Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/arch/riscv/kernel/hibernate.c
26486 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Hibernation support for RISCV
4
*
5
* Copyright (C) 2023 StarFive Technology Co., Ltd.
6
*
7
* Author: Jee Heng Sia <[email protected]>
8
*/
9
10
#include <asm/barrier.h>
11
#include <asm/cacheflush.h>
12
#include <asm/mmu_context.h>
13
#include <asm/page.h>
14
#include <asm/pgalloc.h>
15
#include <asm/pgtable.h>
16
#include <asm/sections.h>
17
#include <asm/set_memory.h>
18
#include <asm/smp.h>
19
#include <asm/suspend.h>
20
21
#include <linux/cpu.h>
22
#include <linux/memblock.h>
23
#include <linux/pm.h>
24
#include <linux/sched.h>
25
#include <linux/suspend.h>
26
#include <linux/utsname.h>
27
28
/* The logical cpu number we should resume on, initialised to a non-cpu number. */
29
static int sleep_cpu = -EINVAL;
30
31
/* Pointer to the temporary resume page table. */
32
static pgd_t *resume_pg_dir;
33
34
/* CPU context to be saved. */
35
struct suspend_context *hibernate_cpu_context;
36
EXPORT_SYMBOL_GPL(hibernate_cpu_context);
37
38
unsigned long relocated_restore_code;
39
EXPORT_SYMBOL_GPL(relocated_restore_code);
40
41
/**
42
* struct arch_hibernate_hdr_invariants - container to store kernel build version.
43
* @uts_version: to save the build number and date so that we do not resume with
44
* a different kernel.
45
*/
46
struct arch_hibernate_hdr_invariants {
47
char uts_version[__NEW_UTS_LEN + 1];
48
};
49
50
/**
51
* struct arch_hibernate_hdr - helper parameters that help us to restore the image.
52
* @invariants: container to store kernel build version.
53
* @hartid: to make sure same boot_cpu executes the hibernate/restore code.
54
* @saved_satp: original page table used by the hibernated image.
55
* @restore_cpu_addr: the kernel's image address to restore the CPU context.
56
*/
57
static struct arch_hibernate_hdr {
58
struct arch_hibernate_hdr_invariants invariants;
59
unsigned long hartid;
60
unsigned long saved_satp;
61
unsigned long restore_cpu_addr;
62
} resume_hdr;
63
64
static void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
65
{
66
memset(i, 0, sizeof(*i));
67
memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
68
}
69
70
/*
71
* Check if the given pfn is in the 'nosave' section.
72
*/
73
int pfn_is_nosave(unsigned long pfn)
74
{
75
unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
76
unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
77
78
return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn));
79
}
80
81
void notrace save_processor_state(void)
82
{
83
}
84
85
void notrace restore_processor_state(void)
86
{
87
}
88
89
/*
90
* Helper parameters need to be saved to the hibernation image header.
91
*/
92
int arch_hibernation_header_save(void *addr, unsigned int max_size)
93
{
94
struct arch_hibernate_hdr *hdr = addr;
95
96
if (max_size < sizeof(*hdr))
97
return -EOVERFLOW;
98
99
arch_hdr_invariants(&hdr->invariants);
100
101
hdr->hartid = cpuid_to_hartid_map(sleep_cpu);
102
hdr->saved_satp = csr_read(CSR_SATP);
103
hdr->restore_cpu_addr = (unsigned long)__hibernate_cpu_resume;
104
105
return 0;
106
}
107
EXPORT_SYMBOL_GPL(arch_hibernation_header_save);
108
109
/*
110
* Retrieve the helper parameters from the hibernation image header.
111
*/
112
int arch_hibernation_header_restore(void *addr)
113
{
114
struct arch_hibernate_hdr_invariants invariants;
115
struct arch_hibernate_hdr *hdr = addr;
116
int ret = 0;
117
118
arch_hdr_invariants(&invariants);
119
120
if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
121
pr_crit("Hibernate image not generated by this kernel!\n");
122
return -EINVAL;
123
}
124
125
sleep_cpu = riscv_hartid_to_cpuid(hdr->hartid);
126
if (sleep_cpu < 0) {
127
pr_crit("Hibernated on a CPU not known to this kernel!\n");
128
sleep_cpu = -EINVAL;
129
return -EINVAL;
130
}
131
132
#ifdef CONFIG_SMP
133
ret = bringup_hibernate_cpu(sleep_cpu);
134
if (ret) {
135
sleep_cpu = -EINVAL;
136
return ret;
137
}
138
#endif
139
resume_hdr = *hdr;
140
141
return ret;
142
}
143
EXPORT_SYMBOL_GPL(arch_hibernation_header_restore);
144
145
int swsusp_arch_suspend(void)
146
{
147
int ret = 0;
148
149
if (__cpu_suspend_enter(hibernate_cpu_context)) {
150
sleep_cpu = smp_processor_id();
151
suspend_save_csrs(hibernate_cpu_context);
152
ret = swsusp_save();
153
} else {
154
suspend_restore_csrs(hibernate_cpu_context);
155
flush_tlb_all();
156
flush_icache_all();
157
158
/*
159
* Tell the hibernation core that we've just restored the memory.
