IPI */
1213
xive_request_ipi(cpu);
1214
1215
/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1216
if (xive_ops->get_ipi(cpu, xc))
1217
return -EIO;
1218
1219
/*
1220
* Populate the IRQ data in the xive_cpu structure and
1221
* configure the HW / enable the IPIs.
1222
*/
1223
rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1224
if (rc) {
1225
pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1226
return -EIO;
1227
}
1228
rc = xive_ops->configure_irq(xc->hw_ipi,
1229
get_hard_smp_processor_id(cpu),
1230
xive_irq_priority, xive_ipi_irq);
1231
if (rc) {
1232
pr_err("Failed to map IPI CPU %d\n", cpu);
1233
return -EIO;
1234
}
1235
pr_debug("CPU %d HW IPI 0x%x, virq %d, trig_mmio=%p\n", cpu,
1236
xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1237
1238
/* Unmask it */
1239
xive_do_source_set_mask(&xc->ipi_data, false);
1240
1241
return 0;
1242
}
1243
1244
noinstr static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1245
{
1246
unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1247
1248
/* Disable the IPI and free the IRQ data */
1249
1250
/* Already cleaned up ? */
1251
if (xc->hw_ipi == XIVE_BAD_IRQ)
1252
return;
1253
1254
/* TODO: clear IPI mapping */
1255
1256
/* Mask the IPI */
1257
xive_do_source_set_mask(&xc->ipi_data, true);
1258
1259
/*
1260
* Note: We don't call xive_cleanup_irq_data() to free
1261
* the mappings as this is called from an IPI on kexec
1262
* which is not a safe environment to call iounmap()
1263
*/
1264
1265
/* Deconfigure/mask in the backend */
1266
xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1267
0xff, xive_ipi_irq);
1268
1269
/* Free the IPIs in the backend */
1270
xive_ops->put_ipi(cpu, xc);
1271
}
1272
1273
void __init xive_smp_probe(void)
1274
{
1275
smp_ops->cause_ipi = xive_cause_ipi;
1276
1277
/* Register the IPI */
1278
xive_init_ipis();
1279
1280
/* Allocate and setup IPI for the boot CPU */
1281
xive_setup_cpu_ipi(smp_processor_id());
1282
}
1283
1284
#endif /* CONFIG_SMP */
1285
1286
static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1287
irq_hw_number_t hw)
1288
{
1289
int rc;
1290
1291
/*
1292
* Mark interrupts as edge sensitive by default so that resend
1293
* actually works. Will fix that up below if needed.
1294
*/
1295
irq_clear_status_flags(virq, IRQ_LEVEL);
1296
1297
rc = xive_irq_alloc_data(virq, hw);
1298
if (rc)
1299
return rc;
1300
1301
irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1302
1303
return 0;
1304
}
1305
1306
static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1307
{
1308
xive_irq_free_data(virq);
1309
}
1310
1311
static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1312
const u32 *intspec, unsigned int intsize,
1313
irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1314
1315
{
1316
*out_hwirq = intspec[0];
1317
1318
/*
1319
* If intsize is at least 2, we look for the type in the second cell,
1320
* we assume the LSB indicates a level interrupt.
1321
*/
1322
if (intsize > 1) {
1323
if (intspec[1] & 1)
1324
*out_flags = IRQ_TYPE_LEVEL_LOW;
1325
else
1326
*out_flags = IRQ_TYPE_EDGE_RISING;
1327
} else
1328
*out_flags = IRQ_TYPE_LEVEL_LOW;
1329
1330
return 0;
1331
}
1332
1333
static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1334
enum irq_domain_bus_token bus_token)
1335
{
1336
return xive_ops->match(node);
1337
}
1338
1339
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1340
static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1341
1342
static const struct {
1343
u64 mask;
1344
char *name;
1345
} xive_irq_flags[] = {
1346
{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1347
{ XIVE_IRQ_FLAG_LSI, "LSI" },
1348
{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1349
{ XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" },
1350
};
1351
1352
static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1353
struct irq_data *irqd, int ind)
1354
{
1355
struct xive_irq_data *xd;
1356
u64 val;
1357
int i;
1358
1359
/* No IRQ domain level information. To be done */
1360
if (!irqd)
1361
return;
1362
1363
if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1364
return;
1365
1366
seq_printf(m, "%*sXIVE:\n", ind, "");
1367
ind++;
1368
1369
xd = irq_data_get_irq_handler_data(irqd);
1370
if (!xd) {
1371
seq_printf(m, "%*snot assigned\n", ind, "");
1372
return;
1373
}
1374
1375
val = xive_esb_read(xd, XIVE_ESB_GET);
1376
seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]);
1377
seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1378
xd->saved_p ? "saved" : "");
1379
seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target);
1380
seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip);
1381
seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page);
1382
seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page);
1383
seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags);
1384
for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1385
if (xd->flags & xive_irq_flags[i].mask)
1386
seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1387
}
1388
}
1389
#endif
1390
1391
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1392
static int xive_irq_domain_translate(struct irq_domain *d,
1393
struct irq_fwspec *fwspec,
1394
unsigned long *hwirq,
1395
unsigned int *type)
1396
{
1397
return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1398
fwspec->param, fwspec->param_count,
1399
hwirq, type);
1400
}
1401
1402
static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1403
unsigned int nr_irqs, void *arg)
1404
{
1405
struct irq_fwspec *fwspec = arg;
1406
irq_hw_number_t hwirq;
1407
unsigned int type = IRQ_TYPE_NONE;
1408
int i, rc;
1409
1410
rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1411
if (rc)
1412
return rc;
1413
1414
pr_debug("%s %d/0x%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1415
1416
for (i = 0; i < nr_irqs; i++) {
1417
/* TODO: call xive_irq_domain_map() */
1418
1419
/*
1420
* Mark interrupts as edge sensitive by default so that resend
1421
* actually works. Will fix that up below if needed.
1422
*/
1423
irq_clear_status_flags(virq, IRQ_LEVEL);
1424
1425
/* allocates and sets handler data */
1426
rc = xive_irq_alloc_data(virq + i, hwirq + i);
1427
if (rc)
1428
return rc;
1429
1430
irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1431
&xive_irq_chip, domain->host_data);
1432
irq_set_handler(virq + i, handle_fasteoi_irq);
1433
}
1434
1435
return 0;
1436
}
1437
1438
static void xive_irq_domain_free(struct irq_domain *domain,
1439
unsigned int virq, unsigned int nr_irqs)
1440
{
1441
int i;
1442
1443
pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1444
1445
for (i = 0; i < nr_irqs; i++)
1446
xive_irq_free_data(virq + i);
1447
}
1448
#endif
1449
1450
static const struct irq_domain_ops xive_irq_domain_ops = {
1451
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1452
.alloc = xive_irq_domain_alloc,
1453
.free = xive_irq_domain_free,