160
*/
161
in_suspend = 0;
162
sleep_cpu = -EINVAL;
163
}
164
165
return ret;
166
}
167
168
static int temp_pgtable_map_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
169
unsigned long end, pgprot_t prot)
170
{
171
pte_t *src_ptep;
172
pte_t *dst_ptep;
173
174
if (pmd_none(READ_ONCE(*dst_pmdp))) {
175
dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
176
if (!dst_ptep)
177
return -ENOMEM;
178
179
pmd_populate_kernel(NULL, dst_pmdp, dst_ptep);
180
}
181
182
dst_ptep = pte_offset_kernel(dst_pmdp, start);
183
src_ptep = pte_offset_kernel(src_pmdp, start);
184
185
do {
186
pte_t pte = READ_ONCE(*src_ptep);
187
188
if (pte_present(pte))
189
set_pte(dst_ptep, __pte(pte_val(pte) | pgprot_val(prot)));
190
} while (dst_ptep++, src_ptep++, start += PAGE_SIZE, start < end);
191
192
return 0;
193
}
194
195
static int temp_pgtable_map_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
196
unsigned long end, pgprot_t prot)
197
{
198
unsigned long next;
199
unsigned long ret;
200
pmd_t *src_pmdp;
201
pmd_t *dst_pmdp;
202
203
if (pud_none(READ_ONCE(*dst_pudp))) {
204
dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
205
if (!dst_pmdp)
206
return -ENOMEM;
207
208
pud_populate(NULL, dst_pudp, dst_pmdp);
209
}
210
211
dst_pmdp = pmd_offset(dst_pudp, start);
212
src_pmdp = pmd_offset(src_pudp, start);
213
214
do {
215
pmd_t pmd = READ_ONCE(*src_pmdp);
216
217
next = pmd_addr_end(start, end);
218
219
if (pmd_none(pmd))
220
continue;
221
222
if (pmd_leaf(pmd)) {
223
set_pmd(dst_pmdp, __pmd(pmd_val(pmd) | pgprot_val(prot)));
224
} else {
225
ret = temp_pgtable_map_pte(dst_pmdp, src_pmdp, start, next, prot);
226
if (ret)
227
return -ENOMEM;
228
}
229
} while (dst_pmdp++, src_pmdp++, start = next, start != end);
230
231
return 0;
232
}
233
234
static int temp_pgtable_map_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
235
unsigned long end, pgprot_t prot)
236
{
237
unsigned long next;
238
unsigned long ret;
239
pud_t *dst_pudp;
240
pud_t *src_pudp;
241
242
if (p4d_none(READ_ONCE(*dst_p4dp))) {
243
dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
244
if (!dst_pudp)
245
return -ENOMEM;
246
247
p4d_populate(NULL, dst_p4dp, dst_pudp);
248
}
249
250
dst_pudp = pud_offset(dst_p4dp, start);
251
src_pudp = pud_offset(src_p4dp, start);
252
253
do {
254
pud_t pud = READ_ONCE(*src_pudp);
255
256
next = pud_addr_end(start, end);
257
258
if (pud_none(pud))
259
continue;
260
261
if (pud_leaf(pud)) {
262
set_pud(dst_pudp, __pud(pud_val(pud) | pgprot_val(prot)));
263
} else {
264
ret = temp_pgtable_map_pmd(dst_pudp, src_pudp, start, next, prot);
265
if (ret)
266
return -ENOMEM;
267
}
268
} while (dst_pudp++, src_pudp++, start = next, start != end);
269
270
return 0;
271
}
272
273
static int temp_pgtable_map_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
274
unsigned long end, pgprot_t prot)
275
{
276
unsigned long next;
277
unsigned long ret;
278
p4d_t *dst_p4dp;
279
p4d_t *src_p4dp;
280
281
if (pgd_none(READ_ONCE(*dst_pgdp))) {
282
dst_p4dp = (p4d_t *)get_safe_page(GFP_ATOMIC);
283
if (!dst_p4dp)
284
return -ENOMEM;
285
286
pgd_populate(NULL, dst_pgdp, dst_p4dp);
287
}
288
289
dst_p4dp = p4d_offset(dst_pgdp, start);
290
src_p4dp = p4d_offset(src_pgdp, start);
291
292
do {
293
p4d_t p4d = READ_ONCE(*src_p4dp);
294
295
next = p4d_addr_end(start, end);
296
297
if (p4d_none(p4d))
298
continue;
299
300
if (p4d_leaf(p4d)) {
301
set_p4d(dst_p4dp, __p4d(p4d_val(p4d) | pgprot_val(prot)));
302
} else {
303
ret = temp_pgtable_map_pud(dst_p4dp, src_p4dp, start, next, prot);
304
if (ret)
305
return -ENOMEM;
306
}
307