1454
.translate = xive_irq_domain_translate,
1455
#endif
1456
.match = xive_irq_domain_match,
1457
.map = xive_irq_domain_map,
1458
.unmap = xive_irq_domain_unmap,
1459
.xlate = xive_irq_domain_xlate,
1460
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1461
.debug_show = xive_irq_domain_debug_show,
1462
#endif
1463
};
1464
1465
static void __init xive_init_host(struct device_node *np)
1466
{
1467
xive_irq_domain = irq_domain_create_tree(of_fwnode_handle(np), &xive_irq_domain_ops, NULL);
1468
if (WARN_ON(xive_irq_domain == NULL))
1469
return;
1470
irq_set_default_domain(xive_irq_domain);
1471
}
1472
1473
static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1474
{
1475
if (xc->queue[xive_irq_priority].qpage)
1476
xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1477
}
1478
1479
static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1480
{
1481
int rc = 0;
1482
1483
/* We setup 1 queues for now with a 64k page */
1484
if (!xc->queue[xive_irq_priority].qpage)
1485
rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1486
1487
return rc;
1488
}
1489
1490
static int xive_prepare_cpu(unsigned int cpu)
1491
{
1492
struct xive_cpu *xc;
1493
1494
xc = per_cpu(xive_cpu, cpu);
1495
if (!xc) {
1496
xc = kzalloc_node(sizeof(struct xive_cpu),
1497
GFP_KERNEL, cpu_to_node(cpu));
1498
if (!xc)
1499
return -ENOMEM;
1500
xc->hw_ipi = XIVE_BAD_IRQ;
1501
xc->chip_id = XIVE_INVALID_CHIP_ID;
1502
if (xive_ops->prepare_cpu)
1503
xive_ops->prepare_cpu(cpu, xc);
1504
1505
per_cpu(xive_cpu, cpu) = xc;
1506
}
1507
1508
/* Setup EQs if not already */
1509
return xive_setup_cpu_queues(cpu, xc);
1510
}
1511
1512
static void xive_setup_cpu(void)
1513
{
1514
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1515
1516
/* The backend might have additional things to do */
1517
if (xive_ops->setup_cpu)
1518
xive_ops->setup_cpu(smp_processor_id(), xc);
1519
1520
/* Set CPPR to 0xff to enable flow of interrupts */
1521
xc->cppr = 0xff;
1522
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1523
}
1524
1525
#ifdef CONFIG_SMP
1526
void xive_smp_setup_cpu(void)
1527
{
1528
pr_debug("SMP setup CPU %d\n", smp_processor_id());
1529
1530
/* This will have already been done on the boot CPU */
1531
if (smp_processor_id() != boot_cpuid)
1532
xive_setup_cpu();
1533
1534
}
1535
1536
int xive_smp_prepare_cpu(unsigned int cpu)
1537
{
1538
int rc;
1539
1540
/* Allocate per-CPU data and queues */
1541
rc = xive_prepare_cpu(cpu);
1542
if (rc)
1543
return rc;
1544
1545
/* Allocate and setup IPI for the new CPU */
1546
return xive_setup_cpu_ipi(cpu);
1547
}
1548
1549
#ifdef CONFIG_HOTPLUG_CPU
1550
static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1551
{
1552
u32 irq;
1553
1554
/* We assume local irqs are disabled */
1555
WARN_ON(!irqs_disabled());
1556
1557
/* Check what's already in the CPU queue */
1558
while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1559
/*
1560
* We need to re-route that interrupt to its new destination.
1561
* First get and lock the descriptor
1562
*/
1563
struct irq_desc *desc = irq_to_desc(irq);
1564
struct irq_data *d = irq_desc_get_irq_data(desc);
1565
struct xive_irq_data *xd;
1566
1567
/*
1568
* Ignore anything that isn't a XIVE irq and ignore
1569
* IPIs, so can just be dropped.
1570
*/
1571
if (d->domain != xive_irq_domain)
1572
continue;
1573
1574
/*
1575
* The IRQ should have already been re-routed, it's just a
1576
* stale in the old queue, so re-trigger it in order to make
1577
* it reach is new destination.
1578
*/
1579
#ifdef DEBUG_FLUSH
1580
pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1581
cpu, irq);
1582
#endif
1583
raw_spin_lock(&desc->lock);
1584
xd = irq_desc_get_handler_data(desc);
1585
1586
/*
1587
* Clear saved_p to indicate that it's no longer pending
1588
*/
1589
xd->saved_p = false;
1590
1591
/*
1592
* For LSIs, we EOI, this will cause a resend if it's
1593
* still asserted. Otherwise do an MSI retrigger.
1594
*/
1595
if (xd->flags & XIVE_IRQ_FLAG_LSI)
1596
xive_do_source_eoi(xd);
1597
else
1598
xive_irq_retrigger(d);
1599
1600
raw_spin_unlock(&desc->lock);
1601
}
1602
}
1603
1604
void xive_smp_disable_cpu(void)
1605
{
1606
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1607
unsigned int cpu = smp_processor_id();
1608
1609
/* Migrate interrupts away from the CPU */
1610
irq_migrate_all_off_this_cpu();
1611
1612
/* Set CPPR to 0 to disable flow of interrupts */
1613
xc->cppr = 0;
1614
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1615
1616
/* Flush everything still in the queue */
1617
xive_flush_cpu_queue(cpu, xc);
1618
1619
/* Re-enable CPPR */
1620
xc->cppr = 0xff;
1621
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1622
}
1623
1624
void xive_flush_interrupt(void)
1625
{
1626
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1627
unsigned int cpu = smp_processor_id();
1628
1629
/* Called if an interrupt occurs while the CPU is hot unplugged */
1630
xive_flush_cpu_queue(cpu, xc);
1631
}
1632
1633
#endif /* CONFIG_HOTPLUG_CPU */
1634
1635
#endif /* CONFIG_SMP */
1636
1637
noinstr void xive_teardown_cpu(void)
1638
{
1639
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1640
unsigned int cpu = smp_processor_id();
1641
1642
/* Set CPPR to 0 to disable flow of interrupts */
1643
xc->cppr = 0;
1644
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1645
1646
if (xive_ops->teardown_cpu)
1647
xive_ops->teardown_cpu(cpu, xc);
1648
1649
#ifdef CONFIG_SMP
1650
/* Get rid of IPI */
1651
xive_cleanup_cpu_ipi(cpu, xc);
1652
#endif
1653
1654
/* Disable and free the queues */
1655
xive_cleanup_cpu_queues(cpu, xc);
1656
}
1657
1658
void xive_shutdown(void)
1659
{
1660
xive_ops->shutdown();
1661
}
1662
1663
bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1664
void __iomem *area, u32 offset, u8 max_prio)
1665
{
1666
xive_tima = area;
1667
xive_tima_offset = offset;
1668
xive_ops = ops;
1669
xive_irq_priority = max_prio;
1670
1671
ppc_md.get_irq = xive_get_irq;
1672
__xive_enabled = true;
1673
1674
pr_debug("Initializing host..\n");
1675
xive_init_host(np);
1676
1677
pr_debug("Initializing boot CPU..\n");
1678
1679
/* Allocate per-CPU data and queues */
1680
xive_prepare_cpu(smp_processor_id());
1681
1682
/* Get ready for interrupts */
1683
xive_setup_cpu();
1684
1685
pr_info("Interrupt handling initialized with %s backend\n",
1686
xive_ops->name);
1687
pr_info("Using priority %d for all interrupts\n", max_prio);
1688
1689
return true;
1690
}
1691
1692
__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1693
{
1694
unsigned int alloc_order;
1695
struct page *pages;
1696
__be32 *qpage;
1697
1698
alloc_order = xive_alloc_order(queue_shift);
1699
pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1700
if (!pages)
1701
return ERR_PTR(-ENOMEM);
1702
qpage = (__be32 *)page_address(pages);
1703
memset(qpage, 0, 1 << queue_shift);
1704
1705
return qpage;
1706
}
1707
1708
static int __init xive_off(char *arg)
1709
{
1710
xive_cmdline_disabled = true;
1711
return 1;
1712
}
1713
__setup("xive=off", xive_off);
1714
1715
static int __init xive_store_eoi_cmdline(char *arg)
1716
{
1717
if (!arg)
1718
return 1;
1719
1720
if (strncmp(arg, "off", 3) == 0) {
1721
pr_info("StoreEOI disabled on kernel command line\n");
1722
xive_store_eoi = false;
1723
}
1724
return 1;
1725
}
1726
__setup("xive.store-eoi=", xive_store_eoi_cmdline);
1727
1728
#ifdef CONFIG_DEBUG_FS
1729
static void xive_debug_show_ipi(struct seq_file *m, int cpu)
1730
{
1731
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1732