} while (dst_p4dp++, src_p4dp++, start = next, start != end);
308
309
return 0;
310
}
311
312
static int temp_pgtable_mapping(pgd_t *pgdp, unsigned long start, unsigned long end, pgprot_t prot)
313
{
314
pgd_t *dst_pgdp = pgd_offset_pgd(pgdp, start);
315
pgd_t *src_pgdp = pgd_offset_k(start);
316
unsigned long next;
317
unsigned long ret;
318
319
do {
320
pgd_t pgd = READ_ONCE(*src_pgdp);
321
322
next = pgd_addr_end(start, end);
323
324
if (pgd_none(pgd))
325
continue;
326
327
if (pgd_leaf(pgd)) {
328
set_pgd(dst_pgdp, __pgd(pgd_val(pgd) | pgprot_val(prot)));
329
} else {
330
ret = temp_pgtable_map_p4d(dst_pgdp, src_pgdp, start, next, prot);
331
if (ret)
332
return -ENOMEM;
333
}
334
} while (dst_pgdp++, src_pgdp++, start = next, start != end);
335
336
return 0;
337
}
338
339
static unsigned long relocate_restore_code(void)
340
{
341
void *page = (void *)get_safe_page(GFP_ATOMIC);
342
343
if (!page)
344
return -ENOMEM;
345
346
copy_page(page, hibernate_core_restore_code);
347
348
/* Make the page containing the relocated code executable. */
349
set_memory_x((unsigned long)page, 1);
350
351
return (unsigned long)page;
352
}
353
354
int swsusp_arch_resume(void)
355
{
356
unsigned long end = (unsigned long)pfn_to_virt(max_low_pfn);
357
unsigned long start = PAGE_OFFSET;
358
int ret;
359
360
/*
361
* Memory allocated by get_safe_page() will be dealt with by the hibernation core,
362
* we don't need to free it here.
363
*/
364
resume_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
365
if (!resume_pg_dir)
366
return -ENOMEM;
367
368
/*
369
* Create a temporary page table and map the whole linear region as executable and
370
* writable.
371
*/
372
ret = temp_pgtable_mapping(resume_pg_dir, start, end, __pgprot(_PAGE_WRITE | _PAGE_EXEC));
373
if (ret)
374
return ret;
375
376
/* Move the restore code to a new page so that it doesn't get overwritten by itself. */
377
relocated_restore_code = relocate_restore_code();
378
if (relocated_restore_code == -ENOMEM)
379
return -ENOMEM;
380
381
/*
382
* Map the __hibernate_cpu_resume() address to the temporary page table so that the
383
* restore code can jumps to it after finished restore the image. The next execution
384
* code doesn't find itself in a different address space after switching over to the
385
* original page table used by the hibernated image.
386
* The __hibernate_cpu_resume() mapping is unnecessary for RV32 since the kernel and
387
* linear addresses are identical, but different for RV64. To ensure consistency, we
388
* map it for both RV32 and RV64 kernels.
389
* Additionally, we should ensure that the page is writable before restoring the image.
390
*/
391
start = (unsigned long)resume_hdr.restore_cpu_addr;
392
end = start + PAGE_SIZE;
393
394
ret = temp_pgtable_mapping(resume_pg_dir, start, end, __pgprot(_PAGE_WRITE));
395
if (ret)
396
return ret;
397
398
hibernate_restore_image(resume_hdr.saved_satp, (PFN_DOWN(__pa(resume_pg_dir)) | satp_mode),
399
resume_hdr.restore_cpu_addr);
400
401
return 0;
402
}
403
404
#ifdef CONFIG_PM_SLEEP_SMP
405
int hibernate_resume_nonboot_cpu_disable(void)
406
{
407
if (sleep_cpu < 0) {
408
pr_err("Failing to resume from hibernate on an unknown CPU\n");
409
return -ENODEV;
410
}
411
412
return freeze_secondary_cpus(sleep_cpu);
413
}
414
#endif
415
416
static int __init riscv_hibernate_init(void)
417
{
418
hibernate_cpu_context = kzalloc(sizeof(*hibernate_cpu_context), GFP_KERNEL);
419
420
if (WARN_ON(!hibernate_cpu_context))
421
return -ENOMEM;
422
423
return 0;
424
}
425
426
early_initcall(riscv_hibernate_init);
427
428