1733
seq_printf(m, "CPU %d: ", cpu);
1734
if (xc) {
1735
seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1736
1737
#ifdef CONFIG_SMP
1738
{
1739
char buffer[128];
1740
1741
xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
1742
seq_printf(m, "IPI=0x%08x %s", xc->hw_ipi, buffer);
1743
}
1744
#endif
1745
}
1746
seq_puts(m, "\n");
1747
}
1748
1749
static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1750
{
1751
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1752
int rc;
1753
u32 target;
1754
u8 prio;
1755
u32 lirq;
1756
char buffer[128];
1757
1758
rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1759
if (rc) {
1760
seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1761
return;
1762
}
1763
1764
seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1765
hw_irq, target, prio, lirq);
1766
1767
xive_irq_data_dump(irq_data_get_irq_handler_data(d), buffer, sizeof(buffer));
1768
seq_puts(m, buffer);
1769
seq_puts(m, "\n");
1770
}
1771
1772
static int xive_irq_debug_show(struct seq_file *m, void *private)
1773
{
1774
unsigned int i;
1775
struct irq_desc *desc;
1776
1777
for_each_irq_desc(i, desc) {
1778
struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
1779
1780
if (d)
1781
xive_debug_show_irq(m, d);
1782
}
1783
return 0;
1784
}
1785
DEFINE_SHOW_ATTRIBUTE(xive_irq_debug);
1786
1787
static int xive_ipi_debug_show(struct seq_file *m, void *private)
1788
{
1789
int cpu;
1790
1791
if (xive_ops->debug_show)
1792
xive_ops->debug_show(m, private);
1793
1794
for_each_online_cpu(cpu)
1795
xive_debug_show_ipi(m, cpu);
1796
return 0;
1797
}
1798
DEFINE_SHOW_ATTRIBUTE(xive_ipi_debug);
1799
1800
static void xive_eq_debug_show_one(struct seq_file *m, struct xive_q *q, u8 prio)
1801
{
1802
int i;
1803
1804
seq_printf(m, "EQ%d idx=%d T=%d\n", prio, q->idx, q->toggle);
1805
if (q->qpage) {
1806
for (i = 0; i < q->msk + 1; i++) {
1807
if (!(i % 8))
1808
seq_printf(m, "%05d ", i);
1809
seq_printf(m, "%08x%s", be32_to_cpup(q->qpage + i),
1810
(i + 1) % 8 ? " " : "\n");
1811
}
1812
}
1813
seq_puts(m, "\n");
1814
}
1815
1816
static int xive_eq_debug_show(struct seq_file *m, void *private)
1817
{
1818
int cpu = (long)m->private;
1819
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1820
1821
if (xc)
1822
xive_eq_debug_show_one(m, &xc->queue[xive_irq_priority],
1823
xive_irq_priority);
1824
return 0;
1825
}
1826
DEFINE_SHOW_ATTRIBUTE(xive_eq_debug);
1827
1828
static void xive_core_debugfs_create(void)
1829
{
1830
struct dentry *xive_dir;
1831
struct dentry *xive_eq_dir;
1832
long cpu;
1833
char name[16];
1834
1835
xive_dir = debugfs_create_dir("xive", arch_debugfs_dir);
1836
if (IS_ERR(xive_dir))
1837
return;
1838
1839
debugfs_create_file("ipis", 0400, xive_dir,
1840
NULL, &xive_ipi_debug_fops);
1841
debugfs_create_file("interrupts", 0400, xive_dir,
1842
NULL, &xive_irq_debug_fops);
1843
xive_eq_dir = debugfs_create_dir("eqs", xive_dir);
1844
for_each_possible_cpu(cpu) {
1845
snprintf(name, sizeof(name), "cpu%ld", cpu);
1846
debugfs_create_file(name, 0400, xive_eq_dir, (void *)cpu,
1847
&xive_eq_debug_fops);
1848
}
1849
debugfs_create_bool("store-eoi", 0600, xive_dir, &xive_store_eoi);
1850
1851
if (xive_ops->debug_create)
1852
xive_ops->debug_create(xive_dir);
1853
}
1854
#else
1855
static inline void xive_core_debugfs_create(void) { }
1856
#endif /* CONFIG_DEBUG_FS */
1857
1858
int xive_core_debug_init(void)
1859
{
1860
if (xive_enabled() && IS_ENABLED(CONFIG_DEBUG_FS))
1861
xive_core_debugfs_create();
1862
1863
return 0;
1864
}
1865
1866